
TASTE Tutorial
v1.1

Maxime Perrotin
Thanassis Tsiodras

Julien Delange

December 17, 2012

1

Contents

1 Introduction 3

2 Install with the VMWARE c© image 3
2.1 Login information . 3
2.2 Updating the toolchain . 3
2.3 Changing the keymap . 4
2.4 Stay tuned . 4

3 How to make a simple system 5
3.1 What the demo does . 5
3.2 The process step by step . 6
3.3 Creating the Data model in ASN.1 6
3.4 Interface view . 7

3.4.1 Receiver function . 8
3.4.2 Sender function . 11

3.5 Write the code of your defined functions 13
3.5.1 Code of the receiver function 13
3.5.2 Code of the sender function 14

3.6 Build the deployment view 15
3.7 Build and execute the system 17
3.8 Save your project . 20
3.9 Easily reproduce this tutorial 20
3.10 Get more information & support 21
3.11 Additional feature: schedulability analysis 21

4 Resources 22
4.1 More information . 22
4.2 Useful programs . 22

2

1 Introduction

Taste currently stands for “The ASSERT Set of Tools for Engineering”.
In this tutorial you will learn how to build a system following the Taste

philosophy. You will see how to make your data view and its associated in-
terface view and deployment view. You’ll also see how to generate the code
and automatically create program that run on top of various operating sys-
tems such as Linux or RTEMS.

This tutorial is supposed to be used with the Taste virtual machine, that
consists in a VMWARE c© image that contains all the necessary tool. So, you must start
first with the installation of the VMWARE PLAYER c© software to use the Taste image. Then,
you will have the complete environment required to run Taste tools.

2 Install with the VMWARE c© image

Download the toolchain here: http://www.semantix.gr/ASSERT-VM.tar.gz It con-
tains a full Linux installation with all Taste tools in the form of a VMWARE c© image. You
will need the VMWARE PLAYER c© Player to open it, you can get it for free at http:
//www.vmware.com/products/player/.

The Linux installation of the VMWARE PLAYER c© image contains a complete and up-
to-date installation of Taste. Most of the tools are present in the /opt directory. A few
others are in system directories.

Most new versions of the toolchain won’t require a reinstallation of the VMWARE c©
image (which is very big).

The easiest way to work with the VMWARE c© image is to connect to it using an SSH
connection (putty on Windows - see 4.2, ssh -X on Linux). You can exchange files with
the SCP protocol (e.g. WinSCP tool - see 4.2).

2.1 Login information
The user login of the virtual machine is

• Login: assert

• Password: assertvm

2.2 Updating the toolchain
When you need to update/replace tools in the /opt directory you need to use the sudo
command. For instance, to replace an old version of the toolchain you need to follow these
steps:

1. cd /opt

2. sudo wget http://www.semantix.gr/assert/
WP4.4-ToolchainAndManual-Linux-latest.tar.gz (enter the sudo password)

3. sudo rm -r WP4.4-ToolchainAndManual-Linux-yourversion

3

http://www.semantix.gr/ASSERT-VM.tar.gz
http://www.vmware.com/products/player/
http://www.vmware.com/products/player/

4. sudo tar zxvf WP4.4-ToolchainAndManual-
Linux-latest.tar.gz

5. source ~/assert_env.sh

The last command is very important. It will set your path and environment variables
to the new toolchain.

2.3 Changing the keymap
You can set the keyboard mapping to your own using the following command (replace fr
by your mapping of choice) :

sudo setxkbmap f r

2.4 Stay tuned
To get informed about releases of Taste, you can subscribe to the RSS feed on http://www.
semantix.gr/assert/assertToolchain.xml

4

http://www.semantix.gr/assert/assertToolchain.xml
http://www.semantix.gr/assert/assertToolchain.xml

3 How to make a simple system
Inside the VMWARE PLAYER c© image, you can find this tutorial but also a tool called
tastegui. It is a graphical interface used to control all Taste components. This interface
also contains all required documentation about Taste and its environment. The following
figure shows the main window of the tastegui tool.

This tool is composed of several menus that will provide all the necessary documen-
tation if you need help. In particular, the menu help (shown in the following figure) can
be used to show the main Taste documentation as well as the ASN1 and AADL reference
cards.

3.1 What the demo does
This section will guide you to build a simple system that runs on Linux. It is composed
of two tasks : one task periodically sends an integer to another task. It is a ping example,

5

where one task periodically polls another one.

3.2 The process step by step
The Taste development process is composed on the following aspects:

1. Define your data model. The data model is the definition of all data types used
in your system. In Taste, we use the ASN1 standard to describe data types. ASN1
is a standard widely used in the telecommunication industry and is very efficient
to enable communications across heterogeneous systems (which have different data
types representations).

2. Create your interfaceview. It describes your system from a pure functional point of
view. It includes the definition of the functions of your system with its interface.
Thus, it relies on the dataview to describe the data types used by each function of
the system.

