
1

INTRODUCTION

A Benchmark is the act of running a computer program, or a set of programs, or other operations, in order
to assess the relative performance of an object, normally by running a number of standard tests and trials
against it. The term benchmark is also mostly utilized for the purposes of elaborately-designed
benchmarking programs themselves.

There are primarily two kinds of benchmarking. One is the Functionality Benchmarking to test all the
functionalities supported by the system and the other is the Performance Benchmarking which test the
speed of the system. Without Benchmarks, making detailed comparisons between different systems
concerning their functionality or performance is generally difficult.

Database benchmarks are used to measure the throughput and response times of different databases. Well
known database benchmarks are TPC-C, TPC-E, TPC-H, etc. But all of these benchmarks are for Relational
Database System. There are few well known Benchmarks for Spatial Database System especially for vector
data. One of them is VESPA [1].

This report aims at designing a new benchmark for the spatial database for the vector data. The databases
that are being tested here are Oracle 11g and Postgres 9.04/Postgis 1.5.2.

The databases are being populated using 2010 TIGER/LINE data [7]. And the queries that have been
chosen are based on these data.

Since this project is basically a comparison between Open-source and Proprietary products, That is why
the combination of Oracle 11g on Windows 7 and Postgres/Postgis on Ubuntu 10.10 have been chosen
for the experiment. And also Postgres uses the underlying GEOS(Geometry Engine - Open Source) library
functions to implement the geometric operations whereas Oracle 11g has its own, so we also need to test
whose geometric algorithms are more efficiently designed.

The experiment has two parts, one is the Cold Start and the other one is the Warm Start. In the cold phase
each query is being run freshly by clearing all the buffer cache pages. And in the warm phase, a bunch of
related queries is run to measure the performances of the two databases. More on these will be discussed in
the subsequent sections.

The rest of the report is presented as follows. Section 1 gives an overview of the TIGER data. Section 2
deals with the details of the Database explaining all the configuration parameters, data loading scripts,
performance measurement tools, etc. Section 3 explains the Table sizes & indexes and commands to view
them both in Postgres and in Oracle 11g. Section 4 gives the Experiment and Results. Section 5 gives the
conclusion and summary of the queries and Percentage bar graphs for the two phases separately.

2

1. OVERVIEW OF TIGER DATA

The TIGER/Line Shapefiles are extracts of selected geographic and cartographic information from the U.S.
Census Bureau's Master Address File/Topologically Integrated Geographic Encoding and Referencing
(MAF/TIGER) database. The Shapefiles include information for the fifty states, the District of Columbia,
and Puerto Rico, containing features such as roads, railroads, rivers, as well as legal and statistical
geographic areas. The TIGER/Line Shapefiles are designed for use with geographic information system
(GIS) software.

For our experiment we have used the 2010 TIGER/Line Shapefiles. These Shapefiles are available for
download by type, e.g. roads, linearwater, areawater, rails, etc. The following section will explain the details
of these types. We will list only those features that we have used in our experiments. To get the details of all
the features, kindly refer to its technical documentation [7].

a) Area Landmark:
Area Landmark Shapefile contains features such as airports, cemeteries, parks, educational facilities,
shopping mall, etc. Following are the attributes of this table:

Field Length Type Description
STATEFP 2 String State FIPS code

COUNTYFP 3 String County FIPS code
ANSICODE 8 String Official code for the landmark for use by federal

agencies for data transfer and dissemination
AREAID 22 String Area landmark identifier

FULLNAME 100 String Feature Name
MTFCC 5 String MAF/TIGER feature class code
ALAND 14 Number Land area
AWATER 14 Number Water area

INTPTLAT 11 String Latitude of the internal point
INTPTLON 12 String Longitude of the internal point

Out of this comprehensive list, we have used only the attributes State Code, MTFCC and FULLNAME
from all the tables for our queries. State & County FIPS code denotes the State & County to which this
feature belongs. MTFCC denotes the type of feature. For example, MTFCC='K2361' denotes the Shopping
center or Major Retail Center. The details of all the feature class code and their description is listed in the
technical documentation [7]. FULLNAME denotes the feature name, e.g. the name of the shopping center.

b) Point Landmark:
Point Landmark Shapefile contains features such as schools, churches, hospitals, etc. Following are the
attributes of this table:

Field Length Type Description
STATEFP 2 String State FIPS code

COUNTYFP 3 String County FIPS code
ANSICODE 8 String Official code for the point landmark for use by

federal agencies for data transfer and dissemination
POINTID 22 String Point landmark identifier

3

FULLNAME 100 String Feature Name
MTFCC 5 String MAF/TIGER feature class code

c) Area Water:
Area Hydrography Shapefile contains features such as ponds, lakes, oceans, swamps, etc. Following are the
attributes of this table:

Field Length Type Description
STATEFP 2 String State FIPS code

COUNTYFP 3 String County FIPS code
ANSICODE 8 String Official code for the water body for use by federal

agencies for data transfer and dissemination
HYDROID 22 String Area Hydrography identifier

FULLNAME 100 String Feature Name
MTFCC 5 String MAF/TIGER feature class code
ALAND 14 Number Land area
AWATER 14 Number Water area

INTPTLAT 11 String Latitude of the internal point
INTPTLON 12 String Longitude of the internal point

d) Linear water:
Linear Hydrography Shapefile includes streams/rivers, braided streams, canals, ditches, etc. Following are
the attributes of this table:

Field Length Type Description
STATEFP 2 String State FIPS code

COUNTYFP 3 String County FIPS code
ANSICODE 8 String Official code for the point landmark for use by

federal agencies for data transfer and
dissemination

LINEARID 22 String Point landmark identifier
FULLNAME 100 String Feature Name

MTFCC 5 String MAF/TIGER feature class code

e) Roads:
Roads Shapefile contains all types of roads in U.S. It includes primary roads, secondary roads, local
neighborhood roads, rural roads, city streets, etc. Following are the attributes of this table:

Field Length Type Description
STATEFP 2 String State FIPS code

COUNTYFP 3 String County FIPS code
LINEARID 22 String Point landmark identifier

FULLNAME 100 String Feature Name
MTFCC 5 String MAF/TIGER feature class code

4

f) Primary Roads:
Primary roads are generally divided, limited-access highways within the Federal interstate highway system
or under state management. These highways are distinguished by the presence of interchanges and are
accessible by ramps, and may include some toll highways. These are basically the inter-connector between
states. Following are its attributes.

Field Length Type Description
LINEARID 22 String Linear Feature identifier

FULLNAME 100 String Feature Name
MTFCC 5 String MAF/TIGER feature class code

g) Rails:
Rails Shapefile includes all the Railway features found in the U.S. Following are its attributes:

Field Length Type Description
LINEARID 22 String Linear Feature identifier

FULLNAME 100 String Feature Name
MTFCC 5 String MAF/TIGER feature class code

h) States:

States Shapefile have been used to obtain the geometry of a particular state given a State FIPS code. This
Shapefile has many attributes which can be seen in the technical documentation under state10.shp
Shapefile.

5

2. DETAILS OF THE DATABASES

For this experiment to carry out effectively we have used two different machines having the same
configuration, one for the Postgres and the other for the Oracle 11g. Both the machines have Intel(R)
Core(TM)2 Duo CPU E450 @ 2.20GHz and 2.00 GB RAM.

2.1 POSTGRES
Postgres 9.04 and Postgis 1.5.2 have been used for this experiment. It has been installed on Ubuntu 10.10, a
32-bit operating system. The installation is being done without modifying the default values of the
configuration parameters, i.e. all the parameters have the default values. Following are the Memory
parameters with their default values.

1. Block size=8 KB
2. shared_buffers=28 MB
3. temp_buffers=8 MB
4. work_mem=1 MB
5. maintenance_work_mem=16 MB
6. max_stack_depth=2 MB

The following are the definitions of these parameters [9]:

1. Block size is the unit of storage and I/O.

2. shared_buffers is the amount of memory the database server uses for shared memory buffers. The
default is typically 32 MB, but might be less if the kernel settings do not support it. This is
determined during initdb. In our case it is 28 MB which is less than the default value 32 MB.
However, settings significantly higher than the minimum are usually needed for good performance.
This parameter can only be set at server start. If the database server has 1GB or more of RAM, a
reasonable starting value for shared_buffers is 25% of the memory. There are some workloads
where even large settings for shared_buffers are effective, but because PostgreSQL also relies on the
operating system cache, it is unlikely that an allocation of more than 40% of RAM to shared_buffers
will work better than a smaller amount.

3. temp_buffers is the maximum number of temporary buffers used by each database session. These
are session-local buffers used only for access to temporary tables. The setting can be changed within
individual sessions, but only before the first use of temporary tables within the session, subsequent
attempts to change the value will have no effect on that session.

4. work_mem is the amount of memory to be used by internal sort operations and hash tables before
writing to temporary disk files. For a complex query, several sort or hash operations might be
running in parallel; each operation will be allowed to use as much memory as this value specifies
before it starts to write data into temporary files. Also, several running sessions could be doing such
operations concurrently. Therefore, the total memory used could be many times the value of
work_mem.

5. maintenance_work_mem is the maximum amount of memory to be used by maintenance
operations, such as VACUUM, CREATE INDEX, ALTER TABLE, ADD FOREIGN KEY, etc. Since only
one of these operations can be executed at a time by a database session, and an installation normally

6

doesn't have many of them running concurrently, it's safe to set this value significantly larger than
work_mem. Larger settings might improve performance for vacuuming and for restoring database
dumps. VACUUM scans a table, marking tuples that are no longer needed as free space so that they
can be overwritten by newly inserted or updated data. More on VACUUM can be found on [17] and
[18].

6. max_stack_depth is the maximum safe depth of the server's execution stack. The ideal setting for
this parameter is the actual stack size limit enforced by the kernel. Setting max_stack_depth higher
than the actual kernel limit will mean that a runaway recursive function can crash an individual
backend process. On platforms where PostgreSQL can determine the kernel limit, the server will not
allow this variable to be set to an unsafe value.

2.1.1 DATA LOADING

The TIGER/Line data has been downloaded from their main server using the bash command wget. A list of
urls were provided in a file and was supplied to this command for each feature, so that multiple features can
be downloaded simultaneously. To load these features into the database, a script has been written called
load.sh whose code is given below:

/* Script for Postgres */

cd “Path to the required Feature” ; ls -p | grep "/" | awk '

BEGIN{FS="/";i=1;}

{

if(i==1)

{

str="cd " $1 ";";

str=str "/usr/local/pgsql/bin/shp2pgsql -s 4326 -I " $1 " tiger.feature |";

str=str "grep -v \"\\[\" | ";

str=str "/usr/local/pgsql/bin/psql -d test;" "cd ..;";

}

else

{

str="cd " $1 ";";

str=str "/usr/local/pgsql/bin/shp2pgsql -a -s 4326 " $1 " tiger.feature |";

str=str "grep -v \"\\[\" | ";

str=str "/usr/local/pgsql/bin/psql -d test;" "cd ..;";

}

print str>>"Generate ld.sh";

i++;

7

}' ; cp “copy ld.sh to the required folder”

This program generates a new script file called ld.sh for each feature and copies it to the directory where
that feature lies. The reason for not using a single script for loading is that if we run ld.sh in different
terminals for each new feature, then multiple features can be loaded into the database at the same time, i.e.
they will be like concurrent transactions.

