
SEXTANTE Programming Guide

Vı́ctor Olaya
Edition 1.0 — Rev. September 1, 2009

ii

SEXTANTE Programming Guide
Copyright c©2008 Victor Olaya

Edición 1.0
Rev. September 1, 2009

Permision is granted to copy, distribute and modify this work according to the terms of the Cre-
ative Common Attritution license under which it is distributed. More information can be found at
www.creativecommons.org. License applies to the text, as well as to the images created by the author,
which are all the ones contained in this text except when otherwise stated.

This text can be downloaded in several formats, including editable ones, at http://www.sextantegis.
com.

http://www.sextantegis.com
http://www.sextantegis.com

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Getting SEXTANTE . 1
1.3 The architecture of SEXTANTE . 2

2 Using SEXTANTE algorithms 5
2.1 Introduction. Initial settings . 5
2.2 Executing a geoalgorithm . 6

3 Programming geoalgorithms 11
3.1 Introduction. Initial settings . 11
3.2 The GeoAlgorithm class. Creating a geoalgorithm 12

3.2.1 Defining the characteristics of the algorithm 12
3.2.2 Implementing the process . 19

3.3 Another example . 25
3.4 More about raster output characteristics . 28
3.5 Using temporary layers . 29
3.6 Deploying and using the algorithm . 30
3.7 Internationalization . 30
3.8 Calling geoalgorithms from another geoalgorithm 30
3.9 Customizing the interface . 31

3.9.1 Customizing the interface for the modeller 33
3.10 More examples . 33

4 Developing bindings 35
4.1 Introduction . 35
4.2 Binding the data model . 35
4.3 Using SEXTANTE graphical elements . 37

5 Setting up Eclipse to work with SEXTANTE and gvSIG 39
5.1 Introduction . 39
5.2 Setting up gvSIG . 39
5.3 Setting up SEXTANTE . 40
5.4 Developing and testing your algorithms . 41

iii

iv CONTENTS

Chapter 1

Introduction

1.1 Introduction

SEXTANTE is a platform for geospatial analysis which makes it easy to implement and use
geoalgorithms. This programming guide is targeted at programmers who want to incorporate
SEXTANTE–based capabilities intro their sofware, and at those who would like to implement
new algorithms using the SEXTANTE framework.

To follow this guide, you must have a basic knowledge of the Java programming language.
Knowledge of fundamental GIS concepts is also assumed. Examples are based on the Eclipse
IDE, but they can be easily adapted to other development environments.

It is recommended to read the Introduction to SEXTANTE document before reading this
text. It can be downloaded from the same website from which you downloaded this guide.
Basic ideas about SEXTANTE are covered on that text and will not be included here.

1.2 Getting SEXTANTE

Whether you want to add new algorithms to the SEXTANTE library or use those geoalgo-
rithms already developed, you need to have SEXTANTE and add it to your project. From
the SEXTANTE website you can download binary files, and the source code is available via
the SVN repository. Using binary files is recommended, unless, of course, you want to extend
the library and add new features (not necessarily new algorithms). Chapter ?? gives more
information about how to use the SEXTANTE source code for these purposes.

The zip file that can be downloaded from the SEXTANTE website contains the following
jar files. A short description of each of them is given, in order to explain the role it plays.

• Base SEXTANTE files: these are needed for any operation

– sextante-x.x.jar: SEXTANTE core classes

– jts-1.9.jar Java Topology Suite library, used to handle vector geometries

– jcommons-1.0.0.jar: Base elements for the JFreeChart library

– jfreechart-1.0.1.jar: JFreeChart library, used for generating charts as output
of geoalgorithms

– jcommons-1.0.0.jar: Base elements for the JFreeChart library

– kxml2.jar. XML library

• Additional files for particular geoalgorithms

1

2 CHAPTER 1. INTRODUCTION

– jep-2.4.jar. A parser used by the grid calculator algorithm

– trove-1.8.jar Primitive collections used by spatial indices in interpolation meth-
ods

• Graphical elements and dependencies

– sextante gui-x.x.jar: SEXTANTE GUI elements

– jgraph.jar. Used for the graphical modeler interface

– bsh-2.0b4.jar. Bean Shell, used for the command–line interface

All the remaining files that you will find, starting with the suffix sextante are the algorithms
themselves.

1.3 The architecture of SEXTANTE

Before doing any programming, it is important to understand the architecture of SEXTANTE
and the main elements that comprise it. There are three basic components:

• A set of base classes which define a process API

• A set of algorithms based on those classes.

• Bindings that connect algorithms with data sources.

This can be summarized in the following picture:

Bindings

Base classes

Geoalgorithms

Data

Data bindings are the mechanism used by SEXTANTE to conect the algorithms to differ-
ents data sources. Using this, SEXTANTE can run on many different GIS and can provide

1.3. THE ARCHITECTURE OF SEXTANTE 3

geospatial analysis capabilities to different applications, regardless of the data model they
use. Some applications are based on popular geodata libraries such as GeoTools, while others
have their own classes for accesing data files in both raster and vector format. In any case,
SEXTANTE algorithms can be used, as long as bindings between the SEXTANTE data model
and the data model used in the application exist.

In this programming guide we will see how to use some of the existing bindings, as well as
how to create your own ones for your particular application.

SEXTANTE provides three base interfaces that have to be implemented to allow the
algorithms to access the data:

• IRasterLayer

• IVectorLayer

• ITable

This interfaces provides the most common methods that are needed to access data objects
(for example, getting the value at a given cell in a raster layer, or a geometry from a vector
layer) or create new ones (like setting the value at a given cell or adding a new geometry).
These interfaces are designed to be simple and to contain just the basic methods needed for
performing analysis, and are not designed as general interfaces for those data types.

SEXTANTE itself does not provide any independent implementation of those interfaces.
That means that, if you do not rely on a geodata access library, you cannot run SEXTANTE
algorithms, because you are not going to have a way of opening data files and creating data
objects.

Bindings are just wrappers for your data objects, and SEXTANTE accesses data through
them. In this programming guide we will use the GeoTools bindings for the examples, which
are available for download from the SEXTANTE website and also from the SVN repository.
That means that you have to use GeoTools to access data sources, and once you have a Java
object representing some data element, wrap it with the corresponding SEXTANTE binding,
so SEXTANTE algorithms can make use of that data element.

In the next chapter we will see more about bindings and how to use them.
Regarding base classes, it is necessary to have a good understanding of them if you want

to implement your own geoalgorithms, but not if you just want to use any of the algorithms
already developed. Development of new algorithms is covered in chapter ??.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Using SEXTANTE algorithms

2.1 Introduction. Initial settings

You can use SEXTANTE geoalgorithms from your application with just a few lines of code.
This chapter covers how to use individual algorithms and execute them programmatically,
whether from a GIS application or any other application that needs to perform some kind of
geospatial analysis.

Don’t forget that SEXTANTE also contains graphical elements that can also be integrated
into a GIS, incorporating the necessary tools to call geoalgorithms from a graphical user
interface. Chapter ?? covers this topic and shows in detail how to integrate these elements
into a GIS. Although those graphical components will take care of calling geoalgorithms and
handling their results (which is what we are going to see in this chapter), reading this chapter
is recommended before moving to chapter ??, since it introduces the fundamental ideas that
have to be known before doing any integration with those SEXTANTE elements.

To work through the examples of this chapter you need to follow the following steps to
configure you workspace.

• Check out the geotools25 folder from the sextante lib/bindings folder in the SEX-
TANTE SVN as a new project in Eclipse. This will download the bindings between
SEXTANTE and GeoTools 2.5 (the latest version at the moment of writing this text).
You can download these bindings also in a jar file from the SEXTANTE website, but in
this case we will use the source code directly, since it contains some examples that will
be useful and that we will analyze in this chapter.

• Download GeoTools 2.5 from the GeoTools website1. Put all the jar files in a folder
named lib/gt, in the geotools25 folder.

• Download the SEXTANTE binaries and put them in a folder named lib/sextante, also
in the geotools25 folder.

• Refresh the geotools25 project in your Eclipse IDE.

Once you have done this, you already have SEXTANTE, GeoTools and the bindings to
link both of them, and also a few examples that we will soon review. Data needed to run this
examples can be downloaded from the SEXTANTE website in a single zip file.

1http://geotools.codehaus.org

5

http://geotools.codehaus.org

6 CHAPTER 2. USING SEXTANTE ALGORITHMS

Do not worry if you are not familiar with GeoTools, since we are not going to get deep
into it. If you are an advanced GeoTools user, you will be able to make a better use of the
library to access your data source, but if not, the examples just use a few methods that are
easy to understand, and are primarily focused on using SEXTANTE, so you should have no
problems at all.

Examples are located in the es.unex.sextante.geotools.examples package.

2.2 Executing a geoalgorithm

Let’s open the file named VectorExample.java. This example will open a shapefile con-
taining lines and convert them into points using the Lines to equispaced points algorithm in
SEXTANTE. The code of the example is fully commented, but for the sake of space we will
not copy comments here, but just the fundamental code snippets, showing the main steps that
have to be followed to execute a SEXTANTE geoalgorithm.

Here is what you have to do:

• Initialize the library. That will load the algorithms and start the text engine.