3. Write the code of the functions you defined in the interfaceview. Depending on the
language used by each function, you will have to write it using a regular language
(such as C or Ada) or provide reference to functional models (SDL, Simulink, etc.).

4. Design your deploymentview. It describes how functions are allocated in your ar-
chitecture. You can bind functions of your interfaceview to different processors and
connect them using software bus (such as ethernet).

5. Assemble and compile the system. In this step, the Taste toolchain auto-generate
code that implements the architecture of the deploymentview and integrate your
code on top of it. It integrates assemble each piece of code and produces the binaries
for each system.

3.3 Creating the Data model in ASN.1
The standard ASN1 and the language is kept unmodified. You can write all the data types
your need to express the parameters of your messages. To create your dataview, click on
the button "Edit data model" in the tastegui tool. It will open a window to let you edit the
definition of your data model. Once you have finished to edit it, save it. The tastegui tool
will show you potential errors contained in your data model. The following figure shows
the dataview editor.

6

To assist system designers in the use of Taste, the tastegui automatically defines a dataview
with several predefined types. For this tutorial, you can keep the proposed dataview un-
changed, the types already defined are sufficient to build the example of this tutorial.

3.4 Interface view
The interfaceview captures the functional aspects of your system. It lets you define the
functions of your system with their timing characteristics (periodic, sporadic) and their
interfaces (parameters that can be transmitted to the function). Taste includes a graphical
editor to let you define your interfaceview. To edit your interfaceview, click on the button
"edit your interface view" in tastegui. Then, a new window, as illustrated in the following
figure should appear.

7

When you start the tool, the interface view is empty. First, create a container and call it
mycontainer. It will contain the two functions that composed your system.

3.4.1 Receiver function

We will first define the function that receive data. Add a function in the container and call it
receiver. Then, add a Provided Interface (called PI) to this function by making a right-click
on the function, as depicted in the following figure.

8

Edit the PI properties. Define it as sporadic and define your own timing requirements.
You should have a property window similar to the following figure.

9

Then, you need to describe the parameters of your Provided Interfaces. You do that, edit
the Parameters pane. Add a new parameter (by clicking on the plus sign). Set the name
to val and associate it with the type My_Integer. Note that this type comes from the
dataview. You should get a window similar to the following figure.

10

3.4.2 Sender function

Once the receiver function is defined, you need to define the sender function. Add another
function in your container and call it sender. Then, add first a new Provided Interface (PI) and
call it activator. This interface will be responsible to call the remote interface receive
from the receiver function. In this PI, you define the period on which it is called as well
as other timing requirements (deadline, etc.).

Finally, add a Required Interface (RI) to the sender function. Adding a Required Interface
specifies that your function needs to be bind to another function. Its purpose is to associate
interfaces, showing their dependencies and their interactions. Adding a Required Interface
is similar to adding a Provided Interface: make a right click on the function and choose Add
RI, as illustrated in the following figure.

11

Add the Required Interface in the sender function and call it sender. Finally, con-
nect the sender interface from the sender function to the receive interface from the
receiver function. You should finally get an interfaceview similar to the following pic-
ture.

12

Finally, save your interfaceview and quit the TASTE-IV tool.

3.5 Write the code of your defined functions
One you have defined system functions, you need to write the code. This code can be
written using language such as Ada, C or application-level model such as SDL, Simulink or
SCADE. In our example, we use the C language to write the behavior of the functions.

To edit the functions code, click on the button "Edit interface code". It will open a new
window with text files containing code skeletons. then, you need to edit them in order to
fill the functions code.

3.5.1 Code of the receiver function

Edit the receiver.c file. The function receiver_startup() corresponds to the func-
tion called when the function starts. Then, the function receiver_PI_receive() cor-
responds to the function called when a data is received by the receive() interface. The
parameter (IN_val) corresponds to the data received, encoded with the ASN1 standard.

Complete the code in order to have a similar code than the following figure. It will
print a text line when the function starts and output the value received on the receive
interface each time a data is received.

13

3.5.2 Code of the sender function

Edit the sender.c file. In this file, the function sender_startup() corresponds to the
function called when the function starts. Then, the function receiver_PI_activator()
corresponds to the function periodically called by the system. You have to complete this
function by defining the code that will be called on a periodic basis by the system.

As you want to call the receive() interface of the receiver function, you have to
use the Required Interface of your system. This required interface is called through a system
call to the sender_RI_sender() function. When you call this function, it automatically
calls the interface defined in the receiver function. So, add a call to this function and use
a parameter that contain the data sent as parameter to the receive() function.

Complete the code in order to have a similar code than the following figure. It will
print a text line when the function starts and will call the required interface periodically so
that this sender function will automatically call the receive interface from the receiver
function.

14

The function definition of all Required Interfaces can be found in the header file of the
function. In our case, the definition of the function sender_RI_sender() can be found
in the sender.h header file.

Finally, save your source files and quit the editor program.