The program uses the command shp2pgsql to convert the shape files into SQL and psql executes these SQL
commands to populate the database. The following is the brief description of some of its options:

(c|a|d|p) These are mutually exclusive options:

-c Creates a new table and populates it from the shapefile. This is the default mode.

-a Appends data from the Shape file into the database table. Note that to use this option to load multiple
files, the files must have the same attributes and same data types.

-d Drops the database table before creating a new table with the data in the Shape file.

-p Only produces the table creation SQL code, without adding any actual data. This can be used if you need
to completely separate the table creation and data loading steps.

-s <SRID> Creates and populates the geometry tables with the specified SRID.

-I Create a GIST index on the geometry column.

There more other options details of which can be found in [12].

2.1.2 PERFORMANCE MEASUREMENT

The tool that has been used to measure the performance of each query in Postgres is its in-built command
EXPLAIN (ANALYZE,BUFFERS).

EXPLAIN command displays the execution plan that the PostgreSQL planner generates for the supplied
statement. The execution plan shows how the table(s) referenced by the statement will be scanned, e.g. by
plain sequential scan, index scan, etc. and if multiple tables are referenced, what join algorithms will be
used to bring together the required rows from each input table. It also displays the estimated statement
execution cost, which is the planner's guess at how long it will take to run the statement [10].

But EXPLAIN ANALYZE causes the statement to be actually executed, not only planned. The total elapsed
time in milliseconds within each plan node and total number of rows it actually returned are displayed. In
the display two numbers are shown: the start-up time which is the time taken to return the first row, and
the total time to return all the rows. Apart from time, there is another parameter cost which is the estimate
of the time a node is expected to take. It also has two costs one is start-up cost and the other is the total-cost.
By default costs are in units of “time a sequential 8 KB block read takes”. Optimizer selects plans based on
overall lowest start-up and total cost. In reality, there may be a huge discrepancies between the estimated
cost and the actual time. The following are the conventions used by the planner while computing the cost.
These parameters are measured on an arbitrary scale.

seq_page_cost = 1.0 which is the cost of a sequentially fetched disk page.

random_page_cost = 4.0 which is the cost of a non-sequentially fetched disk page(4x slower).

8

cpu_tuple_cost = 0.01 cpu cost of processing each tuple or row(100x faster).

cpu_operator_cost = 0.0025 cost of processing each operator or function call.

cpu_index_tuple_cost = 0.005 cost of processing each index entry during an index scan.

ANALYZE collects statistics about the contents of tables in the database, and stores the results in the
pg_statistic system catalog. Subsequently, the query planner uses these statistics to determine the most
efficient execution plans for queries. Hence EXPLAIN ANALYZE not only executes the SQL statement
but also collects the statistics in pg_statistic system catalog [11].

BUFFERS command has been added recently in the Postgres 9.0, previous versions don't support this
command. It shows information on buffer usage. Specifically, include the number of shared blocks hits,
reads, and writes, the number of local blocks hits, reads, and writes, and the number of temp blocks reads
and writes. Shared blocks, local blocks, and temp blocks contain tables and indexes, temporary tables and
temporary indexes, and disk blocks used in sort and materialized plans, respectively. The number of blocks
shown for an upper-level node includes those used by all its child nodes. In text format, only non-zero
values are printed. This parameter may only be used with ANALYZE parameter. It defaults to FALSE [10].

Following is an example to sum up these concepts:

 QUERY PLAN
--

 HashAggregate (cost=53.95..73.56 rows=1961 width=12) (actual time=2879.228..2879.243 rows=13
loops=1)
 Buffers: shared hit=117295 read=67

 -> Nested Loop (cost=0.00..37.73 rows=6490 width=12) (actual time=282.130..2879.053 rows=40
loops=1)
 Join Filter: _st_intersects(a.the_geom, b.the_geom)
 Buffers: shared hit=117295 read=67

 -> Seq Scan on states b (cost=0.00..3.30 rows=2 width=1065526) (actual time=0.020..0.050 rows=2
loops=1)
 Filter: ((statefp10)::text = '36'::text)
 Buffers: shared hit=2

 -> Index Scan using areawater_the_geom_gist on areawater a (cost=0.00..16.43 rows=3
width=3288) (actual time=0.068..12.497 rows=2384 loops=2)
 Index Cond: (a.the_geom && b.the_geom)
 Buffers: shared hit=2111 read=9

 Total runtime: 2948.711 ms

Here cost denotes the estimated cost, actual time is the actual time of execution, rows denote the number
of tuples returned as output. Two parameters x..y in the cost and time denotes the start-up time(x) and the
total time(y) respectively, read denotes number of blocks read into the buffer and shared hit denotes the
number of buffer hits. So Hit Ratio can be calculated as: Hit Ratio= shared hit/ (shared hit+read).

9

2.2 ORACLE 11g
Oracle 11g has been installed on Windows 7 Professional, 32-bit Operating System. The installation is
being done without modifying the default values of the parameters, i.e. all the parameters have the default
values. On executing the command show sga, the following output has been obtained:

SQL> show sga
Total System Global Area 535662592 bytes
Fixed Size 1375792 bytes
Variable Size 289407440 bytes
Database Buffers 239075328 bytes
Redo Buffers 5804032 bytes

The SGA or System Global Area is a chunk of memory that is allocated by an Oracle Instance and is
shared among Oracle processes, hence the name. It contains all sorts of information about the instance and
the database that is needed to operate.

Components of SGA consists of are Fixed Size, Variable Size, Database Buffers, Redo Buffers.

Fixed size is a part of the SGA containing general information about the state of the database and the
instance, which the background processes need to access. This is also called the fixed SGA. No user data is
stored here. The SGA also includes information communicated between processes, such as locking
information. This is constant for a release and cannot be changed through any means such as altering the
initialization parameters using alter command or in the init.ora file.

The variable portion is called variable because its size can be changed. It consists of:
• working space for rman. RMAN is a program that helps to manage backing up, restoring and

recovering databases.
• Shared pool: The shared pool is used for objects that are shared among all users. For example: table

definitions, PL/SQL definitions, cursors and so on.

Database Buffers is equal to is equal to db_block_size * db_block_buffers. db_block_size is the size the
database blocks. In our case it is 8 KB.

SQL> show parameter db_block_size

NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
db_block_size integer 8192

db_block_buffers or buffer cache holds copies of data blocks so as they can be accessed quicker by oracle
than by reading them off disk. The purpose of the buffer cache is to minimize physical I/O.

Redo Buffers: All changes that are covered by redo is first written into the redo buffers. The idea to first
store it in the memory is to reduce disk I/O. When a transaction commits, the redo log buffer must be
flushed to disk, because otherwise the recovery for that commit could not be guaranteed. Log Writer
(LGWR) does that flushing.

In every system there is a limit to which SGA can grow, this limit is imposed by the parameter
sga_max_size. In our system this is:

10

SQL> show parameter sga_max_size;

NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
sga_max_size big integer 512M

There is another parameter called sga_target whose value is always less than or equal to sga_max_size.
Any attempt to raise this value beyond that will give error. There are other relevances of these two
parameters, we will discuss those later in the report.

Another memory component of Oracle is PGA or Program global area. A PGA is a memory region that
contains data and control information for a server process. It is non-shared memory created by Oracle
Database when a server process is started. Access to the PGA is exclusive to the server process. There is
one PGA for each server process. Background processes also allocate their own PGAs. The total memory
used by all individual PGAs is known as the total instance PGA memory, and the collection of individual
PGAs is referred to as the total instance PGA, or just instance PGA. We can use database initialization
parameters to set the size of the instance PGA, not individual PGAs. The PGA is used to process SQL
statements and to hold login and other session information. The PGA memory is basically divided into the
following areas [6]:

• Session Memory

Session memory is the memory allocated to hold a session's variables (login information) and other
information related to the session. For a shared server, the session memory is shared and not private.

• Private SQL Area

The private SQL area contains data such as bind variable values, query execution state information, and
query execution work areas. Each session that issues a SQL statement has a private SQL area. Each user
that submits the same SQL statement has his or her own private SQL area that uses a single shared SQL
area. Thus, many private SQL areas can be associated with the same shared SQL area. The location of a
private SQL area depends on the type of connection established for a session. If a session is connected
through a dedicated server, private SQL areas are located in the server process's PGA. However, if a session
is connected through a shared server, part of the private SQL area is kept in the SGA.

The following figure illustrates the two memory components PGA & SGA [6]:

Oracle has introduced Automatic Shared Memory Management in Oracle 10g and thus allows automatic
tuning of the components of SGA. By default automatic tuning is disabled. The zero value of sga_target
signifies that. To enable it, sga_target must be set a non-zero value. In our system it is zero:

SQL> show parameter sga_target;

NAME TYPE VALUE

sga_target big integer 0

However, Oracle 11g has introduced a new concept called Automatic Memory Management(AMM)
which automates SGA as well as PGA size according to the workload by dynamically transferring the

11

memory from SGA to PGA and vice versa. With this memory management method, the database also
dynamically tunes the sizes of the individual SGA components and the sizes of the individual PGAs. To
enable it, we need to set a new initialization parameter called MEMORY_TARGET. This parameter is
dynamic and can be increased to maximum memory size specified by a new initialization parameter, called
MEMORY_MAX_TARGET. The memory_target parameter specifies the amount of shared memory
available for Oracle to use when dynamically controlling, reducing or enlarging the SGA and PGA as
needed. In our system following are the values of these parameters:

SQL> show parameter memory_target;

NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
memory_target big integer 812M

SQL> show parameter memory_max_target;

NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
memory_max_target big integer 812M

Since these are parameters are set to non-zero values, AMM is enabled in our system.

2.2.1 DATA LOADING

A batch file script has been written to load TIGER data into Oracle 11g. Following is the script:

/* Script for Oracle 11g */

set "oracle_home=C:\app\subham\product\11.2.0\dbhome_1"
set "class_path=%oracle_home%\jdbc\lib\ojdbc5.jar;%oracle_home%\md\jlib\sdoutl.jar;%oracle_home
%\md\jlib\sdoapi.jar"

Setlocal EnableDelayedExpansion
set var=0

FOR /D %%G IN ("tl*") DO (
IF "!var!"=="0" (
java -cp %class_path% oracle.spatial.util.SampleShapefileToJGeomFeature -h localhost -p 1521 -s spatial
-u subham -d subham -t /*Feature_Name*/ -f %%G\%%G -i gid -r 4326 -g geom
set var=1
) ELSE (
java -cp %class_path% oracle.spatial.util.SampleShapefileToJGeomFeature -a -h localhost -p 1521 -s
spatial -u subham -d subham -t /*Feature_Name*/ -f %%G\%%G -i gid -r 4326 -g geom
)
)

To facilitate parallel data loading into the database, this script is generated for each feature and is run in
different command prompts.

The script starts with the initialization of the environment variables oracle_home and class_path. Then it

12

uses FOR /D to loop through directory.