Sextante.initialize();

• Wrap you data objects. All data objects used by SEXTANTE (whether as input or
as output) must implement the interfaces that were mentioned in the previous chapter.
SEXTANTE does not provide a stand–alone implementation of those interfaces, so you
have to rely on some geodata library. As it has been said, we will use GeoTools as our
data access library.

Let’s assume that we have a vector layer in a GeoTools DataStore (In the example, this
is done in the openShapefile() method). SEXTANTE cannot understand that object,
so we have to wrap it before passing it to the geoalgorithm. The GeoTools bindings
include a class named GTVectorLayer, which wraps a DataStore and implements the
IVectorLayer interface.

2.2. EXECUTING A GEOALGORITHM 7

DataStore ds = ...;
GTVectorLayer layer =GTVectorLayer.createLayer(ds, ds.getTypeNames()[0]);

A DataStore might contain several layers, and this method takes the first layer from
the DataStore. The inner base object is not a really the DataStore itself, but a
FeatureStore.

layer is already an object we can use. We do not need more layers for this example, so
let’s do something with that layer.

We create an instance of the algorithm we want to use, in this case an algorithm that
converts a line layer into a layer of equispaced points.

LinesToEquispacedPointsAlgorithm alg = new LinesToEquispacedPointsAlgorithm();

• Set the input parameters. These parameters can be layers (there we will use the
GTVectorLayer that we have created), or simple values such as string or numerical
ones. In this case we need to set an input layer and a distance between points.

ParametersSet params = alg.getParameters();
params.getParameter(LinesToEquispacedPointsAlgorithm.LINES)

.setParameterValue(layer);
params.getParameter(LinesToEquispacedPointsAlgorithm.DISTANCE)

.setParameterValue(new Double(5000));

The ParametersSet class represents a parameter container, and each algorithm has an
object of this class that you can get using the getParameters() method.

• Create an output factory. Output factories tell SEXTANTE how to create new data
objects. These new data object will also implement the corresponding SEXTANTE
interfaces (that means that, for instance, a vector layer will implement the IVectorLayer
interface that we already know).

Once again, SEXTANTE does not provide a standalone output factory, but there are
several ones already developed, each one of them based on some geodata library. The
GTOutputFactory included in the GeoTools binding generates objects based on GeoTools
data objects.

OutputFactory outputFactory = new GTOutputFactory();

Using this factory means that the algorithm will create wrapped GeoTools objects as
output layers.

• Set the output filenames. The outputs generated by the algorithm using the output
factory are file–based (particularly, in this case it generates shapefiles), so a filename is
needed. If you don’t set one, the output factory will create a temporary filename. Some
output factories might not use that filename, for example if they store everything in
memory.

OutputObjectsSet outputs = alg.getOutputObjects();
Output contours = outputs.getOutput(LinesToEquispacedPointsAlgorithm.RESULT);
contours.setFilename("/home/my_user_name/points.shp");

8 CHAPTER 2. USING SEXTANTE ALGORITHMS

• Execute the algorithm. We pass the output factory to the algorithm, so it knows how
to create the resulting objects. The first parameter is an object implementing the
ITaskMonitor interface, used to monitor the activity of the algorithm. If we pass a null
value, then it will use a silent monitor. SEXTANTE provides a DefaultTaskMonitor
as well, which just shows a simple Java progress monitor with a cancel button.

alg.execute(null, outputFactory);

• Get the results. The OutputObjectsSet class used to retrieve the outputs and set the
filename for each of them (see last point) can be used to get the resulting data as well.
The Output object that we retrieved contained a null object then, but now it should
have been replaced by a valid output object.

IVectorLayer result = (IVectorLayer) contours.getOutputObject();

Since we used aGTOutputFactory, it will be a GTVectorLayer object. We can take
the internal base data object it is based on, which in this case will be a GeoTools
FeatureStore

FeatureStore fs = (FeatureStore) result.getBaseDataObject();

And now we have a resulting object and we have succesfully used a SEXTANTE geoalgo-
rithm.

Let’s try now another another algorithm, in this case one that works with raster layers.
Open the RasterGridExtentExample. This is the code of its doProcessing() method, where
all the actual processing takes place:

GridCoverage2D gc = openRasterLayer("/home/my_user_name/dem.asc");
GTRasterLayer dem = new GTRasterLayer();
dem.create(gc);

SlopeAlgorithm alg = new SlopeAlgorithm();
ParametersSet params = alg.getParameters();
params.getParameter(SlopeAlgorithm.DEM).setParameterValue(dem);

params.getParameter(SlopeAlgorithm.METHOD).setParameterValue(
SlopeAlgorithm.METHOD_ZEVENBERGEN);

params.getParameter(SlopeAlgorithm.UNITS).setParameterValue(
SlopeAlgorithm.UNITS_RADIANS);

OutputObjectsSet outputs = alg.getOutputObjects();
Output out = outputs.getOutput(SlopeAlgorithm.SLOPE);
out.setFilename("/home/my_user_name/slope.tif");

GridExtent ge = dem.getLayerGridExtent();
ge.setCellSize(100.);
alg.setGridExtent(ge);

2.2. EXECUTING A GEOALGORITHM 9

alg.execute(null, m_OutputFactory);

IRasterLayer slope = (IRasterLayer) out.getOutputObject();

System.out.println("The output cellsize is "
+ Double.toString(slope.getLayerGridExtent().getCellSize())
+ " m");

Most of the code looks quite similar to the one in the vector example, and it follows the
steps described above. This time, a GridCoverage2D is used as the base data object, and it
is wrapped with a GTRasterLayer object, since it is a raster layer instead of a vector one.

The main difference, however, is found just before the algorithm execution, in the lines
shown next.

GridExtent ge = dem.getLayerGridExtent();
ge.setCellSize(100.);
alg.setGridExtent(ge);

Whenever a SEXTANTE geoalgorithm generates new raster layers, the extent and cellsize
of the resulting layers can be selected before executing the algorithm. Using this, you can take
a raster layer covering a large area as the input of a geoalgorithm, and generate output layers
that cover just a small part of that area and not necessarily all of it. If you do not explicitly
set the characteristics of output raster layers, SEXTANTE will infere them from input layers.
In this case, since there is only a single input raster layer, commenting out the above three
lines will cause the resulting slope layer to have the same characteristics as the input DEM.

To set the characteristics of output raster layers, the setGridExtent(GridExtent) method
has to be used. A GridExtent contain information about the extent and the cellsize to use,
and also some additional methods to handle and create this information.

In the proposed example, the grid extent of the input DEM is taken (all object of class
IRasterLayer have one, a copy of which can be retrieved using the getLayerGridExtent()
method), and its cellsize changed to 100. The original cellsize of the input DEM is 25 meters,
so we are telling SEXTANTE to create a resulting layer with a coarser resolution.

In some cases, setting a grid extent is mandatory, since there are algorithms that generate
raster layers but do not take other raster layers as input. This happens, for instance, in all
the interpolation algorithms. In the InterpolationExample class you will find the following
code:

GridExtent extent = new GridExtent(layer);
extent.setCellSize(25.);
alg.setGridExtent(extent);

A new GridExtent object is created, passing a layer (a vector layer in this case) to the
constructor. The full extent (the area to cover) of the vector layer is used, but since vector
layers do not have a cellsize, the cellsize must to be set manually afterwards.

In this case, commenting out these lines will cause the algorithm to throw an exception
when executed, since it will not have enough information to produce any output.

10 CHAPTER 2. USING SEXTANTE ALGORITHMS

Chapter 3

Programming geoalgorithms

3.1 Introduction. Initial settings

This chapter introduces the fundamental ideas needed to implement a new geoalgorithm based
on SEXTANTE. Using the SEXTANTE framework to create a new geoalgorithm will allow it
to be used in any of the components of SEXTANTE (toolbox, graphical modeler, etc.), and
in any of the applications that integrate SEXTANTE, without any modification at all.

The first thing to do to create your own SEXTANTE geoalgorithm is to create a project.
Let’s create a new project named MyAlgorithms:

Since it will depend on SEXTANTE base classes, the next thing to do is to add the
SEXTANTE jar files to the list of referenced libraries. Create a folder named “lib” in your
project and add the following files:

• sextante-x.x.jar

• jts-1.9.jar

• kxml2.jar

• jfreechart-1.0.1.jar: JFreeChart library, used for generating charts as output of
geoalgorithms

Add this files to the build path of the project.
Now create a new package to put your first geoalgorithm on it. You can use any name you

want, but here we will stick to the naming conventions used in the SEXTANTE library.
Create a package and name it es.unex.sextante.multiplyRaster. Usually, a new pack-

age is created for each single algorithm, which will contain all the necessary files to describe
and implement that algorithm. As we will see, this is usually done using a single file.

Let’s add the file that will contain our algorithm. The class name will be used to generate
the command–line name of the algorithm, and by convention the file containing the algorithm
has to end with the suffix “Algorithm”. For this reason, you should try to give your class a
descriptive name, so when using it from the command–line it is easy to understand what it
does. In this case we will name it MultiplyRasterAlgorithm, so later we could call it from
the command line using the command multiplyraster.