3.6 Build the deployment view
This step consists in mapping functions to real hardware: you associate the functions of the
interfaceview to processor and boards. To define your deploymentview, click on the button
"Edit deployment view" in the main window of tastegui. It will launch a program that looks
like the following picture.

15

Then, add a processor board in your deploymentview and call it myboard. A proces-
sor board contains all hardware components required to execute a system: a CPU and a
memory. Give a name to the processor (for example mycpu) and the memory (for example
mymem).

The processor contains a partition. In the Taste approach, a partition contains functions
from the interfaceview. A single partition can collocate several functions.

First, give a name to the partition defined in your processor (for example, mypart).
Then, add the two functions of your interfaceview: sender and receiver. By doing
that, you specify that the two functions you specify are executed within a single partition
executed on the same processor.

Then, you need to define the properties of your processor: its architecture but also the
operating system it uses to execute your functions. To do so, select the processor compo-
nent and perform a right click on it. Then, edit its properties ("edit properties" option in the
menu). The preferences toolbox proposes to define a classifier, that corresponds to the archi-
tecture used by the processor as well as its operating system. As we are executing this exam-
ple on a regular Linux system, choose the option ocarina_processors_x86::x86_linux
as shown in the following figure.

16

The resulting deploymentview should be similar to the one shown in the figure of the
beginning of this section.

Finally, save your deploymentview and quit the TASTE-DV program.

3.7 Build and execute the system
Once you have defined your interfaceview, your deploymentview and that the code of your
functions is written, you are able to build your system. Before invoking the build function-
nality, you have to define which runtime you’ll use. Taste offers two runtime: PolyORB-HI-
C and PolyORB-HI-Ada. You can choose it in the option menu, as shown in the following
figure.

17

As our example use PolyORB-HI-C, choose the option PolyORB-HI-C in the option
menu.

Then, click on the "Launch compilation" button. A window will appear, showing the
output of the build process. During the compilation, the tool generate the architecture code,
integrate your functional code and produce the binaries of your system. Note that if you
have several processor boards, it will create the binaries for each of them. An example of
the compilation window is shown in the following figure.

18

Once the compilation process is finished, you can run the produced binary by clicking
on the button "Run binaries". A window that execute your system will appear, as shown in
the following figure.

19

3.8 Save your project
If you want to edit your project later, you can save it. To do so, choose the "Save project"
option from the "Files" menu, as shown in the following figure.

3.9 Easily reproduce this tutorial
For people who want to reproduce this tutorial in a quick way, a complete existing project
is available in the archive. Just open the project.taste file using the "File" menu : it

20

contains a complete dataview, interfaceview, deploymentview as well as functional code
so that you are able to build and execute binary without writing anything.

3.10 Get more information & support
This tutorial gives a simple overview of basic functions of the Taste toolchain. However,
it is composed of more functionnality: it can integrate Ada code, Simulink/SCADE/SDL
models, execute systems on top of various embedded operating such as RTEMS or also run
functions on heterogeneous processors (such as LEON, PowerPC and so on). You can find
more information about the toolchain in the main documentation, available from the "Help"
menu. It is also accessible on the SEMANTIX website (see section).

If you experience problems during the use of Taste and its toolset, please send a mail
to the development team with your project file. They will help you in your use of the Taste
toolchain.

3.11 Additional feature: schedulability analysis
You can automatically perform a schedulability analysis test of your system by using the
TASTE-CV tool. To do so, click on the "Launch TEST-CV". The tastegui tool will load the
definition of your system (with its tasks, scheduling and timing constraints and require-
ments) so that you are able to perform a schedulability analysis. However, this aspect of
the toolchain is not covered by this tutorial, you can get more information about it in the
main Taste documentation.

21

4 Resources

4.1 More information
• The ASSERT project: http://www.assert-project.net

• SEMANTIX website: http://www.semantix.gr/assert

4.2 Useful programs
• GNAT compiler : http://libre.adacore.com

• Gnatforleon : http://polaris.dit.upm.es/~ork/

• PuTTY : http://putty.very.rulez.org/download.html

• RTEMS: http://www.rtems.com

• SWIG : http://www.swig.org/

• WinSCP : http://winscp.net

• WxWidgets : http://www.wxwidgets.org/

22

http://www.assert-project.net
http://www.semantix.gr/assert
http://libre.adacore.com
http://polaris.dit.upm.es/~ork/
http://putty.very.rulez.org/download.html
http://www.rtems.com
http://www.swig.org/
http://winscp.net
http://www.wxwidgets.org/

	Introduction
	Install with the VMWare© image
	Login information
	Updating the toolchain
	Changing the keymap
	Stay tuned

	How to make a simple system
	What the demo does
	The process step by step
	Creating the Data model in ASN.1
	Interface view
	Receiver function
	Sender function

	Write the code of your defined functions
	Code of the receiver function
	Code of the sender function

	Build the deployment view
	