The shapefiles have been loaded using the Java Shapefile Converter which transforms an Shapefile into an
Oracle database table for use with Oracle Spatial and Locator. The Shapefile Converter uses the Oracle
Spatial Java-based Shapefile Adapter and SampleShapefileToJGeomFeature classes to load a Shapefile
directly into a database table, with the Oracle-equivalent .dbf data types for the attribute columns and the
SDO_GEOMETRY data type for the geometry column. The options used are:

-h: Host machine
-p: Host machine's port
-s: Host machine's SID
-u: Database user
-d: Database user's password
-t: Table name for the converted Shapefile
-f: File name of an input Shapefile (without extension)
-i: Column name for unique numeric ID; if required
-r: Valid Oracle SRID for coordinate system; 0 is used if unknown
-g: Preferred SDO_GEOMETRY column name
-a: Append Shapefile data to an existing table

2.2.2 PERFORMANCE MEASUREMENT

Performance measurement of a query in oracle has been done using trace files and tkprof. Trace files are
created in the directory specified by the parameter user_dump_dest. In our system it is:

SQL> show parameter user_dump_dest;

NAME TYPE VALUE
------------------------------------ ----------- --- -----
user_dump_dest string c:\app\subham\diag\rdbms\spatial\spatial\trace

Before starting to measure the query performance following steps should be followed:

1. To start a SQL trace for the current session, execute:
ALTER SESSION SET sql_trace = true;

2. To add an identifier to the trace file name for later identification:
ALTER SESSION SET tracefile_identifier = mysqltrace;

3. By default, oracle doesn't include the timing information into the sql trace files. To include it, we have to
execute this command:

ALTER SESSION SET timed_statistics=true;

After executing the above commands, the actual query or queries are run to generate the trace file. The
TKPROF program converts these trace files into a more readable form. Following is the syntax of tkprof:

TKPROF <trace-file> <output-file> EXPLAIN=username/password

If EXPLAIN option is given, then TKPROF determines the execution plan for each SQL statement in the
trace file and writes these execution plans to the output file. It determines these execution plans by issuing

13

the EXPLAIN PLAN statement after connecting to Oracle with the username and password specified in this
parameter. So it may take longer time to process a large trace file if the EXPLAIN option is used. The
following is a sample output of tkprof:

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- -------------------
Parse 1 0.00 0.02 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 2 1545.37 1548.40 17 537 4 13
------- ------ -------- ---------- ---------- ---------- ---------- -------------------
total 4 1545.37 1548.42 17 537 4 13

The output is given separately for each phase:

PARSE : This phase translates the SQL statement into an execution plan, including checks for proper
security authorization and checks for the existence of tables, columns, and other referenced objects.

EXECUTE : In this phase actual execution of the statement occurs. For INSERT, UPDATE, and DELETE
statements, this modifies the data. For SELECT statements, this identifies the selected rows.

FETCH : This phase retrieves rows returned by a query. Fetches are only performed for SELECT
statements.

The following are the definitions of these parameters [6]:

COUNT denotes number of times a statement was parsed, executed, or fetched.

CPU denotes the total CPU time in seconds for all parse, execute, or fetch calls for the statement. This value
is zero (0) if TIMED_STATISTICS is not turned on.

ELAPSED is the total elapsed time in seconds for all parse, execute, or fetch calls for the statement. This
value is also zero (0) if TIMED_STATISTICS is not turned on.

DISK indicates the number of blocks read from disk.

QUERY denotes total number of buffers retrieved in consistent mode for all parse, execute, or fetch calls.
Usually, buffers are retrieved in consistent mode for queries.

CURRENT denotes total number of buffers retrieved in current mode. Buffers are retrieved in current mode
for statements such as INSERT, UPDATE, and DELETE.

Actually, the sum of query and current is the total number of buffers accessed from both memory and
disk, also called Logical I/Os.

Hence, Hit Ratio can be calculated as: Hit Ratio = 1 - (DISK / Logical I/Os)

ROWS indicate total number of rows processed by the SQL statement. This total does not include rows
processed by sub-queries of the SQL statement.

14

3. TABLES & INDEXES

Below lists all the tables along with their sizes, number of tuples, indexes for the two databases:

3.1 POSTGRES:

Firstly, a schema named tiger was created and then all these following tables were created inside this tiger
schema. So each table is prefixed with “tiger.”. Each table listed here has an index. To view the index name
of a particular table, one can issue this command: \d table_name in psql.

The number of tuples have been found by firing the SQL query: select count(*) from table_name;
The sizes of each table is obtained by issuing the command:

select pg_size_pretty(pg_relation_size('table_name'));

Table Name Index Name Number of Tuples Size

arealm arealm_the_geom_gist 1,15,646 46 MB

areawater areawater_the_geom_gist 5,06,201 245 MB

linearwater linearwater_the_geom_gist 56,90,700 2744 MB

pointlm pointlm_the_geom_gist 6,75,193 63 MB

rails rails_the_geom_gist 1,85,971 57 MB

roads roads_the_geom_gist 2,02,43,400 6184 MB

primaryroads primaryroads_the_geom_gist 22359 30 MB

states states_the_geom_gist 104 16 KB

3.2 ORACLE 11g:

To view the index name of a particular table in oracle 11g, following SQL command is used:
select index_name from dba_indexes where table_name='TABLENAME';

And the sizes of each table is obtained using the SQL command:
select segment_name table_name, sum(bytes)/(1024*1024) table_size_meg from user_extents where
segment_type='TABLE' and segment_name = 'MYTAB' group by segment_name;

Table Name Index Name Number of Tuples Size

arealm arealm_idx 1,15,646 62 MB

areawater areawater_idx 5,06,201 312 MB

linearwater linearwater_idx 56,90,700 4330 MB

pointlm pointlm_idx 6,75,193 55 MB

rails rails_idx 1,85,971 88 MB

roads roads_idx 2,02,43,400 8393 MB

primaryroads primaryroads_idx 22359 22 MB

states states_idx 104 64 KB

15

4. EXPERIMENTS & RESULTS

In our experiment, the readings have been taken by running each query single, i.e. there were no other
memory or cpu intensive operations or program running in parallel on the system except the operating
system itself. And also there was only one connection made to the database.

Here we measure not only the CPU cost of each query but also the Buffer hits and Disk I/Os. For each
query, we also output its query plan chosen by the query planner.

This experiment has two parts one is the Cold Part and the other is the Warm Part. Each reading in the
Cold Phase has been taken only once.

4.1 COLD PHASE
In this phase each query is being run freshly on the system by clearing all the buffer cache pages.

Postgres does region based memory management creating and destroying memory contexts or regions as
and when required. So stopping and restarting the server will destroy all the memory regions and free up the
buffer contents. But Postgres also heavily relies on the Linux system cache. It is designed so because
portable software like PostgreSQL cannot know enough about the filesystem or disk layout to make optimal
decisions about how to read and write files. So the shared buffer cache is really duplicating what the
operating system is already doing: caching popular file blocks [14].

pg_buffercache module in the contrib folder can be used to view the contents of its buffer cache [8]. And
pgfincore module let us know which and how many disk blocks from a relation are in the Buffer cache of
the Operating System [15].

Due to all these reasons we need to clear the Linux buffer pages too to get the correct result. Hence the
commands used to do so are:

sync to flush all the unwritten and dirty data blocks to disk to be sure that everything is safely written.

Then issuing the command echo 3 > /proc/sys/vm/drop_caches to free the page-cache, dentries and inodes.

So every time, before beginning to execute a new query, postgres server was stopped and restarted and the
above two commands were run.

On the other hand, Oracle 11g provides an in-built command: alter system flush buffer_cache to flush
out the contents of the buffer cache in the SGA. This command was run every time before executing a new
query.

The queries have been chosen carefully to cover up most of the functionalities that are supported by a
spatial database. For example operations such as intersection, touches, inside, etc. For each category we
have given queries comprising of different features and sizes, e.g. Polygon/Point, Polygon/Line, Line/Line,
etc.

These queries also test the efficiency of the optimizer, i.e. selecting the most efficient query plan, proper
and efficient use of indexes, etc. For example suppose there are two spatial relations R1 & R2, let R2 is the
smaller one which fits into the main memory. Suppose both the relations have the R-Tree indexes. Now for
queries such as Retrieve all those geom_ids from R1 which intersects with a particular object present
in R2. Now the most efficient plan for this will be a sequential scan on R2 to retrieve the geometry of that
particular object since R2 fits in main memory and then use the R-Tree of R1 to retrieve all the intersecting

16

objects. Now if the planner chooses just the opposite plan then it will take too much time to process this
query. Thats why in every query we have used one Big Relation and one small Relation which is states
since it contains only 104 tuples and fits in the memory.

The following are the queries and time taken by each database:

1. CONTAINS PROPERLY

This geometric operation tests whether one object is completely within the other one.

Postgres supplies boolean ST_ContainsProperly(geometry geomA, geometry geomB) for this purpose.
This function returns true if B intersects the interior of A but not the boundary (or exterior). This function
call will automatically include a bounding box comparison that will make use of any indexes that are
available on the geometries [3].

Oracle 11g supplies SDO_INSIDE(geometry1, geometry2) and SDO_CONTAINS(geometry1, geometry2)
for this purpose, where geometry1 must be spatially indexed [4].

INSIDE(A,B) is the opposite of CONTAINS(B,A). That is, A INSIDE B implies B CONTAINS A.

But there is a problem with the oracle 11g functions. If B is the smaller relation and A is the larger one and
both are having R-Tree indices on them, then also CONTAINS(B,A) choses the inefficient plan or the
opposite plan of sequential scanning the larger relation and using the R-Tree index on the smaller one. Even
giving a query hint to the query didn't solve the problem. This can be illustrated with the following result:

select /*+ index(a pointlm_idx) */ a.fullname from pointlm a, states b where
a.mtfcc='K1231' and b.statefp10='11' and sdo_contains(b.geom,a.geom)='TRUE'

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ---------- --------------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 3 134.48 135.57 6939 78617 4592 24
------- ------ -------- ---------- ---------- ---------- ---------- --------------------------
total 5 134.48 135.57 6939 78617 4592 24

Misses in library cache during parse: 0
Optimizer mode: ALL_ROWS
Parsing user id: 92 (SUBHAM)

Rows Row Source Operation
------- ---

 24 NESTED LOOPS (cr=3775543 pr=9847 pw=0 time=0 us cost=1894 size=37746 card=233)
 2296 TABLE ACCESS FULL POINTLM (cr=6928 pr=6923 pw=0 time=193162 us cost=1894
size=791588 card=11641)
 24 TABLE ACCESS BY INDEX ROWID STATES (cr=3768615 pr=2924 pw=0 time=157 us
cost=1894 size=94 card=1)
 4592 DOMAIN INDEX STATES_IDX (cr=3764114 pr=2924 pw=0 time=37851 us cost=0 size=0
card=0)

17

Rows Execution Plan
------- ---
 0 SELECT STATEMENT MODE: ALL_ROWS
 24 NESTED LOOPS
 2296 TABLE ACCESS MODE: ANALYZED (FULL) OF 'POINTLM' (TABLE)
 24 TABLE ACCESS MODE: ANALYZED (BY INDEX ROWID) OF 'STATES'
 (TABLE)
 4592 DOMAIN INDEX OF 'STATES_IDX' (INDEX (DOMAIN))

As we can see from the result, Oracle 11g took about 135 seconds to execute this query since the planner
couldn't choose the optimized plan in-spite of giving the query hint.