You should have something like this:

11

12 CHAPTER 3. PROGRAMMING GEOALGORITHMS

3.2 The GeoAlgorithm class. Creating a geoalgorithm

All geoalgorithms must extend the GeoAlgorithm class, which provides the foundation for all
the operations needed to perform any kind of geospatial analysis.

To implement your geoalgorithm you just have to implement two methods:

• defineCharacteristics()

• processAlgorithm()

The first of them should be used to define the characteristics of the algorithm. These
characteristics will be used for such things as defining the user interface or selecting the
correct way of linking it with other algorithms within a model. Basically, this method should
give an answer to the following questions:

• Which inputs are needed to run the algorithm?

• Which outputs will this algorithm generate?

• Basic characteristics of the algorithm (name, group it belongs to, etc.)

The processAlgorithm() method is where you have to implement the algorithm itself,
adding all the calculations and processes that constitute it.

We are going to create a simple algorithm that takes a raster layer and a numerical value,
and generates a new raster layer which is the result of multiplying the input raster layer and
the value (i.e. multiplying the value of each cell in the raster layer and the numerical vale).

3.2.1 Defining the characteristics of the algorithm

To set the characteristics of the algorithm you have to add all necessary definitions in the
defineCharacteristics() method. This method is called upon construction of the geoalgo-
rithm.

For our first example, we will add the following code to this method:

public void defineCharacteristics() {

3.2. THE GEOALGORITHM CLASS. CREATING A GEOALGORITHM 13

this.setName("Multiply raster");
this.setGroup("My algorithms");
this.setGeneratesUserDefinedRasterOutput(false);

try {
m_Parameters.addInputRasterLayer("INPUT", "Raster layer", true);
m_Parameters.addNumericalValue("VALUE",

"Value",
1,
AdditionalInfoNumericalValue.NUMERICAL_VALUE_DOUBLE);

addOutputRasterLayer("RESULT", "Result");
} catch (RepeatedParameterNameException e) {

e.printStackTrace();
}

}

Let’s analyze this code.
The first line sets the name of the algorithm. When using the toolbox or the graphical

modeler, this will be the name that will identify the algorithm. The setGroup(String)
method is used to set the group the algorithm belongs to.

For those algorithms that generate raster layers (this is one of them), SEXTANTE might
give the user the option to select the characteristics of the output layers (extent and cellsize).
By default, it will show the corresponding tab whenever raster layers are created, but in some
cases you might want to set a fixed output extent. In our case, we are going to generate a
new raster layer with exactly the same characteristics as the input layer, so there is no need
to let the user select a different extent or cellsize.

Whenever you do not want the user to be able to select raster output characteristics, you
can add the following line

setGeneratesUserDefinedOutput(false);

to indicate that SEXTANTE should not show the raster output tab, even though the algorithm
generates raster layers.

We will see how to deal with extents and cellsizes (whether they have been set by the user
or not) in a different section, so now you do not really have to worry about that.

To tell SEXTANTE that our algorithm needs a raster layer and a numerical value, we
will use the m Parameters field of the GeoAlgorithm class. This field is an object of class
ParametersSet, which is basically a container of objects of class Parameters. This parameters
define the inputs needed by the algorithm, and describe the particular characteristics of each
one them.

the ParametersSet class has several method to easily add parameters to it. Here is a list
of the main ones, along with the kind of parameters that they add:

• To add a raster layer,

public void addInputRasterLayer(String sName,
String sDescription,

boolean bIsMandatory)}

14 CHAPTER 3. PROGRAMMING GEOALGORITHMS

The two first arguments appear on every method that we are going to see in this section.
The first one is the name used to identify the parameter, and it has to be unique. The
second one is the description (human–readable) of the algorithm. This will be the one
used to name the algorithm in the parameters window.

As an example, here is the line that can be found in the Slope algorithm to indicate that
a raster layer (a DEM) is needed to run it:

m_Parameters.addInputRasterLayer(DEM, Sextante.getText("DEM"), true);

DEM is defined as a String constant within that same class.

public static final String DEM = "DEM";

The Sextante.getText() method is an static method used to support internationaliza-
tion. We will see how to use that in a different section in this same chapter.

• To add a vector Layer,

public void addInputVectorLayer(String sName,
String sDescription,
int iShapeType,
boolean bIsMandatory)

This method is similar to the one used to add raster layers, except for an additional
parameter that indicates the type of vector layer that is needed. Values for this parameter
can be any of the following constants. Names are pretty self–explanatory.

– AdditionalInfoVectorLayer.SHAPE TYPE POINT:

– AdditionalInfoVectorLayer.SHAPE TYPE LINE:

– AdditionalInfoVectorLayer.SHAPE TYPE POLYGON:

– AdditionalInfoVectorLayer.SHAPE TYPE ANY:

We find an example of this method in those algorithms that perform some kind of
interpolation, which take a points layer as input

m_Parameters.addInputVectorLayer(LAYER, Sextante.getText("Points_Layer"),
AdditionalInfoVectorLayer.SHAPE_TYPE_POINT,
true);

• to add a table

public void addInputTable(String sName,
String sDescription,
boolean bIsMandatory)

• to add a numerical value

There are two methods that can be used. The first one will not restrict the values that
the user can enter.

3.2. THE GEOALGORITHM CLASS. CREATING A GEOALGORITHM 15

public void addNumericalValue(String sName,
String sDescription,
double dDefaultValue,
int iType)

The last argument is used to indicate whether the value is a floating point or an integer
one. Use one of the following constants:

– AdditionalInfoNumericalValue.NUMERICAL VALUE INTEGER:

– AdditionalInfoNumericalValue.NUMERICAL VALUE DOUBLE:

For our first algorithm, the value to be used to multiply the input raster layer can take
any value. We will set a default value of 1. The line to add to the defineCharacteristics()
will be the next one.

m_Parameters.addNumericalValue("VALUE",
"Value",
1,
AdditionalInfoNumericalValue.NUMERICAL_VALUE_DOUBLE);

In some cases, however, it is necessary to define a range of valid values. If so, the next
method should be used instead of the previous one.

public void addNumericalValue(String sName,
String sDescription,
double dDefaultValue,
int iType,
double dMinValue,
double dMaxValue)

No matter what the type of the value (integer or double), minimum and maximum values
are always entered as double ones.

Here is an example, from the Density algorithm, which needs a search radius that has
to be non–negative.

m_Parameters.addNumericalValue("DIST", Sextante.getText("Search_radius"),
AdditionalInfoNumericalValue.NUMERICAL_VALUE_DOUBLE,
100, 0, Double.MAX_VALUE);

• to add a string

public void addString(String sName,
String sDescription,
String sDefaultString)

If no default value is needed, you can pass an empty string or use the following simplified
method.

16 CHAPTER 3. PROGRAMMING GEOALGORITHMS

public void addString(String sName,
String sDescription)

For example, this line can be found in the Raster calculator algorithm.

m_Parameters.addString(FORMULA, Sextante.getText("Fórmula"));

• to add a boolean parameter.

public void addBoolean(String sName,
String sDescription)

• to add a selection.

It is common to request the user to select from a list of valid values. To do so, use the
following method:

public void addSelection(String sName,
String sDescription,
String[] sValues)

where sValues is an array of strings with the names of all the possible options.

For example, if you would like the user to select a method from a list of three available
ones.

String[] sMethod = {"Method 1", "Method 2", "Method 3"};
m_Parameters.addSelection("METHOD", "Method", sMethod);

• to add an editable table

Although we have already seen how to add a table to the parameters list, there is another
kind of tables that SEXTANTE can use as input. In some cases you might require a
small table such as a look–up table or a 3×3 table to be used as a kernel for convolution
operation. In this case, SEXTANTE will show the table and the user will define its
values when executing the algorithm, instead of using an existing table.

The following method is used to incorporate this kind of parameter to the algorithm.

Para ello, tenemos el siguiente método.

public void addFixedTable(String sName,
String sDescription,
String[] sColumnNames,
int iRows,
boolean bIsNumberOfRowsFixed)

The number of columns is fixed, and is defined with the length of the sColumnNames
argument. The number of rows is defined using the iRows argument, but it does not
have to be fixed. In some cases, it is interesting to let the user add new rows or remove
them according to their needs. In other cases (like, for instance, when defining a 3 × 3
kernel), the initial number of rows should not be modified. To set how SEXTANTE
should behave, the last argument of the method is used.

In the aforementioned convolution algorithm, we find the following line:

3.2. THE GEOALGORITHM CLASS. CREATING A GEOALGORITHM 17

String sColumnNames[] = {"1", "2", "3"};
m_Parameters.addFixedTable(KERNEL, Sextante.getText("Kernel"),

sColumnNames, 3, true);

• To add a point.

public void addPoint(String sName,
String sDescription)

• to add a multiple input

When you do not need a single layer, but a list of them, the addInputRasterLayer()
method that we already know is not enough. The ParametersSet class contains a
method to add a multiple input that can be an array of vector layers, raster layers or
tables.

public void addMultipleInput(String sName,
String sDescription,
int iDataType,
boolean bIsMandatory)

Like single inputs, multiple inputs can be mandatory or optional.

Using the iDataType argument, the type of input can be set, using one of the following
constants:

– AdditionalInfoMultipleInput.DATA TYPE RASTER:

– AdditionalInfoMultipleInput.DATA TYPE VECTOR POINT: .

– AdditionalInfoMultipleInput.DATA TYPE VECTOR LINE:

– AdditionalInfoMultipleInput.DATA TYPE VECTOR POLYGON:

– AdditionalInfoMultipleInput.DATA TYPE VECTOR ANY:

– AdditionalInfoMultipleInput.DATA TYPE VECTOR TABLE:

An example of this can be found in the Merge raster layers algorithm.

m_Parameters.addMultipleInput("INPUT", Sextante.getText("Layers_to_merge"),
AdditionalInfoMultipleInput.DATA_TYPE_RASTER);

Apart from these ones, two other parameters can be added, which are not independent
but depend on some other parameter previously introduced.

1. to add a field from a vector layer or a table.

The same method is used in both cases, since the attributes table of a layer is handled
just as independent table.

public void addTableField(String sName,
String sDescription,
String sParentParameterName)

18 CHAPTER 3. PROGRAMMING GEOALGORITHMS

The key argument here is the last one, which indicates the name of the parameter that
acts as the parent parameter of this one. It has to be a vector layer or table, and its
name (the value passed to the sName argument when adding that layer) has to be used
to select it.

Here is an example, where a table parameter is defined and then two parameters repre-
senting two fields from that table are added.

m_Parameters.addInputTable("TABLE", "Table", true);
m_Parameters.addTableField("XFIELD", "X coordinate", "TABLE");
m_Parameters.addTableField("YFIELD", "Y coordinate", "TABLE");

2. to add a band from a raster layer.

The syntax of the method is identical to the previous one.

public void addBand(String sName,
String sDescription,
String sParentParameterName)

And here is an example from the NDVI algorithm

m_Parameters.addInputRasterLayer("LAYERRED", "Red layer", true);
m_Parameters.addBand("BANDRED", "Red band", "LAYERRED");

All this should be enough to define the requirements of the algorithm. The outputs of the
algorithm also have to be defined, in order to have enough information to use it in the graphical
modeler. If output results are not defined, we will be able to execute the algorithm, but the
grammar of the process will not be complete, and other operations will not be available.

Adding outputs is similar to adding input parameters. There are a few convenience meth-
ods in the GeoAlgorithm class that can be used for this purpose. These are used to add the
five types of outputs supported by SEXTANTE: raster layers, vector layers, tables, graphs
and texts.

• to add a raster layer

protected void addOutputRasterLayer(String sName,
String sDescription,
int iBands) {

Just like input parameters, outputs need a name and a description, the first one being
unique and used to identify them (we will later see why this is important) and the second
one to show to the user in the corresponding parameters window.

In the case of raster layers, the number of bands expected for the output layer has to
be entered using the iBands argument. In case this cannot be known in advance, the
OutputRasterLayer provides a constant to indicate it:

OutputRasterLayer.NUMBER_OF_BANDS_UNDEFINED

3.2. THE GEOALGORITHM CLASS. CREATING A GEOALGORITHM 19

For the most usual case of adding a single–band raster layer, a simplified method exists.

protected void addOutputRasterLayer(String sName,
String sDescription,
int iBands) {

• to add a vector layer

protected void addOutputVectorLayer(String sName,
String sDescription,
int iType) {

In this case, instead of setting the number of bands, the type of vector layer that is
expected has to be entered. The following constants can be used for the corresponding
argument.

OutputVectorLayer.SHAPE_TYPE_POLYGON
OutputVectorLayer.SHAPE_TYPE_POINT
OutputVectorLayer.SHAPE_TYPE_LINE
OutputVectorLayer.SHAPE_TYPE_UNDEFINED

The last one should be used when the type of layer cannot be known in advance and is
selected at run time.

• to add a text output.

protected void addOutputText(String sName,
String sDescription) {

• to add a text output.

protected void addOutputChart(String sName,
String sDescription) {

In this two last cases, no information apart from the name and the description is needed
about the outputs.

3.2.2 Implementing the process

As it has been said, the algorithm itself has to be implemented in the processAlgorithm()
method, which will be called when the algorithm is executed. Before executing the process,
input parameters have to be given valid values. This is done by SEXTANTE when the user
selects those values in the parameters window, or is done programmatically before executing
the algorithm, as we saw in chapter ??.

Here is the code of the method, which we will discuss next.

20 CHAPTER 3. PROGRAMMING GEOALGORITHMS

public boolean processAlgorithm() {

int x,y;
int iNX, iNY;
double dValue;
double dConstant;
IRasterLayer layer ;

layer = m_Parameters.getParameterValueAsRasterLayer("INPUT");
dConstant = m_Parameters.getParameterValueAsDouble("VALUE");

GridExtent gridExtent = new GridExtent(layer);
IRasterLayer result = getNewRasterLayer("RESULT", "Result",

IRasterLayer.RASTER_DATA_TYPE_FLOAT,
gridExtent);

layer.setWindowExtent(gridExtent);
iNX = gridExtent.getNX();
iNY = gridExtent.getNY();

for(y = 0; y < iNY && setProgress(y, iNY);; y++){
for(x = 0; x < iNX; x++){
dValue = window.getCellValueAsDouble(x, y);
result.setCellValue(x, y, dValue * dConstant);

}
}

return !m_Task.isCanceled();

}

There are three main task to accomplish when implementing the algorithm.

• Retrieve values from input parameters. Values have to be recovered and put into vari-
ables to make them easier to use for the algorithm process.

• Operate with those variables. Of course, we are not going to tell you how to perform
this second task, since it is up to you to implement your own algorithm. However, we
will see some examples about how to use the basic interfaces for raster layers, vector
layers and tables, which are the ones that you will be using to access the input data.

• Create output results. Outputs are the most important part of the algorithm (they are
the reason to execute it!), and have to be correctly defined, so SEXTANTE can use those
outputs in other algorithms and deal with them.

To retrieve parameter values, we have to use the m Parameters object once again. When we
added parameters using its methods in the defineCharacteristics() method, new objects
of class Parameter were added with a null value. Now they contain a value and that is the
value that we have to retrieve.

The ParametersSet class contains several methods with a similar syntax, which should be
used depending of the type of value to be retrieved. Here is a list of all the available methods.

3.2. THE GEOALGORITHM CLASS. CREATING A GEOALGORITHM 21

public int getParameterValueAsInt(String sParameterName)
public double getParameterValueAsDouble(String sParameterName)
public Point2D getParameterValueAsPoint(String sParameterName)
public boolean getParameterValueAsBoolean(String sParameterName)
public ArrayList getParameterValueAsArrayList(String sParameterName)
public String getParameterValueAsString(String sParameterName)
public FLyrVect getParameterValueAsVectorLayer(String sParameterName)
public FLyrRaster getParameterValueAsRasterLayer(String sParameterName)
public DataSource getParameterValueAsTable(String sParameterName)

They all take one string, which is the name of the parameter from which to retrieve the
value. This is the name that was used to define the parameter when it was added to the
defineCharacteristics() method.

For most cases, it is easy to figure out the method to use. Using a wrong method
will cause a WrongParameterTypeException. exception to be thrown. For example, it
does not make sense to get the value of a numerical parameter as a raster layer using the
getParameterValueAsRasterLayer() method.

If the parameter does not have a value assigned, calling any of the above methods will
throw a NullParameterValueException exception. Layers and tables can be optional, and
in this case the null value is a valid one, so it can be returned. If the parameter is mandatory,
however, the exception is thrown.

The getParameterValueAsInt(String) method is used not only to get the value of a
numerical parameter, but also the value of a selection (returns the zero–based index of the
selected element), a band (the zero–based index of the chosen band) or a table field (the
zero–based index of the field).

You can always use the getParameterValueAsObjectInt(String) and then cast the re-
turned object to the corresponding class. For fixed tables, added using the addFixedTable
method, the value is returned as an object of class FixedTableModel, which is a class extend-
ing the Java AbstractTableModel class.

Here is an example:

FixedTableModel lut = (FixedTableModel) m_Parameters.
getParameterValueAsObject("LUT");

With the above methods, we can easily understand how the raster layer and the numerical
value needed for our algorithm are retrieved.

Once we have those values, it is time to create the output layer. In this case, we will
generate a new raster layer and later on set the corresponding values in its cells.

To generate a new output you can create a new instance of the corresponding class (in
this case it would be a OutputRasterLayer) and then add it to the set of output object using
methods in the OutputObjectsSet class. We will use this approach when generating charts
or texts as results, but in the case of layers or tables it is much more practical to use some of
the methods provided by the GeoAlgorithm class. This is not only easier but also safer, and
it is the recommended way of doing it.

Here is a short list of the methods available for creating new layers and tables.

protected IVectorLayer getNewVectorLayer(String sName,
String sDescription,
int iShapeType,
Class[] types,
String[] sFields);

22 CHAPTER 3. PROGRAMMING GEOALGORITHMS

protected IRasterLayer getNewRasterLayer(String sName,
String sDescription,
int iDataType,
int iBands){

protected IRasterLayer getNewRasterLayer(String sName,
String sDescription,
int iDataType,
GridExtent extent,
int iBands){

protected IRasterLayer getNewRasterLayer(String sName,
String sDescription,
int iDataType,
IRasterLayer layer,
int iBands){

protected ITable getNewTable(String sName,
String sDescription,
Class [] types,
String[] sFields)

You can see that there are three different methods for creating raster layer, but only one for
vector layers or tables. This is because raster layers need to be configured setting their extent
and cellsize, and those methods make it easier to adjust this depending on the characteristics
of the algorithm and the preferences of the programmer. We will see this shortly, once we
reach the section dedicated to raster output characteristics.