Whereas in Postgres, the same query took only about 0.4 seconds to execute, since the query planner was
able to produce the correct plan. Following is the Postgres result:

explain (analyze,buffers) select a.fullname from tiger.pointlm as a, tiger.states as b
where ST_ContainsProperly(b.the_geom,a.the_geom) and a.mtfcc='K1231' and
b.statefp10='11';
 QUERY PLAN

 Nested Loop (cost=0.00..36.76 rows=8 width=14) (actual time=127.512..322.979 rows=24 loops=1)
 Join Filter: _st_containsproperly(b.the_geom, a.the_geom)
 Buffers: shared hit=890 read=121

 -> Seq Scan on states b (cost=0.00..3.30 rows=2 width=1065526) (actual time=17.851..17.923 rows=2
loops=1)
 Filter: ((statefp10)::text = '11'::text)
 Buffers: shared read=2

 -> Index Scan using pointlm_the_geom_gist on pointlm a (cost=0.00..16.47 rows=1 width=114) (actual
time=28.223..98.370 rows=13 loops=2)
 Index Cond: (b.the_geom && a.the_geom)
 Filter: ((a.mtfcc)::text = 'K1231'::text)
 Buffers: shared hit=383 read=81

 Total runtime: 324.812 ms

For this reason we used the function sdo_inside() instead of sdo_contains().

The following are the queries involving different features:

We have chosen the state District_of_Columbia of minimum area to test the efficiency of the R-tree
index. It is because if the R-Tree is built efficiently then there will be less overlapping nodes and the query
involving the minimum area geometry will be fast. Its state code is 11.

1.1 Polygon/Point

Here we queried Retrieve all the Hospitals located inside the state District_of_Columbia. Hospitals
have the mtfcc code of K1231 [7].

18

Oracle 11g:

select a.fullname from pointlm a, states b where a.mtfcc='K1231' and
b.statefp10='11' and sdo_inside(a.geom,b.geom)='TRUE'

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.04 0.88 78 1623 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 3 2.70 3.35 42 990 4 24
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 5 2.75 4.23 120 2613 4 24

Misses in library cache during parse: 1
Optimizer mode: ALL_ROWS
Parsing user id: 92 (SUBHAM)

Rows Row Source Operation

------- ---

 24 NESTED LOOPS (cr=1210 pr=106 pw=0 time=0 us cost=3 size=37746 card=233)
 2 TABLE ACCESS FULL STATES (cr=9 pr=6 pw=0 time=34 us cost=3 size=188 card=2)
 24 TABLE ACCESS BY INDEX ROWID POINTLM (cr=1201 pr=100 pw=0 time=1650 us cost=3
size=7888 card=116)
 936 DOMAIN INDEX POINTLM_IDX (cr=483 pr=94 pw=0 time=9132 us cost=0 size=0 card=0)

Rows Execution Plan
------- ---
 0 SELECT STATEMENT MODE: ALL_ROWS
 24 NESTED LOOPS
 2 TABLE ACCESS MODE: ANALYZED (FULL) OF 'STATES' (TABLE)
 24 TABLE ACCESS MODE: ANALYZED (BY INDEX ROWID) OF 'POINTLM'
 (TABLE)
 936 DOMAIN INDEX OF 'POINTLM_IDX' (INDEX (DOMAIN))

Postgres:

explain (analyze,buffers) select a.fullname from tiger.pointlm as a, tiger.states
as b where ST_ContainsProperly(b.the_geom,a.the_geom) and a.mtfcc='K1231'
and b.statefp10='11';

19

 QUERY PLAN

 Nested Loop (cost=0.00..36.76 rows=8 width=14) (actual time=127.512..322.979 rows=24 loops=1)
 Join Filter: _st_containsproperly(b.the_geom, a.the_geom)
 Buffers: shared hit=890 read=121

 -> Seq Scan on states b (cost=0.00..3.30 rows=2 width=1065526) (actual time=17.851..17.923 rows=2
loops=1)
 Filter: ((statefp10)::text = '11'::text)
 Buffers: shared read=2

 -> Index Scan using pointlm_the_geom_gist on pointlm a (cost=0.00..16.47 rows=1 width=114) (actual
time=28.223..98.370 rows=13 loops=2)
 Index Cond: (b.the_geom && a.the_geom)
 Filter: ((a.mtfcc)::text = 'K1231'::text)
 Buffers: shared hit=383 read=81

 Total runtime: 324.812 ms

So here Oracle 11g takes 2.75 secs to process the query whereas Postgres takes only 0.324 secs.
And the Hit Ratio=890/(890+121)=0.88 in Postgres and Hit Ratio=(1-120/(2613+4))=0.95 in Oracle 11g.
Though hit ratio is more in Oracle 11g, in overall Postgres performs better. The reason is that Postgres
may have found most of the buffers in the Linux system cache to be brought into its own buffer-cache and
hence though the read parameter gets incremented, it doesn't incur the Disk I/O cost.

1.2 Polygon/Line

Here we queried List all the linear water bodies in the state District_of_Columbia.

Oracle 11g:

select a.fullname from linearwater a, states b where b.statefp10='11' and
sdo_inside(a.geom,b.geom)='TRUE'

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.06 0.78 78 1620 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 19 3.21 3.52 39 490 4 264
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 21 3.28 4.31 117 2110 4 264
Misses in library cache during parse: 1
Optimizer mode: ALL_ROWS
Parsing user id: 92 (SUBHAM)

Rows Row Source Operation
------- ---
 264 NESTED LOOPS (cr=760 pr=119 pw=0 time=1446 us cost=3 size=15478704 card=113814)

20

 2 TABLE ACCESS FULL STATES (cr=9 pr=6 pw=0 time=70 us cost=3 size=188 card=2)
 264 TABLE ACCESS BY INDEX ROWID LINEARWATER (cr=751 pr=113 pw=0 time=5851 us
cost=3 size=2390094 card=56907)
 264 DOMAIN INDEX LINEARWATER_IDX (cr=515 pr=110 pw=0 time=5633 us cost=0 size=0
card=0)

Rows Execution Plan
------- ---
 0 SELECT STATEMENT MODE: ALL_ROWS
 264 NESTED LOOPS
 2 TABLE ACCESS MODE: ANALYZED (FULL) OF 'STATES' (TABLE)
 264 TABLE ACCESS MODE: ANALYZED (BY INDEX ROWID) OF
 'LINEARWATER' (TABLE)
 264 DOMAIN INDEX OF 'LINEARWATER_IDX' (INDEX (DOMAIN))

Postgres:

explain (analyze,buffers) select a.fullname from tiger.linearwater as a,
tiger.states as b where ST_ContainsProperly(b.the_geom,a.the_geom) and
b.statefp10='11';
 QUERY PLAN

 Nested Loop (cost=0.00..254.28 rows=72958 width=12) (actual time=159.376..1598.362 rows=266
loops=1)
 Join Filter: _st_containsproperly(b.the_geom, a.the_geom)
 Buffers: shared hit=18406 read=338
 -> Seq Scan on states b (cost=0.00..3.30 rows=2 width=1065526) (actual time=17.070..17.149 rows=2
loops=1)
 Filter: ((statefp10)::text = '11'::text)
 Buffers: shared read=2
 -> Index Scan using linearwater_the_geom_gist on linearwater a (cost=0.00..118.14 rows=28
width=3380) (actual time=42.121..496.375 rows=472 loops=2)
 Index Cond: (b.the_geom && a.the_geom)
 Buffers: shared hit=439 read=291

 Total runtime: 1601.035 ms

So here Postgres takes only 1.6 secs and Oracle 11g takes 3.28 secs.
And Hit Ratio=18406/(18406+338)=0.982 in Postgres and Hit Ratio=1-(117/2110+4)=0.945 in Oracle
11g.

1.2 Polygon/Polygon

Here we did two queries one with arealm and states and the other with areawater and states. In the query
involving arealm/states we queried Retrieve all Shopping Center located in the state California having
stateid of 06. Shopping Center has the mtfcc code of K2361 [7]. We deliberately have chosen the state

21

California since it is a famous state and will have more shopping centers than any other states. In the other
case i.e. query involving areawater/states we queried Retrieve all the Lakes/Ponds in the state
District_of_Columbia. Lakes/Ponds have the mtfcc code of H2030 [7].

A) AREALM/STATES

Oracle 11g:

select distinct a.fullname from arealm a,states b where a.mtfcc='K2361' and
b.statefp10='06' and sdo_inside(a.geom,b.geom)='TRUE'

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- --------------------
Parse 1 0.17 1.02 93 1620 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 10 384.68 390.94 776 15657 4 133
------- ------ -------- ---------- ---------- ---------- ---------- --------------------
total 12 384.85 391.96 869 17277 4 133

Misses in library cache during parse: 1
Optimizer mode: ALL_ROWS
Parsing user id: 92 (SUBHAM)

Rows Row Source Operation
------- ---
 133 HASH UNIQUE (cr=18007 pr=1095 pw=0 time=0 us cost=4 size=6253 card=37)
 292 NESTED LOOPS (cr=18007 pr=1095 pw=0 time=6195681 us cost=3 size=6253 card=37)
 2 TABLE ACCESS FULL STATES (cr=7 pr=6 pw=0 time=51 us cost=3 size=188 card=2)
 292 TABLE ACCESS BY INDEX ROWID AREALM (cr=18000 pr=1089 pw=0 time=4633112 us
cost=3 size=1350 card=18)
 15890 DOMAIN INDEX AREALM_IDX (cr=3220 pr=363 pw=0 time=40098 us cost=0 size=0
card=0)

Rows Execution Plan
------- ---
 0 SELECT STATEMENT MODE: ALL_ROWS
 133 HASH (UNIQUE)
 292 NESTED LOOPS
 2 TABLE ACCESS MODE: ANALYZED (FULL) OF 'STATES' (TABLE)
 292 TABLE ACCESS MODE: ANALYZED (BY INDEX ROWID) OF 'AREALM'
 (TABLE)
 15890 DOMAIN INDEX OF 'AREALM_IDX' (INDEX (DOMAIN))

Postgres:

explain (analyze,buffers) select distinct a.fullname from tiger.arealm as

22

a,tiger.states as b where ST_ContainsProperly(b.the_geom,a.the_geom) and
a.mtfcc='K2361' and b.statefp10='06';

 QUERY PLAN

 Unique (cost=20.43..20.44 rows=2 width=18) (actual time=3092.205..3092.598 rows=133 loops=1)
 Buffers: shared hit=13303 read=923

 -> Sort (cost=20.43..20.44 rows=2 width=18) (actual time=3092.202..3092.334 rows=292 loops=1)
 Sort Key: a.fullname
 Sort Method: quicksort Memory: 30kB
 Buffers: shared hit=13303 read=923

 -> Nested Loop (cost=0.00..20.42 rows=2 width=18) (actual time=402.202..3089.878 rows=292
loops=1)
 Join Filter: _st_containsproperly(b.the_geom, a.the_geom)
 Buffers: shared hit=13301 read=923

 -> Seq Scan on states b (cost=0.00..3.30 rows=2 width=1065526) (actual time=13.591..13.637
rows=2 loops=1)
 Filter: ((statefp10)::text = '06'::text)
 Buffers: shared read=2

 -> Index Scan using arealm_the_geom_gist on arealm a (cost=0.00..8.30 rows=1 width=3941)
(actual time=176.597..777.269 rows=146 loops=2)
 Index Cond: (b.the_geom && a.the_geom)
 Filter: ((a.mtfcc)::text = 'K2361'::text)
 Buffers: shared hit=5842 read=870

 Total runtime: 3095.388 ms

So here Postgres takes only 3.1 secs whereas Oracle 11g takes about 385 secs=6 mins! Hit ratio in
Postgres is 13303/(13303+923)=0.94 and Hit Ratio in Oracle 11g is (1−869/(17277+4))=0.95