By now, let’s just focus on the method used in our algorithm, which is the second one of
the methods that return a new raster layer.

You will see that it is not exactly that method, since it does not take the iBands parameter,
which indicates the number of bands the resulting layer should have. Since most of the times
you will create a single-band layer, there are three additional convenience methods that do
not take that argument and generate single-band layers.

The first thing to mention is that we must supply a name and a description for the layer we
are about to create. We added an output object in the describeCharacteristics() method,
and gave it the name RESULT. This layer we are creating now is that output layer, so we have
to identify it as such, using the same name when calling the method used to create it.

The description does not have to be the same one provided when adding the ouput object.
The description used then will be shown before the algorithm is executed (for instance, when
creating the parameters window to prompt the user for a filename for that output), while the
one we pass when creating the layer is the actual name that the layer will have (which will be
the one used to identify it in the TOC when adding it to the GUI of the GIS we are using). In
this last case, you can use a name based on the input layers or on any other input parameter.

For example, we are describing the output layer simply as Result, but we could use a more
descriptive name substituting the corresponding line with the following two lines of code:

String sDescription = layer.getName() + " * " + Double.toString(dConstant);
IRasterLayer result = getNewRasterLayer("RESULT", sDescription,

3.2. THE GEOALGORITHM CLASS. CREATING A GEOALGORITHM 23

RasterMemoryDriver.RASTER_DATA_TYPE_FLOAT,
gridExtent);

The type of data that the raster layer is going to contain is defined with one of the following
constants from the IRasterLayer interface.

IRasterLayer.RASTER_DATA_TYPE_DOUBLE;
IRasterLayer.RASTER_DATA_TYPE_FLOAT;
IRasterLayer.RASTER_DATA_TYPE_INT;
IRasterLayer.RASTER_DATA_TYPE_SHORT;
IRasterLayer.RASTER_DATA_TYPE_BYTE;

The last argument we are passing to the getNewRasterLayer() method is a GridExtent
object, which means that we are telling the method how we want the output raster layer to be
(its extent and cellsize). Notice that by doing this we are ignoring the settings that the user
might have done in the parameters window (in this case it is not shown since we added the cor-
responding line to the defineCharacteristics() method, but it could be shown otherwise)
or using the setGridExtent(GridExtent) if calling the algorithm programmatically. We will
see in the next section how to create new raster layers using the characteristics selected by
the user.

After creating the raster output layer, it is time to set the corresponding values for all
its cells. What we are going to scan the raster layer row by row, get the value in each cell,
multiply that value by the constant introduced by the user, and finally set the resulting value
in the same cell of the output raster layer.

Before accessing values in a raster layer, you need to define the query window you want to
use on that layer. Every raster layer has its own number of rows and columns, and normally
you can get the value of any of its cells simply selecting the desired row and column. In
SEXTANTE, however, this is done through a query window, that meaning that you will refer
to a cell with coordinates (x, y) in the query window, and those coordinates are not actual
cell coordinates of the layer.

A query window is defined with a GridExtent, and you can use any extent and cellsize,
regardless of the extent and cellsize of the raster layer you are querying. SEXTANTE will
convert query window coordinates into actual layer coordinates, and return the corresponding
value.

To set a query window, you can use the setWindowGridExtent(GridExtent) method.
In the algorithm we are developing, we found the following lines of code:

layer.setWindowGridExtent(gridExtent);
iNX = gridExtent.getNX();
iNY = gridExtent.getNY();

What we are doing here is to select the current layer extent as the query window, so no
conversion is really performed. However, as it has been said, we can set any query window,
and in fact it can even fall outside the extent of the layer or have a different cellsize. When
querying those window cells outside of the layer, the corresponding methods will return the
no–data value of the layer.

When the query window does not “fit” into the original grid of the layer (a cell in the
query window does not match an actual cell in the layer), SEXTANTE will perform some
kind of interpolation to return the exact value for the queried cell. You can set the interpola-
tion method to use with the setInterpolationMethod(int) method from the ILayerRaster
interface, passing one of the following constants.

24 CHAPTER 3. PROGRAMMING GEOALGORITHMS

IRasterLayer.INTERPOLATION_NearestNeighbour
IRasterLayer.INTERPOLATION_Bilinear
IRasterLayer.INTERPOLATION_InverseDistance
IRasterLayer.INTERPOLATION_BicubicSpline
IRasterLayer.INTERPOLATION_BSpline

The grid extent we are using for the query window is the same as the one we used to
create the result raster layer. That means that both will have the same number of cells, and
cell (x, y) in the query window correspond to cell (x, y) in the output layer, so we can take its
value, multiply it by the constant and put the resulting value in that same cell in the output
layer.

All that is is done in the nested loops that follow, which constitute the core of the algorithm
itself. The number of row and columns is taken from the grid extent and each cell value
is retrieved using the getCellValueAsDouble(int,int) method of the raster layer. The
resulting value is put on the output layer using the setCellValue(double) layer.

for(y = 0; y < iNY && setProgress(y, iNY);; y++){
for(x = 0; x < iNX; x++){

dValue = window.getCellValueAsDouble(x, y);
result.setCellValue(x, y, dValue * dConstant);

}
}

As the algorithm progresses and we scan from the first to the last row, it is a good idea to
show this progress to the user, so he knows how much is left before the execution is finished.
If you remember from chapter 2, when executing a SEXTANTE algorithm we pass an object
that implements the ITaskMonitor interface. Now we can use it to tell the user about the
progress of the algorithm.

There are two methods in the GeoAlgorithm class to do this:

protected boolean setProgress(int iStep, int iTotalNumberOfSteps);
protected void setProgressText(String sText);

The first one updates the progress indicator to show the amount of process that has already
been performed. It returns false if the user has canceled the algorithm, so we can use it to
know if we should exit the processAlgorithm() method or continue its execution.

In some cases, the number of steps needed to complete the execution of the algorithm
cannot be known in advance, so using this method is not a good way of informing the user.
In those cases, you should add the following line to the defineCharacteristics() method:

setIsDeterminatedProcess(false);

Using the second method you can change the text shown to the user, so you can inform
him about the different stages the algorithm might go through.

The last thing to do in the algorithm is to return a value at the end of the method. If
everything went fine, it should return true. If the execution of the algorithm was canceled, it
should return false. If any problem was encountered during execution, you should not return
false, but throw an GeoalgorithmExecutionException exception instead. Exceptions thrown
by methods that retrieve input parameter values, they all extend this class.

At the end of example, we find the following line:

!return m_Task.isCanceled();

3.3. ANOTHER EXAMPLE 25

This can be found in most of the SEXTANTE geoalgorithms, and is a standard way of
finishing the processAlgorithm() method.

At this point, we have finished the creation of our first algorithm, which is now fully
functional and could already be used to perform analysis.

3.3 Another example

The previous example showed the main ideas about programming geoalgorithms with SEX-
TANTE, introducing the main blocks of code and the basic structure that all algorithms should
follow. However, it just uses raster data both as input and as output, and no vector data is
used at all. Let’s create a new algorithm that does something similar, but this time taking a
vector layer as input and generating a vector layer as well.

This algorithm will just take a vector layer, a field in its attribute table and a constant
and generate a new vector layer which is exactly the same at the input one but values in the
selected field will be equal to the corresponding values in the input layer multiplied by the
constant.

Create a new package named es.unex.sextante.multiplyVectorField. Add a new class to the
package and name it MultiplyVectorFieldAlgorithm.

Starting with the defineCharacteristics() method, here is the code of this new class.

public void defineCharacteristics() {

this.setName("Multiply vector field");
this.setGroup("My algorithms");
this.setGeneratesUserDefinedRasterOutput(false);

try {
m_Parameters.addInputVectorLayer("INPUT", "Vectorlayer",

IVectorLayer.SHAPE_TYPE_ANY,
true);

m_Parameters.addTableField("FIELD", "Field", "INPUT");
m_Parameters.addNumericalValue("VALUE",

"Value",
1,
AdditionalInfoNumericalValue.NUMERICAL_VALUE_DOUBLE);

addOutputVectorLayer("RESULT", "Result");
} catch (RepeatedParameterNameException e) {

e.printStackTrace();
}catch (UndefinedParentParameterNameException e) {

e.printStackTrace();
} catch (OptionalParentParameterException e) {

e.printStackTrace();
}

}

Notice that there are more exceptions that can be thrown when adding the parameters to
the input parameters set. The OptionalParentParameterException one is thrown when you
try to add a table field that depends on an optional vector layer, since parents layers always
have to be mandatory ones. Apart from that, there is really nothing worth mentioning in this

26 CHAPTER 3. PROGRAMMING GEOALGORITHMS

part,n and with the information given at the beginning of the chapter you should be able to
understand this code without difficulties.

The processAlgorithm() method, however, is slightly different to the one found in the
raster example.

public boolean processAlgorithm()
throws GeoalgorithmExecutionException{

int iField;
double dValue;
double dConstant;
IVectorRaster layer ;

layer = m_Parameters.getParameterValueAsVectorLayer("INPUT");
iField = m_Parameters.getParameterValueAsInt("FIELD");
dConstant = m_Parameters.getParameterValueAsDouble("VALUE");

Class clazz = layer.getFieldType(iField);
if !(Number.isAsignableFrom(clazz)){
throw new GeoalgorithmExecutionException(

"Selected field is not numeric");
}

Class[] fieldTypes = layer.getFieldTypes();
Class[] outputFieldTypes = new Class[fieldTypes.length];
for(int i = 0; i < fieldTypes.length; i++){
if (i == iField){
outputFieldTypes[i] = Double.class;

}
else{
outputFieldTypes[i] = fieldTypes[i];

}
}

IVectorLayer output = getNewVectorLayer("RESULT",
layer.getName(),
layer.getShapeType(),
outputFieldTypes,
layer.getFieldNames());

int i =0;
int iShapeCount = m_Layer.getShapesCount();
IFeatureIterator iter = m_Layer.iterator();
while(iter.hasNext() && setProgress(i, iShapeCount)){
IFeature feature = iter.next();
Object[] values = feature.getRecord().getValues();
Object[] outputValues = new Object[values.length];
for(int j = 0; j < fieldTypes.length; j++){
if (j == iField){

if (values[j] == null){

3.3. ANOTHER EXAMPLE 27

outputValues[j] = null;
}
else{

dValue = Double.parseDouble(values[j].toString());
outputValues[j] = new Double(dValue * dConstant);

}
}
else{
outputValues[j] = values[j];

}
}
Geometry geom = feature.getGeometry();
ouput.addFeature(geometry, outputValues);
i++;

}

}

After retrieving parameter values, we do some checking to see that the user selected a
valid numeric field. If not, we exit throwing an exception. If the field is valid, we continue
and create the ouput vector layer.

The attributes table in this layer is identical to the table in the input layer, with the
exception of the field we are going to edit, which should be of type double (the input one can
be an integer field, but since our constant is a double, resulting values will be double values).
We are not going to create new geometries or alter the input ones, so the resulting layer will
have the same shape type as the input one. Field names should remain unchanged, so we just
take the ones from the input layer and pass them directly to the method that cretes the new
layer.

To access features in a vector layer, we must get an iterator from the layer and then iterate
through it. Each element we get from the layer will implement the IFeature interface, which
has just two methods:

public Geometry getGeometry();
public IRecord getRecord();

The first one will return the geometry corressponding to the given feature. Geometries
are stored as JTS geometries. JTS (Java Topology Suite) is a powerful library for handling
geometric primitives, which is used in many Java GIS application, becoming the standard
choice for this tasks. JTS fundamentals are not covered in this text, but you can find plenty
of information in the JTS website1. Using methods from the JTS library you can create new
geometries or modify existing ones, and also perform computational geometry tasks such as
calculating buffers or convex hulls.

The getRecord() method returns an object implementing the IRecord interface. You can
get an array of objects with all the values of the record calling its getValues() method.

In the code above, we just copy all values to a new array which will be used to create
the new record in the output layer, except in the case of the selected field, where we multiply
the value by the constant. We get the string representation of the field and parse it to a new
double value. If we succeed, then we multiply it by the constant and put the resulting value

1http://www.vividsolutions.com/jts/jtshome.htm

http://www.vividsolutions.com/jts/jtshome.htm

28 CHAPTER 3. PROGRAMMING GEOALGORITHMS

in the array of output values for that record. Records can have null values, so we check that
as well before parsing its value.

Once we have done this, we already have the output record ready to be added to the
output layer. A feature is comprised of a geometry and a set of attributes, so we also need
a geometry. In this case, we just take the input geometry, making no changes to it. To add
a new feature, we call the addFeature() method, passing whether a IFeature object or a
geometry and a set of attributes.

3.4 More about raster output characteristics

The algorithm in out raster example creates a new raster layer with the same characteristics
of the input layer, not using the settings made by the user. Most of the times, however, you
will want you algorithm to use those settings, so the user can adjust the behaviour of the
algorithm to suit his needs.

There are several ways of doing this, and SEXTANTE features a flexible mechanism to
create raster layers according the particular characteristics of each algorithm.

Along with the one that we already know, there are two additional versions of the getNewRasterLayer()
method, which were already presented.

protected IRasterLayer getNewRasterLayer(String sName,
String sDescription,
int iDataType,
int iBands)

protected IRasterLayer getNewRasterLayer(String sName,
String sDescription,
int iDataType,
IRasterLayer layer,
int iBands)

The first method differs from the one we already used in that it takes no grid extent. The
grid extent used to create the new raster layer is selected from the user settings.

We could adapt our example and make it use this new method, rewriting a few lines of
code:

IRasterLayer result = getNewRasterLayer("RESULT", "Result",
RasterMemoryDriver.RASTER_DATA_TYPE_FLOAT);

GridExtent gridExtent = result.getLayerGridExtent();
layer.setWindowGridExtent(gridExtent);

Notice how we have changed not only the line that creates the layer itself, but also the one
that sets the query window on the input layer. Now we are not using the extent and cellsize
of the input layer as the query window, but the extent and cellsize of the output one, so we
can query the input layer and the cells we will query will match the ones in the output layer,
making it possible to assign them new values.

The grid characteristics selected by the user are stored in a protected variable named
m GridExtent. The above block of code can be substituted by the following one, which uses
the first method that we saw for creating raster layers.

3.5. USING TEMPORARY LAYERS 29

IRasterLayer result = getNewRasterLayer("RESULT", "Result",
RasterMemoryDriver.RASTER_DATA_TYPE_FLOAT,
m_GridExtent);

layer.setWindowGridExtent(m_GridExtent);

The third method is a little bit more complex and it should be used just in some particular
cases, particularly when implementing hydrological algorithms. When the window is set on a
raster layer, if it does not match the characteristics of the layer, it will use some interpolation
method to calculate cell values, as we have seen. However, this is not always recommended
(for example, in the case of doing hydrological analysis, since interpolating the input DEM
might make artificial pit appear), and it would be better to work with the original layer values
and then interpolate the results.

To do this, you can use the third method, which takes an IRasterLayer object instead
of a GridExtent one. It will take that passed raster layer and will create a new GridExtent
object which “fits” into its grid structure (has the same cellsize and cells match) and has the
minimum extent needed to cover the extent selected by the user, and use that to create the
new raster layer.

By doing so, it guarantees that if later we take the GridExtent of that new layer and set
it as the query window of the input layer, no interpolation will be performed when querying
values on it.

A picture is worth a thousand words, so this process is better understood having a look
at the following picture

Since the resulting layer does not have the characteristics set by the user, SEXTANTE

will resample and crop it once the process is finished. You do not have to worry about this,
since SEXTANTE will do it automatically.

3.5 Using temporary layers

Using any of the methods that we have seen to create new layers will cause them to be added
automatically to the set of output results, and SEXTANTE will deal with them as such, adding
them to the GIS GUI or doing whatever the particular bindings you are using do with output
layers. In some cases, however, you might need to create a temporary layer which should not
be added to the set of output results.

To create a new layer that is temporary and not a final result, you can use one of the
following methods.

protected IRasterLayer getTempRasterLayer(int iDataType,
GridExtent extent,
int iBands)

protected IRasterLayer getTempRasterLayer(int iDataType,
GridExtent extent)

protected IVectorLayer getTempVectorLayer(int iShapeType,
Class[] types,
String[] sFields)

As you can see, they are similar to the methods that we already know, but they do not
take a name and a description, since those are not needed in this case.

30 CHAPTER 3. PROGRAMMING GEOALGORITHMS

3.6 Deploying and using the algorithm

The algorithm has already been created and that means that we can already use it. You can
put all the .class files in a jar file and then add that file to the other ones included in the
SEXTANTE library.

To make sure that SEXTANTE will find your algorithm and put it in the toolbox along
with the all the other ones, you must follow two simple naming conventions:

• Algorithm classes (the ones extending the GeoAlgorithm class) must have a name with
the suffix Algorithm.

• Jar file containing algorithms must have a name with the prefix sextante .

3.7 Internationalization

SEXTANTE provides a simple mechanism to internationalize your algorithms, so they appear
in the right language when they are included in the list of available ones as we saw before.
There is just one method that you have to use for that, the static method getText(String)
in the SEXTANTE class.

You have to create Java properties files with the translation of the different strings you are
using in your algorithm and put them in the jar files that contain the algorithms themselves.
Then just call that method and it will return the string corresponding to the given key in the
current language (which does not have to be necessarily the one of the current locale, but the
one of the GIS app SEXTANTE is running onto).

As it happened with algorithms, you have to make SEXTANTE aware of the properties
files to use. To do so, just add the properties file to the jar file, putting them in a folder named
i18n. That will be enough.

Say you want to translate your two algorithms into english and spanish, setting the former
as the default language. Then you would have to create two new files and name them something
like myalgorithms.properties and myalgorithms es.properties.