B) AREAWATER/STATES

Oracle 11g:

select a.fullname from areawater a,states b where a.mtfcc='H2030' and
b.statefp10='11' and sdo_inside(a.geom,b.geom)='TRUE'

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.06 0.48 78 1467 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 19 34.00 34.27 42 510 4 262
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 21 34.06 34.76 120 1977 4 262

23

Misses in library cache during parse: 1
Optimizer mode: ALL_ROWS
Parsing user id: 92 (SUBHAM)

Rows Row Source Operation
------- ---
 262 NESTED LOOPS (cr=1338 pr=146 pw=0 time=1435 us cost=3 size=150880 card=920)
 2 TABLE ACCESS FULL STATES (cr=9 pr=6 pw=0 time=67 us cost=3 size=188 card=2)
 262 TABLE ACCESS BY INDEX ROWID AREAWATER (cr=1329 pr=140 pw=0 time=1040 us
cost=3 size=32200 card=460)
 308 DOMAIN INDEX AREAWATER_IDX (cr=1048 pr=135 pw=0 time=535 us cost=0 size=0
card=0)

Rows Execution Plan
------- ---
 0 SELECT STATEMENT MODE: ALL_ROWS
 262 NESTED LOOPS
 2 TABLE ACCESS MODE: ANALYZED (FULL) OF 'STATES' (TABLE)
 262 TABLE ACCESS MODE: ANALYZED (BY INDEX ROWID) OF 'AREAWATER'
 (TABLE)
 308 DOMAIN INDEX OF 'AREAWATER_IDX' (INDEX (DOMAIN))

Postgres:

explain (analyze,buffers) select a.fullname from tiger.areawater as a,
tiger.states as b where ST_ContainsProperly(b.the_geom,a.the_geom) and
a.mtfcc='H2030' and b.statefp10='11';
 QUERY PLAN

 Nested Loop (cost=0.00..37.22 rows=6226 width=12) (actual time=132.221..427.452 rows=262 loops=1)
 Join Filter: _st_containsproperly(b.the_geom, a.the_geom)
 Buffers: shared hit=5126 read=96

 -> Seq Scan on states b (cost=0.00..3.30 rows=2 width=1065526) (actual time=20.698..20.748 rows=2
loops=1)
 Filter: ((statefp10)::text = '11'::text)
 Buffers: shared read=2

 -> Index Scan using areawater_the_geom_gist on areawater a (cost=0.00..16.43 rows=2 width=3288)
(actual time=32.486..64.231 rows=132 loops=2)
 Index Cond: (b.the_geom && a.the_geom)
 Filter: ((a.mtfcc)::text = 'H2030'::text)
 Buffers: shared hit=67 read=43

 Total runtime: 430.503 ms

24

So here Postgres takes only 0.43 secs whereas Oracle 11g takes about 34 secs. And Hit Ratio in Postgres
is 5126/(5126+96)=0.98 and Hit Ratio in Oracle 11g is (1-120/(1977+4))=0.94

2. ADJACENT OPERATIONS

In adjacent operation we see whether two geometric objects touches or not, i.e. their boundaries intersect or
not. We have given three categories of queries Polygon/Polygon, Polygon/Line, Line/Line.

2.1 Polygon/Polygon

Here we queried Retrieve all the states which are adjacent to a particular state. We have chosen
Nebraska having stateid of 31, since it is located in the middle of the US map and will have more states
surrounding it.

Oracle 11g:

select a.name10 from states a,states b where b.statefp10='31' and
sdo_touch(a.geom,b.geom)='TRUE'

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.04 1.41 89 1620 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 3 62.35 62.87 32 716 4 24
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 5 62.40 64.28 121 2336 4 24

Misses in library cache during parse: 1
Optimizer mode: ALL_ROWS
Parsing user id: 92 (SUBHAM)

Rows Row Source Operation
------- ---
 24 NESTED LOOPS (cr=11488 pr=400 pw=0 time=0 us cost=3 size=376 card=2)
 2 TABLE ACCESS FULL STATES (cr=9 pr=6 pw=0 time=44 us cost=3 size=188 card=2)
 24 TABLE ACCESS BY INDEX ROWID STATES (cr=11479 pr=394 pw=0 time=1474 us cost=3
size=94 card=1)
 24 DOMAIN INDEX STATES_IDX (cr=11455 pr=394 pw=0 time=1144 us cost=0 size=0 card=0)

Rows Execution Plan
------- ---
 0 SELECT STATEMENT MODE: ALL_ROWS
 24 NESTED LOOPS
 2 TABLE ACCESS MODE: ANALYZED (FULL) OF 'STATES' (TABLE)
 24 TABLE ACCESS MODE: ANALYZED (BY INDEX ROWID) OF 'STATES'
 (TABLE)
 24 DOMAIN INDEX OF 'STATES_IDX' (INDEX (DOMAIN))

25

Postgres:

explain (analyze,buffers) select a.name10 from tiger.states a,tiger.states b
where ST_Touches(a.the_geom,b.the_geom) and b.statefp10='31';
 QUERY PLAN

 Nested Loop (cost=0.00..16.36 rows=3 width=9) (actual time=160.961..3383.322 rows=24
loops=1)
 Join Filter: _st_touches(a.the_geom, b.the_geom)
 Buffers: shared hit=1447 read=470

 -> Seq Scan on states b (cost=0.00..3.30 rows=2 width=1065526) (actual time=14.253..14.298
rows=2 loops=1)
 Filter: ((statefp10)::text = '31'::text)
 Buffers: shared hit=1 read=1

 -> Index Scan using states_the_geom_gist on states a (cost=0.00..6.27 rows=1 width=1065535)
(actual time=6.271..6.405 rows=14 loops=2)
 Index Cond: (a.the_geom && b.the_geom)
 Buffers: shared hit=4 read=2

 Total runtime: 3383.647 ms

So here Postgres takes 3.4 secs whereas Oracle 11g takes 62.4 secs. Hit Ratio in Postgres is 1447/
(1447+470)=0.75 and Hit Ratio in Oracle 11g is (1-121/(2336+4))=0.95

2.2 Polygon/Line

Here we queried Retrieve all polygons from arealm which are adjacent to Yukon River.

Oracle 11g:

select a.fullname from arealm a,linearwater b where b.fullname='Yukon Riv' and
sdo_touch(a.geom, b.geom)='TRUE'

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- --------------
Parse 1 0.03 1.07 77 1620 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 3.84 64.16 547858 547941 10 0
------- ------ -------- ---------- ---------- ---------- ---------- --------------
total 3 3.87 65.24 547935 549561 10 0

Misses in library cache during parse: 1
Optimizer mode: ALL_ROWS
Parsing user id: 92 (SUBHAM)

26

Rows Row Source Operation
------- ---
 0 NESTED LOOPS (cr=548274 pr=547906 pw=0 time=0 us cost=150166 size=827190 card=7070)
 5 TABLE ACCESS FULL LINEARWATER (cr=547862 pr=547856 pw=0 time=283484 us
cost=150166 size=252 card=6)
 0 TABLE ACCESS BY INDEX ROWID AREALM (cr=412 pr=50 pw=0 time=0 us cost=150166
size=86700 card=1156)
 0 DOMAIN INDEX AREALM_IDX (cr=412 pr=50 pw=0 time=0 us cost=0 size=0 card=0)

Rows Execution Plan
------- ---
 0 SELECT STATEMENT MODE: ALL_ROWS
 0 NESTED LOOPS
 5 TABLE ACCESS MODE: ANALYZED (FULL) OF 'LINEARWATER' (TABLE)
 0 TABLE ACCESS MODE: ANALYZED (BY INDEX ROWID) OF 'AREALM'
 (TABLE)
 0 DOMAIN INDEX OF 'AREALM_IDX' (INDEX (DOMAIN))

Postgres:

explain (analyze,buffers) select a.fullname from tiger.arealm a,
tiger.linearwater b where ST_Touches(a.the_geom,b.the_geom) and
b.fullname='Yukon Riv';
 QUERY PLAN

 Nested Loop (cost=0.00..621112.57 rows=144 width=18) (actual time=156571.787..156571.787 rows=0
loops=1)
 Join Filter: _st_touches(a.the_geom, b.the_geom)
 Buffers: shared hit=39893 read=557578

 -> Seq Scan on linearwater b (cost=0.00..619321.72 rows=213 width=3368) (actual
time=6717.710..156324.597 rows=5 loops=1)
 Filter: ((fullname)::text = 'Yukon Riv'::text)
 Buffers: shared hit=39848 read=557547

 -> Index Scan using arealm_the_geom_gist on arealm a (cost=0.00..8.15 rows=1 width=3941) (actual
time=27.353..31.559 rows=2 loops=5)
 Index Cond: (a.the_geom && b.the_geom)
 Buffers: shared hit=15 read=9

 Total runtime: 156635.123 ms

Though we got zero results here, we wanted to note the time needed to complete the query. Surprisingly,
here Oracle 11g performs exceptionally well, may be they are doing any kind of optimisation internally. It
took only 3.87 secs to process whereas Postgres took about 157 secs to process the same query. Hit ratio in
Oracle 11g=(1−547935/(549561+10))=0.003 and in Postgres it is 39893/(39893+557578)=0.067

27

2.3 Line/Line

Here we queried Retrieve all the tributaries of Yukon River.

Oracle 11g:

select a.fullname from linearwater a,linearwater b where b.fullname='Yukon
Riv' and sdo_touch(a.geom,b.geom)='TRUE'

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- -----------------------------
Parse 1 0.03 1.05 89 1623 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 9 6.59 68.38 547858 548156 10 109
------- ------ -------- ---------- ---------- ---------- ---------- -----------------
total 11 6.62 69.43 547947 549779 10 109

Misses in library cache during parse: 1
Optimizer mode: ALL_ROWS
Parsing user id: 92 (SUBHAM)

Rows Row Source Operation
------- ---
 109 NESTED LOOPS (cr=549118 pr=548223 pw=0 time=0 us cost=150166 size=29222004
card=347881)
 5 TABLE ACCESS FULL LINEARWATER (cr=547865 pr=547856 pw=0 time=239472 us
cost=150166 size=252 card=6)
 109 TABLE ACCESS BY INDEX ROWID LINEARWATER (cr=1253 pr=367 pw=0 time=624 us
cost=150166 size=2390094 card=56907)
 109 DOMAIN INDEX LINEARWATER_IDX (cr=1145 pr=367 pw=0 time=260 us cost=0 size=0
card=0)

Rows Execution Plan
------- ---
 0 SELECT STATEMENT MODE: ALL_ROWS
 109 NESTED LOOPS
 5 TABLE ACCESS MODE: ANALYZED (FULL) OF 'LINEARWATER' (TABLE)
 109 TABLE ACCESS MODE: ANALYZED (BY INDEX ROWID) OF
 'LINEARWATER' (TABLE)
 109 DOMAIN INDEX OF 'LINEARWATER_IDX' (INDEX (DOMAIN))

Postgres:

explain (analyze,buffers) select a.fullname from tiger.linearwater
a,tiger.linearwater b where ST_Touches(a.the_geom,b.the_geom) and
b.fullname='Yukon Riv';

28

 QUERY PLAN

 Nested Loop (cost=0.00..645923.01 rows=284 width=12) (actual time=6901.882..152981.262 rows=109
loops=1)
 Join Filter: _st_touches(a.the_geom, b.the_geom)
 Buffers: shared hit=40451 read=557683

 -> Seq Scan on linearwater b (cost=0.00..619321.72 rows=213 width=3368) (actual
time=6801.689..151094.379 rows=5 loops=1)
 Filter: ((fullname)::text = 'Yukon Riv'::text)
 Buffers: shared hit=40137 read=557258

 -> Index Scan using linearwater_the_geom_gist on linearwater a (cost=0.00..117.54 rows=28
width=3380) (actual time=19.395..165.870 rows=160 loops=5)
 Index Cond: (a.the_geom && b.the_geom)
 Buffers: shared hit=286 read=391

 Total runtime: 153009.282 ms

Here also Oracle 11g takes less time than Postgres. Oracle 11g takes only 6.62 secs whereas Postgres takes
about 153 secs to process the same query. Hit Ratio for Postgres=40451/(40451+557683)=0.067 and Hit
Ratio for Oracle 11g=(1-547947/(549779+10))=0.003

3. INTERSECT OPERATION

Intersect Operation is basically complement of the Disjoint Operation. It can also be termed as any kind of
interaction. Here we have given queries involving Polygon and Line only but one involving less number of
tuples than the other one. In the first query, states and primaryroads relations are used, both of which are
small relations, whereas in the 2nd query we used roads and arealm relations which are very big.