3.8 Calling geoalgorithms from another geoalgorithm

All the ideas that we saw on the previous chapter can be applied when implementing your
own algorithms. Any algorithm from the SEXTNATE library can be used within another
algorithm, so you can reuse them to create more complex processes, without needing to rewrite
them.

As an example, we will create a new algorithm that simplifies the raster algorithm that
we created. It will multiply the input layer by a constant, but instead of givin the user the
chance of selecting the value of that constant, it will use a fixed, hard–coded one.

Here is the code of the processAlgorithm() method (the description of the characteristics
is almost obvious, and is left as an exercise for the reader)

public boolean processAlgorithm() {

final double CONSTANT = 5.;

IRasterLayer layer ;

layer = m_Parameters.getParameterValueAsRasterLayer("INPUT");

3.9. CUSTOMIZING THE INTERFACE 31

RasterMultiplyAlgorithm alg = new RasterMultiplyAlgorithm();
ParametersSet params = alg.getParameters();
params.getParameter("INPUT").setParameterValue(layer);
OutputObjectsSet outputs = alg.getOutputObjects();
outputs.getOutput("RESULT").setFilename(

getOutputFilename("RESULT"));
if (alg.execute(m_Task, m_OutputFactory)){

IRasterLayer result = (IRasterLayer) outputs.getOutput(
"RESULT").getOutputObject();

m_OutputObjects.getOutput("RESULT").setOutputObject(result);
return true;

}
else{

return false;
}

}

To execute an algorithm you need an ITaskMonitor and an OutputFactory, since the
execute() method takes both of them. We are already running an algorithm, so we can pass
the same ones that we are using for the current process. These are stored in the protected
variables m Task and m OutputFactory.

The algorithm generates a result (a raster layer in this case), and we have to tell the current
algorithm that the result that we are taking from that other one is also its result. This is
done when creating a layer, but this time we are not creating it, but taking it from another
algorithm instead, so we use a different mechanism.

The set of output objects is stored in the variable m OutputObjects, and you can directly
add new objects to it, or change the value associated to an object already contained in the set.
To retrieve an output, call the getOutput(String) method, passing the name of the output
(the one you used to declare it in the describeCharacteristics() method). Then you can
change the associated object and set the layer you obtained from calling the other algorithm
as the value of the output object of the current algorithm.

3.9 Customizing the interface

To create a geoalgorithm, you do not need to design any GUI. Once the algorithm is created,
it can be used programatically and also from any of the SEXTANTE components such as the
toolbox or the graphical modeler. In this last case, the user interface is created automatically,
based on the requirements of the algorithm. This has a lot of advantages form both the
developer and the user, but in some cases an algorithm might need a different interface to be
really user–friendly, and the interface that SEXTANTE generates might be a bit awkward to
use.

A clear example of that is the grid calculator. If you open the grid calculator algorithm,
you will see a dialog like the following one.

32 CHAPTER 3. PROGRAMMING GEOALGORITHMS

Clearly, this is not the typical parameters panel. You can see the Raster output tab, but
the parameters panel is different and it has a more elaborated design. SEXTANTE features
a flexible mechanism that allows developers to create their own interfaces in case the default
one does not meet their needs.

Let’s suppose we want an user interface for our algorithm, which is implemented in the
MultiplyRasterAlgorithm class. Here is what you have to do to create an user interface
tailored to the needs of your algorithm.

• Add a new class named MultiplyRasterParametersPanel to the same package the algo-
rithm class belongs to. That is, the name of the algorithm, but replacing the suffix
Algorithm by the prefix ParametersPanel.

• This class has to extend the GeoAlgorithmParametersPanel class, which extends the
JPanel class. When SEXTANTE creates the algorithm dialog, it will add the parameters
tab and the raster output tab if needed. It will look for a class with the same name
as the algorithm but with the suffix ParametersPanel. If such a class exists and it
extends the GeoAlgorithmParametersPanel class, it will add the panel represented by
that class to the parameters tab. If not, it will generate a default panel based on the
characteristics of the algorithm.

• Create your UI. If you need a list of layers or tables to show it to the user, the current
input factory can help you do that. For instance, to get a list of raster layers, you can
do the following.

IRasterLayer[] layers = SextanteGUI.getInputFactory().getRasterLayers();

Your class must have a constructor with no arguments and you have to override the
init(GeoAlgorithm) method, which should itself create the GUI. This method will be
called by SEXTANTE just after instantiating the class.

• There is another method that you have to override from the GeoAlgorithmParametersPanel
class. It is named boolean assignParameters() and you have to add there all the code
needed to assign the values entered or selected by the user in your GUI to the corre-
sponding parameters of the algorithm. You should check the validity of those values in
this method, and return true if they are correct, or false otherwise.

3.10. MORE EXAMPLES 33

3.9.1 Customizing the interface for the modeller

[section yet to be written]

3.10 More examples

Want more examples? SEXTANTE contains more than 200 algorithms, all of
them implemented following the ideas described in this chapter. They are a great
source of information, and having a look at their source code will for sure help
you to better understand all the concepts and techniques we have already seen.

If you are looking for simple and easy–to-understand algorithms, have a look
at the gridTools and vectorTools projects. They are a good point to start.

34 CHAPTER 3. PROGRAMMING GEOALGORITHMS

Chapter 4

Developing bindings

4.1 Introduction

Although bindings for some popular GIS like gvSIG, OpenJUMP or uDig already
exist, you might want to add SEXTANTE to your own application, or to any
other software using some different data model. In this chapter we will see how
to do that, so you can create the corresponding bindings between SEXTANTE
and your software.

There are to different parts in the process of creating those bindings, both of
which we will review in detail.

• Bind SEXTANTE data model with your data model. This will allow SEX-
TANTE to access your data. This is the only thing you need to do if you
want to use SEXTANTE programatically or you plan to develop you own
GUI for accessing SEXTANTE algorithms

• Incorporate SEXTANTE graphical elements into your application. Apart
from using the geoalgorithms included in SEXTANTE from your source code,
you can easily integrate them into you GIS app, using some graphical ele-
ments that make part of the SEXTANTE library as well. Of course, you can
develop your own GUI elements and call SEXTANTE geoalgorithms from
them (uDig integration is done this way), but that is a hard work. A better
solution is to use the graphical elements included in SEXTANTE, which will
help users of your application to get the best out of the set of algorithms
provided by SEXTANTE.

4.2 Binding the data model

Bindings are basically wrappers for your data classes, so SEXTANTE can access
those data classes through them. Wrapper classes implement the interfaces that
we already know, and that are designed to wrap raster layers, vector layers and
tables.

• IRasterLayer

• ILayer

35

36 CHAPTER 4. DEVELOPING BINDINGS

• ITable

Instead of implementing this interfaces directly, there are three additional
classes that should be extended, and that make the creation of bindings much
easier.

• AbstractRasterLayer

• AbstractVectorLayer

• AbstractTable

For all of them, creating the corresponding binding class should include im-
plement the following capabilities:

• Construction of the object from an object of your data model. Methods used
for this will be used when passing data objects to a SEXTANTE algorithm,
and will do the actual wrapping of an already existing object that does not
implement the required SEXTANTE interfaces.

• Construction of the object from scratch, using arguments defining the char-
acteristics of the object to create. This is used when creating output objects.
Methods responsible of this should create a data object using the data model
that you are binding, and then wrapping it with the methods or techniques
mentioned in the previous item.

• Providing the logic for data access through the binding classes, so once the
data objects are wrapped the data they contain can be accessed by SEX-
TANTE algorithms

For vector layers and tables, additional interfaces have to be implemented to
deal with features and table record, which are accessed through iterators.

• IRecordsetIterator

• IFeatureIterator

Those iterators return objects implementing the IRecord and IFeature inter-
faces. This interfaces are, however, very simple, and code from other bindings
can easily be reused. Two simple implementations already exist and are included
in the SEXTANTE source code, namely FeatureImpl and RecordImpl.

Another important part of bindings is the output factory. We already know
about it, since it was needed to execute SEXTANTE algorithms, as we saw in
chapter 2. Creating the corresponding output factory for your bindings is easy.
You just have to extend the OutputFactory abstract class, and implement its meth-
ods so they return you particular wrappers.

Having a look at some already developed binding is the best way of under-
standing how to create your new bindings. The OpenJUMP data model is very
simple, and its bindings are thus very simple as well. You can checkout the
bindings/openjump folder from the SVN repository and starting exploring them.

Javadocs for the SEXTANTE main classes are available for download from the
SEXTANTE website. Check the description of each one of the methods of each
interface and class to get more information.

4.3. USING SEXTANTE GRAPHICAL ELEMENTS 37

4.3 Using SEXTANTE graphical elements

Once you have created the bindings for your data model, you can already call
SEXTANTE algorithms programmatically. You could also create a nice GUI
to get parameter values from the user and then execute algorithms with those
values. Although you can do all that work from scratch, SEXTANTE also includes
some graphical elements that you can reuse, and incorporating them into your
application is much easier than doing all the work yourself.

These elements include:

• A toolbox

• A graphical modeler, to link several processes and create a workflow

• A batch processing interface

• A command-line interface

• A history manager

• A results manager, to manage results others than layers or tables, which
might not fit into the data model of a traditional GIS.