3.1 Polygon/Line Small

Here we queried Retrieve all the interstate connector roads in the state California. That is, the query
retrieves all those roads which connect California to other states. Interstate connector roads are stored in the
relation primaryroads.

Oracle 11g:

select a.fullname from primaryroads a,states b where b.statefp10='06' and
sdo_anyinteract(a.geom, b.geom)='TRUE'

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ------------------
Parse 2 0.06 0.78 80 1466 0 0
Execute 2 0.00 0.00 0 0 0 0
Fetch 574 449.20 460.00 537 8411 8 8552
------- ------ -------- ---------- ---------- ---------- ------------------------------
total 578 449.26 460.79 617 9877 8 8552

29

Misses in library cache during parse: 1
Optimizer mode: ALL_ROWS
Parsing user id: 92 (SUBHAM)

Rows Row Source Operation
------- ---
 4276 NESTED LOOPS (cr=6328 pr=526 pw=0 time=45141152 us cost=3 size=62133 card=447)
 2 TABLE ACCESS FULL STATES (cr=9 pr=6 pw=0 time=50 us cost=3 size=188 card=2)
 4276 TABLE ACCESS BY INDEX ROWID PRIMARYROADS (cr=6319 pr=520 pw=0
time=43805232 us cost=3 size=10080 card=224)
 4276 DOMAIN INDEX PRIMARYROADS_IDX (cr=2773 pr=309 pw=0 time=25559008 us cost=0
size=0 card=0)

Rows Execution Plan
------- ---
 0 SELECT STATEMENT MODE: ALL_ROWS
 4276 NESTED LOOPS
 2 TABLE ACCESS MODE: ANALYZED (FULL) OF 'STATES' (TABLE)
 4276 TABLE ACCESS MODE: ANALYZED (BY INDEX ROWID) OF
 'PRIMARYROADS' (TABLE)
 4276 DOMAIN INDEX OF 'PRIMARYROADS_IDX' (INDEX (DOMAIN))

Postgres:

explain (analyze,buffers) select a.fullname from tiger.primaryroads a,
tiger.states b where ST_Intersects(a.the_geom,b.the_geom) and
b.statefp10='06';
 QUERY PLAN

 Nested Loop (cost=0.00..20.37 rows=287 width=10) (actual time=104.224..22269.064 rows=4276
loops=1)
 Join Filter: _st_intersects(a.the_geom, b.the_geom)
 Buffers: shared hit=122802 read=1102

 -> Seq Scan on states b (cost=0.00..3.30 rows=2 width=1065526) (actual time=17.316..17.375 rows=2
loops=1)
 Filter: ((statefp10)::text = '06'::text)
 Buffers: shared read=2

 -> Index Scan using primaryroads_the_geom_gist on primaryroads a (cost=0.00..8.27 rows=1
width=7568) (actual time=15.451..581.963 rows=2359 loops=2)
 Index Cond: (a.the_geom && b.the_geom)
 Buffers: shared hit=1504 read=740

 Total runtime: 22278.777 ms

30

Here Postgres takes only 22 secs to process whereas Oracle 11g takes about 449 secs=7 mins to complete.
Hit Ratio in Postgres is 122802/(122802+1102)=0.99 and in Oracle 11g it is (1-617/(9877+8))=0.94

3.2 Polygon/Line Large

Here we queried Retrieve all roads which go through forest. Forest has the mtfcc code of K2182 [7].

Oracle 11g:

select distinct a.fullname from roads a, arealm b where b.mtfcc='K2182' and
sdo_anyinteract(a.geom,b.geom)='TRUE'

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- --------------------
Parse 1 0.09 1.20 80 1620 0 0
Execute 1 0.00 0.01 0 0 0 0
Fetch 322 687.42 758.95 13002 82831 2676 4801
------- ------ -------- ---------- ---------- ---------- --------------------------------
total 324 687.51 760.17 13082 84451 2676 4801

Misses in library cache during parse: 1
Optimizer mode: ALL_ROWS
Parsing user id: 92 (SUBHAM)

Rows Row Source Operation
------- ---
 4801 HASH UNIQUE (cr=169879 pr=22771 pw=0 time=2464 us cost=7221833 size=286147584
card=2345472)
 23658 NESTED LOOPS (cr=169879 pr=22771 pw=0 time=619509952 us cost=2121
size=45334994552 card=371598316)
 1338 TABLE ACCESS FULL AREALM (cr=7808 pr=7805 pw=0 time=2883301 us cost=2121
size=137700 card=1836)
 23658 TABLE ACCESS BY INDEX ROWID ROADS (cr=162071 pr=14966 pw=0 time=25129834 us
cost=2121 size=9514398 card=202434)
 23658 DOMAIN INDEX ROADS_IDX (cr=139541 pr=11862 pw=0 time=170320 us cost=0 size=0
card=0)

Rows Execution Plan
------- ---
 0 SELECT STATEMENT MODE: ALL_ROWS
 4801 HASH (UNIQUE)
 23658 NESTED LOOPS
 1338 TABLE ACCESS MODE: ANALYZED (FULL) OF 'AREALM' (TABLE)
 23658 TABLE ACCESS MODE: ANALYZED (BY INDEX ROWID) OF 'ROADS'
 (TABLE)
 23658 DOMAIN INDEX OF 'ROADS_IDX' (INDEX (DOMAIN))

31

Postgres:

explain (analyze,buffers) select distinct a.fullname from tiger.roads
a,tiger.arealm b where ST_Intersects(a.the_geom,b.the_geom) and
b.mtfcc='K2182';
 QUERY PLAN

 HashAggregate (cost=631284.12..631518.73 rows=23461 width=12) (actual
time=156297.692..156302.465 rows=4635 loops=1)
 Buffers: shared hit=1628315 read=33932

 -> Nested Loop (cost=0.00..630865.74 rows=167350 width=12) (actual time=376.758..156078.764
rows=22968 loops=1)
 Join Filter: _st_intersects(a.the_geom, b.the_geom)
 Buffers: shared hit=1627277 read=33880

 -> Seq Scan on arealm b (cost=0.00..9292.58 rows=1426 width=3923) (actual
time=62.112..2538.040 rows=1338 loops=1)
 Filter: ((mtfcc)::text = 'K2182'::text)
 Buffers: shared read=7847

 -> Index Scan using roads_the_geom_gist on roads a (cost=0.00..409.37 rows=101 width=1294)
(actual time=6.135..37.893 rows=71 loops=1338)
 Index Cond: (a.the_geom && b.the_geom)
 Buffers: shared hit=45557 read=21993

 Total runtime: 156306.299 ms

There is a few discrepancy in the number of rows returned between 4801 & 4635. This may be due to
SRID. Though both the database have been loaded using the same SRID 4326.
Here Postgres takes only 156 secs and Oracle 11g takes 687 secs=11 mins to execute the entire query. Hit
Ratio in Postgres is 1628315/(1628315+33932)=0.98 and Hit Ratio in Oracle 11g is (1 - (13082/
(84451+2676)))=0.85

4.2 WARM PHASE
In the warm phase, we basically compared the memory management capabilities and page replacement
policies followed by the two databases. To make that happen, a set related queries are executed in
succession. We designed a C program called the query generator which generated 80 such related queries
both for the Postgres and Oracle 11g and in the same order. Following is the C code:

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <string.h>

32

int main()

{

FILE *fp,*fo;

char stateid[][10]={"'06'","'12'","'13'","'17'","'25'","'36'","'53'","'48'"};

char tables[][50]={"arealm","areawater","linearwater","pointlm"};

char p1[]="explain (analyze,buffers) select distinct a.fullname from tiger.";

char p2[]=" a,tiger.states b where b.statefp10=" ;

char p3[]=" and ST_Intersects(a.the_geom,b.the_geom);\n";

char o1[]="select distinct a.fullname from ";

char o2[]=" a,states b where b.statefp10=";

char o3[]=" and sdo_anyinteract(a.geom,b.geom)='TRUE';\n";

int bs[]={0,0,0,0,0,0,0,0};

int bt[]={0,0,0,0,0};

int globc=0,cs=0,ct=0,rt,rs;

int flag1=0,flag2=0;

int s,t,i;

char tp[4000],to[4000];

fp=fopen("postgres.sql","w");

fo=fopen("oracle.sql","w");

srand(time(NULL));

while(1)

{

t=rand()%4;

if(bt[t])

{

t=(t+1)%4;

while(bt[t]==1)

t=(t+1)%4;

}

bt[t]=1;

strcpy(tp,p1);

strcat(tp,tables[t]);

33

strcat(tp,p2);

strcpy(to,o1);

strcat(to,tables[t]);

strcat(to,o2);

ct++;

if(ct==4)

{

for(i=0;i<4;i++)

bt[i]=0;

ct=0;

}

s=rand()%8;

if(bs[s])

{

s=(s+1)%8;

while(bs[s]==1)

s=(s+1)%8;

}

bs[s]=1;

strcat(tp,stateid[s]);

strcat(tp,p3);

strcat(to,stateid[s]);

strcat(to,o3);

cs++;

if(cs==8)

{

for(i=0;i<8;i++)

bs[i]=0;

cs=0;

}

fputs(tp,fp);

fputs(to,fo);

globc++;

34

if(globc==80)

break;

}

fclose(fp);

fclose(fo);

return 0;

}

The above code ensures that no two same queries are generated one after the another. This is required
because if two same queries are executed one after the another then all the index blocks will be present in
the memory and we will not get the required performance result. The idea here is to wipe out some of the
previous index blocks from the memory while executing the current one. The following is the output of the
program. Since the result is huge, we will list here some of them in the order they got generated and will
give the performance results for the last four queries only since four features arealm, areawater, linearwater,
pointlm have been used for query generation.

Postgres:

explain (analyze,buffers) select distinct a.fullname from tiger.arealm a, tiger.states b where b.statefp10='17'
and ST_Intersects(a.the_geom,b.the_geom);

explain (analyze,buffers) select distinct a.fullname from tiger.linearwater a, tiger.states b where
b.statefp10='12' and ST_Intersects(a.the_geom,b.the_geom);

explain (analyze,buffers) select distinct a.fullname from tiger.areawater a, tiger.states b where
b.statefp10='25' and ST_Intersects(a.the_geom,b.the_geom);

explain (analyze,buffers) select distinct a.fullname from tiger.pointlm a, tiger.states b where b.statefp10='53'
and ST_Intersects(a.the_geom,b.the_geom);

explain (analyze,buffers) select distinct a.fullname from tiger.linearwater a, tiger.states b where
b.statefp10='48' and ST_Intersects(a.the_geom,b.the_geom);

explain (analyze,buffers) select distinct a.fullname from tiger.pointlm a, tiger.states b where b.statefp10='13'
and ST_Intersects(a.the_geom,b.the_geom);

explain (analyze,buffers) select distinct a.fullname from tiger.areawater a, tiger.states b where
b.statefp10='06' and ST_Intersects(a.the_geom,b.the_geom);

explain (analyze,buffers) select distinct a.fullname from tiger.arealm a, tiger.states b where b.statefp10='36'
and ST_Intersects(a.the_geom,b.the_geom);

.

.

.

explain (analyze,buffers) select distinct a.fullname from tiger.linearwater a, tiger.states b where

35

b.statefp10='13' and ST_Intersects(a.the_geom,b.the_geom);

explain (analyze,buffers) select distinct a.fullname from tiger.arealm a, tiger.states b where b.statefp10='12'
and ST_Intersects(a.the_geom,b.the_geom);

explain (analyze,buffers) select distinct a.fullname from tiger.areawater a, tiger.states b where
b.statefp10='25' and ST_Intersects(a.the_geom,b.the_geom);

explain (analyze,buffers) select distinct a.fullname from tiger.pointlm a, tiger.states b where b.statefp10='17'
and ST_Intersects(a.the_geom,b.the_geom);

explain (analyze,buffers) select distinct a.fullname from tiger.areawater a, tiger.states b where
b.statefp10='36' and ST_Intersects(a.the_geom,b.the_geom);

explain (analyze,buffers) select distinct a.fullname from tiger.linearwater a, tiger.states b where
b.statefp10='53' and ST_Intersects(a.the_geom,b.the_geom);

explain (analyze,buffers) select distinct a.fullname from tiger.pointlm a, tiger.states b where b.statefp10='48'
and ST_Intersects(a.the_geom,b.the_geom);

explain (analyze,buffers) select distinct a.fullname from tiger.arealm a, tiger.states b where b.statefp10='06'
and ST_Intersects(a.the_geom,b.the_geom);

Oracle 11g:

Before running the oracle.sql file we enabled the tracing.

select distinct a.fullname from arealm a,states b where b.statefp10='17' and
sdo_anyinteract(a.geom,b.geom)='TRUE';

select distinct a.fullname from linearwater a,states b where b.statefp10='12' and
sdo_anyinteract(a.geom,b.geom)='TRUE';

select distinct a.fullname from areawater a,states b where b.statefp10='25' and
sdo_anyinteract(a.geom,b.geom)='TRUE';

select distinct a.fullname from pointlm a,states b where b.statefp10='53' and
sdo_anyinteract(a.geom,b.geom)='TRUE';

select distinct a.fullname from linearwater a,states b where b.statefp10='48' and
sdo_anyinteract(a.geom,b.geom)='TRUE';

select distinct a.fullname from pointlm a,states b where b.statefp10='13' and
sdo_anyinteract(a.geom,b.geom)='TRUE';

select distinct a.fullname from areawater a,states b where b.statefp10='06' and
sdo_anyinteract(a.geom,b.geom)='TRUE';

select distinct a.fullname from arealm a,states b where b.statefp10='36' and
sdo_anyinteract(a.geom,b.geom)='TRUE';

.

.

.

select distinct a.fullname from linearwater a,states b where b.statefp10='13' and

36

sdo_anyinteract(a.geom,b.geom)='TRUE';

select distinct a.fullname from arealm a,states b where b.statefp10='12' and
sdo_anyinteract(a.geom,b.geom)='TRUE';

select distinct a.fullname from areawater a,states b where b.statefp10='25' and
sdo_anyinteract(a.geom,b.geom)='TRUE';

select distinct a.fullname from pointlm a,states b where b.statefp10='17' and
sdo_anyinteract(a.geom,b.geom)='TRUE';

alter session set tracefile_identifier=spa2; /* Added a Trace File Identifier */

select distinct a.fullname from areawater a,states b where b.statefp10='36' and
sdo_anyinteract(a.geom,b.geom)='TRUE';

select distinct a.fullname from linearwater a,states b where b.statefp10='53' and
sdo_anyinteract(a.geom,b.geom)='TRUE';

select distinct a.fullname from pointlm a,states b where b.statefp10='48' and
sdo_anyinteract(a.geom,b.geom)='TRUE';

select distinct a.fullname from arealm a,states b where b.statefp10='06' and
sdo_anyinteract(a.geom,b.geom)='TRUE';

N.B.: To measure the performance of the four queries we have added a new trace file identifier spa2.

QUERY 1

Oracle 11g:

select distinct a.fullname from areawater a,states b where b.statefp10='36'
and sdo_anyinteract(a.geom, b.geom)='TRUE'

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.02 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 2 1545.37 1548.40 17 537 4 13
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 4 1545.37 1548.42 17 537 4 13

Misses in library cache during parse: 0
Optimizer mode: ALL_ROWS
Parsing user id: 92 (SUBHAM)

Rows Row Source Operation
------- ---
 13 HASH UNIQUE (cr=7819 pr=550 pw=0 time=0 us cost=372 size=1660336 card=10124)

37

 40 NESTED LOOPS (cr=7819 pr=550 pw=0 time=1443 us cost=3 size=1660336 card=10124)
 2 TABLE ACCESS FULL STATES (cr=7 pr=0 pw=0 time=38 us cost=3 size=188 card=2)
 40 TABLE ACCESS BY INDEX ROWID AREAWATER (cr=7812 pr=550 pw=0 time=1368 us
cost=3 size=354340 card=5062)
 40 DOMAIN INDEX AREAWATER_IDX (cr=7772 pr=550 pw=0 time=1140 us cost=0 size=0
card=0)

Rows Execution Plan
------- ---
 0 SELECT STATEMENT MODE: ALL_ROWS
 13 HASH (UNIQUE)
 40 NESTED LOOPS
 2 TABLE ACCESS MODE: ANALYZED (FULL) OF 'STATES' (TABLE)
 40 TABLE ACCESS MODE: ANALYZED (BY INDEX ROWID) OF
 'AREAWATER' (TABLE)
 40 DOMAIN INDEX OF 'AREAWATER_IDX' (INDEX (DOMAIN))

Postgres:

explain (analyze,buffers) select distinct a.fullname from tiger.areawater a,
tiger.states b where b.statefp10='36' and ST_Intersects(a.the_geom,b.the_geom);
 QUERY PLAN

 HashAggregate (cost=53.95..73.56 rows=1961 width=12) (actual time=2879.228..2879.243 rows=13
loops=1)
 Buffers: shared hit=117295 read=67

 -> Nested Loop (cost=0.00..37.73 rows=6490 width=12) (actual time=282.130..2879.053 rows=40
loops=1)
 Join Filter: _st_intersects(a.the_geom, b.the_geom)
 Buffers: shared hit=117295 read=67

 -> Seq Scan on states b (cost=0.00..3.30 rows=2 width=1065526) (actual time=0.020..0.050 rows=2
loops=1)
 Filter: ((statefp10)::text = '36'::text)
 Buffers: shared hit=2

 -> Index Scan using areawater_the_geom_gist on areawater a (cost=0.00..16.43 rows=3
width=3288) (actual time=0.068..12.497 rows=2384 loops=2)
 Index Cond: (a.the_geom && b.the_geom)
 Buffers: shared hit=2111 read=9

 Total runtime: 2948.711 ms

Here Postgres takes only 3 secs whereas Oracle 11g takes about 1545/60=26 mins! to execute the same
query. Hit Ratio for Postgres is 117295/(117295+67)=0.99 and in Oracle 11g it is (1-(17/(537+4)))=0.97

38

QUERY 2

Oracle 11g:

select distinct a.fullname from linearwater a,states b where b.statefp10='53'
and sdo_anyinteract(a.geom, b.geom)='TRUE'

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 284 246.15 283.32 9315 194261 4 4245
------- ------ -------- ---------- ---------- ---------- ---------- -----------------
total 286 246.15 283.32 9315 194261 4 4245

Misses in library cache during parse: 0
Optimizer mode: ALL_ROWS
Parsing user id: 92 (SUBHAM)

Rows Row Source Operation
------- ---
 4245 HASH UNIQUE (cr=202941 pr=11311 pw=0 time=1929 us cost=3385 size=15018752
card=110432)
 196428 NESTED LOOPS (cr=202941 pr=11311 pw=0 time=47318560 us cost=3 size=15478704
card=113814)
 2 TABLE ACCESS FULL STATES (cr=7 pr=0 pw=0 time=35 us cost=3 size=188 card=2)
 196428 TABLE ACCESS BY INDEX ROWID LINEARWATER (cr=202934 pr=11311 pw=0
time=47212960 us cost=3 size=2390094 card=56907)
 196428 DOMAIN INDEX LINEARWATER_IDX (cr=13730 pr=2022 pw=0 time=160619 us cost=0
size=0 card=0)

Rows Execution Plan
------- ---
 0 SELECT STATEMENT MODE: ALL_ROWS
 4245 HASH (UNIQUE)
 196428 NESTED LOOPS
 2 TABLE ACCESS MODE: ANALYZED (FULL) OF 'STATES' (TABLE)
 196428 TABLE ACCESS MODE: ANALYZED (BY INDEX ROWID) OF
 'LINEARWATER' (TABLE)
 196428 DOMAIN INDEX OF 'LINEARWATER_IDX' (INDEX (DOMAIN))

Postgres:

explain (analyze,buffers) select distinct a.fullname from tiger.linearwater a,
tiger.states b where b.statefp10='53' and ST_Intersects(a.the_geom,b.the_geom);

39

 QUERY PLAN

 HashAggregate (cost=436.67..467.87 rows=3120 width=12) (actual time=97567.370..97570.036
rows=4243 loops=1)
 Buffers: shared hit=3796624 read=46038

 -> Nested Loop (cost=0.00..254.28 rows=72958 width=12) (actual time=49.342..97008.239
rows=196368 loops=1)
 Join Filter: _st_intersects(a.the_geom, b.the_geom)
 Buffers: shared hit=3786530 read=45712

 -> Seq Scan on states b (cost=0.00..3.30 rows=2 width=1065526) (actual time=0.036..0.072 rows=2
loops=1)
 Filter: ((statefp10)::text = '53'::text)
 Buffers: shared hit=1 read=1

 -> Index Scan using linearwater_the_geom_gist on linearwater a (cost=0.00..118.14 rows=28
width=3380) (actual time=19.515..7159.395 rows=105391 loo
ps=2)
 Index Cond: (a.the_geom && b.the_geom)
 Buffers: shared hit=92110 read=42174

 Total runtime: 97632.240 ms

Here Postgres took about 98 secs whereas Oracle 11g took 246 secs to process the same query. Hit Ratio
in Postgres is 3796624/(3796624+46038)=0.98 whereas in Oracle 11g it is (1-(9315/(194261+ 4)))=0.95

QUERY 3

Oracle 11g:

select distinct a.fullname from pointlm a,states b where b.statefp10='48' and
sdo_anyinteract(a.geom,b.geom)='TRUE'