To include these in your GIS, you must follow the following steps:

1. Create an input factory. An input factory implements the IInputFactory
interface, and will be used by SEXTANTE to get the data objects currently
available in the GIS. That means that, when you load a layer and then want to
execute an algorithm, SEXTANTE must know that you have that layer (and
maybe other ones), in order to show you a list of them to choose from, and
then pass the chosen one(s) to the algorithm. The input factory turns your
GIS data into data that fit into the SEXTANTE data model (making use of
the data model bindings), and acts as a source of valid data for SEXTANTE
graphical elements and algorithms.

The input factory also has to be able to create valid data objects not from
other java objects representing layers or tables, but from files. If you want
to use the batch processing interface (and you probably will), it will need to
open files directly, since it does not take it inputs from the GIS.

Instead of implementing the IInputFactory interface, extending the AbstractInputFactory
class is recommended.

2. Create a post–process task factory and a post–process task. Once an al-
gorithm has created its output objects, you must do something with them.
This usually includes adding them to a view in your GIS, but maybe you
want some other operations to be performed on those objects. The post–
processing task is responsible of browsing the outputs generated by an algo-
rithm and managing them. The post–processing task factory just returns a
suitable post-processing task for a given algorithm.

There is an interface for the post–process task factory:IPostProcessTaskFactory.
The task itself is just a Java Runnable.

The post-processing task should also add all data objects created to the input
factory (using its add(IDataObject) method), so they are available for the next

38 CHAPTER 4. DEVELOPING BINDINGS

algorithm without having to rebuild the set of SEXTANTE data objects from
the ones currently in the GIS.

3. Once you have created this classes, you have to set them as the current
input factory and process task factory. The SextanteGUI class is the one used
for that, and it centralizes all the GUI elements and the additional classes
needed.

There are three methods that you have to use:

SextanteGUI.setOutputFactory(OutputFactory);
SextanteGUI.setInputFactory(IInputFactory);
SextanteGUI.setPostProcessTaskFactory(IPostProcessTaskFactory);

The first one is needed to execute algorithm with the right output factory.
You should have an output factory in your bindings, according to what we
saw in the last section.

Before using them, you should call the initialize() method.

SextanteGUI.initialize();

This will load all configuration parameters that the user might have setted in
a previous session using any of the corresponding SEXTANTE GUI elements.

And before all that, do not forget to initialize the library, so the list of
available algorithms is created. Otherwise, you will see no algorithms at all.

Sextante.initialize()

4. And now, you can use methods from the GUIFactory class to show up the SEX-
TANTE tools. For example, to show the toolbox dialog, call the showToolboxDialog()
method

SextanteGUI.showToolboxDialog(Frame parent);

This will show the toolbox, which is already fully functional. That means
that you can already use it to execute an algorithm, and it will create the
corresponding interface to set the parameter values (if the algorithm requires
layers, they will be taken from the input factory) and generate new layers
(which will be created using the selected output factory and managed using
the post-process task), and you do not have to do anything but adding that
single line.

Use the plug–in mechanism of your GIS application to create an extension
that calls the corresponding method of the GUIFactory class when a button
is clicked or a menu selected.

Chapter 5

Setting up Eclipse to work with SEX-
TANTE and gvSIG

5.1 Introduction

All examples presented in this text are based on Geotools as the geodata library
supporting SEXTANTE operations. However, SEXTANTE runs on several GIS,
being linked to their underlying data handling libraries. GvSIG is one of them,
and probably the most popular platform for using SEXTANTE, so developers
might want to develop and test their algorithms in gvSIG instead of using the
Geotools–based configuration shown in other chapters of this manual. Also, gvSIG
has a graphical interface, so graphic elements of SEXTANTE can be tested as well.

This chapter shows how to set up an Eclipse environment using the source
code of gvSIG and the source code from SEXTANTE. From it, you will be able to
develop and test your new geoalgorithms in gvSIG, and even to deploy a modified
version of SEXTANTE including your own algorithms and enhancements.

GvSIG fundamentals are not described in this chapter, and you are supposed
to be familiar with them.

5.2 Setting up gvSIG

Setting up gvSIG it is easy, since the source file that you can download from the
gvSIG website already contains a fully functional Eclipse workspace.

Make sure that your system fulfills the following requirements:

• It has a Java 1.5.0 SDK installed (version 1.5.0, revision 12 or later) 1.

• JAI and JAI Image I/O libraries are installed on this SDK. 23

Now download the source code file corresponding to version 1.1.2 (you should
have a file named gvSIG-1 1 2-src.zip). Unzip it and it will create a new folder
named gvSIG-1 1 2-src. From Eclipse, select Switch Workspace... and select that
folder. It already contains a workspace configured to easily build and run gvSIG.

1http://java.sun.com/javase/downloads/index_jdk5.jsp
2https://jai.dev.java.net/binary-builds.html
3https://jai-imageio.dev.java.net/binary-builds.html

39

http://java.sun.com/javase/downloads/index_jdk5.jsp
https://jai.dev.java.net/binary-builds.html

40 CHAPTER 5. SETTING UP ECLIPSE TO WORK WITH SEXTANTE AND GVSIG

Once the workspace is open, follow this steps (you will find a readme.txt file in
the workspace folder, with more detailed information about this)

• Select Run → External Tools → External Tools... (Open External Tools
Dialog... in Eclipse 3.3). You will find a tool named Build All.. Select it. It
will build all the necessary libraries and projects.

• When the first compilation is finished select the Project → Build Automati-
cally option.

• Some errors may appear now in the Workspace. In order to solve them,
select Project → Clean → Clean all projects.

gvSIG is now ready to be executed, but a few additional steps must be taken
if we want to integrate SEXTANTE with it. Some of the libraries SEXTANTE
needs are also used by gvSIG, but versions are different (gvSIG uses older ones),
causing some problems. To avoid them, these libraries must be removed before
adding SEXTANTE files.

Go to the gvsig gvSIG-1 1 2-src/ fwAndami/gvSIG/extensiones/com.iver.cit.gvsig
folder and remove the following files:

• jts-1.7.jar

• jfreechart-1.0.1.jar

• jcommon-1.0.0.jar

• units-0.0.1.jar

• log4j-1.2.8.jar

5.3 Setting up SEXTANTE

The next step is to download the source code of SEXTANTE from the SVN
repository. Select Import... in the File menu and then Checkout Project from
SVN.

Use the following URL:

https://svn.forge.osor.edu/svn/sextante

Expand the soft branch and select all the folders under sextante lib and the
gvSIG folder under bindings.

5.4. DEVELOPING AND TESTING YOUR ALGORITHMS 41

Press Finish.
To build SEXTANTE, you will find a build.xml in the gvSIG project (this

project contains the gvSIG bindings). This build file will compile SEXTANTE
(both the core and the algorithms), creating all necessary jar files and moving
them to a new folder named dist. After that, it will move the content of that
folder to the corresponding folder from which gvSIG can load them upon starting.
Also, it will compile the bindings needed to connect SEXTANTE and gvSIG, and
copy them to a new folder under the extensions folder.

Now you can run gvSIG and SEXTANTE icons will appear in the toolbar.
The gvSIG workscape contains run configuration named named gvSIG windows
or gvSIG linux. Use the one corresponding to your operating system. You can
call them from the Run rightarrow Run... menu.

5.4 Developing and testing your algorithms

To develop a new algorithm you have two options:

• To put it into one of the already existing projects. For instance, if you develop
an algorithm for terrain analysis, you might find interesting to include it in
the geomorphometry project, along with others such as slope or aspect. In
this case, once you have finished your algorithm, you just have to run then
build.xml file once again, and it will be ready to use the next time you run
gvSIG.

42 CHAPTER 5. SETTING UP ECLIPSE TO WORK WITH SEXTANTE AND GVSIG

• To put it into a new project. In this case, a little bit more of work os
required. First, you have to create the project. Using one of the existing
ones as a template is recommended. Second, running the build.xml file will
not include your algorithm (or any one in that new project) in gvSIG. You
have to make sure that the corresponding jar file is in the dist folder before
running it. Create an ant build file to do this (once again, have a look at
the build file in an existing project, they all do that), and call it manually
before running the build file in the gvSIG project, or modify the latter to
do it automatically.

	Introduction
	Introduction
	Getting SEXTANTE
	The architecture of SEXTANTE

	Using SEXTANTE algorithms
	Introduction. Initial settings
	Executing a geoalgorithm

	Programming geoalgorithms
	Introduction. Initial settings
	The GeoAlgorithm class. Creating a geoalgorithm
	Defining the characteristics of the algorithm
	Implementing the process

	Another example
	More about raster output characteristics
	Using temporary layers
	Deploying and using the algorithm
	Internationalization
	Calling geoalgorithms from another geoalgorithm
	Customizing the interface
	Customizing the interface for the modeller

	More examples

	Developing bindings
	Introduction
	Binding the data model
	Using SEXTANTE graphical elements

	Setting up Eclipse to work with SEXTANTE and gvSIG
	Introduction
	Setting up gvSIG
	Setting up SEXTANTE
	Developing and testing your algorithms