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- -- ----------------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 751 245.60 246.47 482 33731 4 11236
------- ------ -------- ---------- ---------- ---------- -----------------------------
total 753 245.60 246.47 482 33731 4 11236

Misses in library cache during parse: 0
Optimizer mode: ALL_ROWS
Parsing user id: 92 (SUBHAM)

40

Rows Row Source Operation
------- ---
 11236 HASH UNIQUE (cr=35283 pr=889 pw=0 time=3874 us cost=490 size=2187648 card=13504)
 59168 NESTED LOOPS (cr=35283 pr=889 pw=0 time=203300368 us cost=3 size=2187648
card=13504)
 2 TABLE ACCESS FULL STATES (cr=7 pr=0 pw=0 time=25 us cost=3 size=188 card=2)
 59168 TABLE ACCESS BY INDEX ROWID POINTLM (cr=35276 pr=889 pw=0 time=202847184 us
cost=3 size=459136 card=6752)
 59168 DOMAIN INDEX POINTLM_IDX (cr=7290 pr=603 pw=0 time=200291952 us cost=0 size=0
card=0)

Rows Execution Plan
------- ---
 0 SELECT STATEMENT MODE: ALL_ROWS
 11236 HASH (UNIQUE)
 59168 NESTED LOOPS
 2 TABLE ACCESS MODE: ANALYZED (FULL) OF 'STATES' (TABLE)
 59168 TABLE ACCESS MODE: ANALYZED (BY INDEX ROWID) OF 'POINTLM'
 (TABLE)
 59168 DOMAIN INDEX OF 'POINTLM_IDX' (INDEX (DOMAIN))

Postgres:

explain (analyze,buffers) select distinct a.fullname from tiger.pointlm a,tiger.states
b where b.statefp10='48' and ST_Intersects(a.the_geom,b.the_geom);
 QUERY PLAN

 HashAggregate (cost=59.44..146.01 rows=8657 width=14) (actual time=370445.935..370452.941
rows=11236 loops=1)
 Buffers: shared hit=12062959 read=1309

 -> Nested Loop (cost=0.00..37.80 rows=8657 width=14) (actual time=535.327..370094.733 rows=59168
loops=1)
 Join Filter: _st_intersects(a.the_geom, b.the_geom)
 Buffers: shared hit=12062959 read=1309

 -> Seq Scan on states b (cost=0.00..3.30 rows=2 width=1065526) (actual time=0.042..0.091 rows=2
loops=1)
 Filter: ((statefp10)::text = '48'::text)
 Buffers: shared read=2

 -> Index Scan using pointlm_the_geom_gist on pointlm a (cost=0.00..16.46 rows=3 width=114)
(actual time=14.479..857.048 rows=49394 loops=2)
 Index Cond: (a.the_geom && b.the_geom)
 Buffers: shared hit=10820 read=1066

 Total runtime: 370459.456 ms

41

Here Postgres takes 370/60=6 mins whereas surprisingly here Oracle 11g takes only 246/60=4 mins to
execute the same query. Hit Ratio in Postgres is 12062959 /(12062959+1309)=0.99 and in Oracle 11g it is
(1 – 482/(33731+4))=0.99

QUERY 4

Oracle 11g:

select distinct a.fullname from arealm a,states b where b.statefp10='06' and
sdo_anyinteract(a.geom,b.geom)='TRUE'

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- --------------------------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 368 126.60 127.35 766 15705 4 5501
------- ------ -------- ---------- ---------- ---------- --------------------------
total 370 126.60 127.35 766 15705 4 5501

Misses in library cache during parse: 0
Optimizer mode: ALL_ROWS
Parsing user id: 92 (SUBHAM)

Rows Row Source Operation
------- ---
 5501 HASH UNIQUE (cr=18013 pr=1056 pw=0 time=1571 us cost=92 size=390897 card=2313)
 15910 NESTED LOOPS (cr=18013 pr=1056 pw=0 time=3170854 us cost=3 size=390897 card=2313)
 2 TABLE ACCESS FULL STATES (cr=7 pr=0 pw=0 time=43 us cost=3 size=188 card=2)
 15910 TABLE ACCESS BY INDEX ROWID AREALM (cr=18006 pr=1056 pw=0 time=3140946 us
cost=3 size=86700 card=1156)
 15910 DOMAIN INDEX AREALM_IDX (cr=3208 pr=330 pw=0 time=16413 us cost=0 size=0
card=0)

Rows Execution Plan
------- ---
 0 SELECT STATEMENT MODE: ALL_ROWS
 5501 HASH (UNIQUE)
 15910 NESTED LOOPS
 2 TABLE ACCESS MODE: ANALYZED (FULL) OF 'STATES' (TABLE)
 15910 TABLE ACCESS MODE: ANALYZED (BY INDEX ROWID) OF 'AREALM'
 (TABLE)
 15910 DOMAIN INDEX OF 'AREALM_IDX' (INDEX (DOMAIN))

42

Postgres:

explain (analyze,buffers) select distinct a.fullname from tiger.arealm a,tiger.states b
where b.statefp10='06' and ST_Intersects(a.the_geom,b.the_geom);
 QUERY PLAN

 HashAggregate (cost=24.12..38.95 rows=1483 width=18) (actual time=64477.008..64480.448 rows=5501
loops=1)
 Buffers: shared hit=432812 read=1398

 -> Nested Loop (cost=0.00..20.42 rows=1483 width=18) (actual time=52.056..64350.055 rows=15910
loops=1)
 Join Filter: _st_intersects(a.the_geom, b.the_geom)
 Buffers: shared hit=427131 read=1349

 -> Seq Scan on states b (cost=0.00..3.30 rows=2 width=1065526) (actual time=0.013..0.053 rows=2
loops=1)
 Filter: ((statefp10)::text = '06'::text)
 Buffers: shared hit=2

 -> Index Scan using arealm_the_geom_gist on arealm a (cost=0.00..8.30 rows=1 width=3941)
(actual time=9.024..74.826 rows=8237 loops=2)
 Index Cond: (a.the_geom && b.the_geom)
 Buffers: shared hit=5842 read=870

 Total runtime: 64495.677 ms

Here Postgres takes only 65 secs whereas Oracle 11g takes about 127 secs to process the same query, Hit
Ratio in Postgres is 432812/(432812+1398)=0.99 and in Oracle 11g it is (1-766/(15705+4))=0.95

43

5. CONCLUSION & SUMMARY

From the experimental results that we saw, we can conclude that Postgres performs better than Oracle 11g
both in the Cold Phase and Warm Phase. Though in few queries Oracle 11g performed better but on the
whole Postgres overpowered Oracle 11g. In the warm phase in 3 out of 4 queries Postgres performed
significantly well, from this we can conclude that Postgres has better automatic memory management
capabilities and page replacement policies. May be Oracle 11g needs more tuning to perform better. And
also in the Cold Phase, Postgres performs significantly well except in few cases such as in the Adjacency
Operation (TOUCH). Since Postgres uses the underlying GEOS(Geometry Engine - Open Source) library
functions for implementing the geometric operations whereas Oracle 11g implements them on its own, and
since in majority Postgres performs well, we can conclude that GEOS geometric algorithms are more
efficiently designed than Oracle 11g. And also Postgres planner is more efficiently designed to take
advantage of any available indexes to use in queries for achieving better performance whereas in Oracle
11g we saw that we have to specify them explicitly through functions. On the whole it is the open-source
that wins the game! The next section briefly summarizes the queries and gives the bar graphs for the two
phases separately.

5.1 COLD PHASE QUERIES

5.1.1 Contains Properly:

a) Polygon/Point
Query 1: Retrieve all the Hospitals located inside the state District_of_Columbia

b) Polygon/Line
Query 2: List all the linear water bodies in the state District_of_Columbia

c) Polygon/Polygon

Arealm/States
Query 3: Retrieve all Shopping Center located in the state California

Areawater/States
Query 4: Retrieve all the Lakes/Ponds in the state District_of_Columbia

5.1.2 Adjacent Operation:

a) Polygon/Polygon
Query 5: Retrieve all the states which are adjacent to Nebraska

b) Polygon/Line
Query 6: Retrieve all polygons from arealm which are adjacent to Yukon River

c) Line/Line
Query 7: Retrieve all the tributaries of Yukon River

44

5.1.3 Intersect Operation:

a) Polygon/Line Small
Query 8: Retrieve all the interstate connector roads in the state California

b) Polygon/Line Large
Query 9: Retrieve all roads which go through forest

Since the values range from 0.32 secs to 687 secs, so instead of bar graphs we have given Percent Bar
Graph showing the percentage of time or the ratio of time taken by the two databases:

Query 1 Query 2 Query 3 Query 4 Query 5 Query 6 Query 7 Query 8 Query 9

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

COLD PHASE

Oracle 11g
Postgres

QUERIES

P
E

R
C

E
N

T
A

G
E

 O
F

 T
IM

E

45

5.2 WARM PHASE QUERIES

a) Polygon/Polygon Large
Query 1: Retrieve all the areawater bodies which intersect with the state New York having
stateid 36

b) Polygon/Line
Query 2: Retrieve all the linearwater features which intersect with the state Washington
having stateid 53

c) Polygon/Point
Query 3: Retrieve all the point features which intersect with the state Texas having stateid 48

a) Polygon/Polygon
Query 4: Retrieve all the area landmarks which intersect with the state California having
stateid 06

Query 1 Query 2 Query 3 Query 4

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

WARM PHASE

Oracle 11g
Postgres

QUERIES

P
E

R
C

E
N

T
A

G
E

 O
F

 T
IM

E

46

REFERENCES

[1] Norman W. Paton, M. Howard Williams, Kosmas Dietrich, Olive Liew, Andrew Dinn, Alan Patrick,
“VESPA: A benchmark for vector spatial databases,” Lecture Notes in Computer Science, Vol. 1832/2000,
pp.81-101, 2001.

[2] Stonebraker M., Frew J., Gardels K., and Meredith J.1993. The SEQUOIA 2000 Storage Benchmark,
Proc. ACM SIGMOD Int. Conf. on Management of Data, Washington, DC, 1993, pp. 2-11.

[3] PostGIS 1.5.2SVN Manual

[4] Oracle® Spatial Developer's Guide 11g Release 1 (11.1)

[5] Oracle® Database Concepts 11g Release 1 (11.1)

[6] Oracle® Database Performance Tuning Guide 11g Release 2 (11.2)

[7] 2010 TIGER/Line Shapefiles Technical Documentation.

[8] PostgreSQL 9.0.4 Documentation: Appendix F. Additional Supplied Modules: F.24. pg_buffercache

[9] PostgreSQL 9.0.4 Documentation: Chapter 18. Server Configuration

[10] PostgreSQL 9.0.4 Documentation: EXPLAIN

[11] PostgreSQL 9.0.4 Documentation: ANALYZE

[12] Chapter 4. Using PostGIS: Data Management and Queries

[13] EXPLAINING EXPLAIN EnterpriseDB

[14] Inside the PostgreSQL Shared Buffer Cache by Greg Smith

[15] http://pgfoundry.org/projects/pgfincore

[16] http://www.adp-gmbh.ch/ora/concepts/sga.html

[17] http://wiki.postgresql.org/wiki/VACUUM_FULL

[18] http://wiki.postgresql.org/wiki/Introduction_to_VACUUM,_ANALYZE,_EXPLAIN,_and_COUNT

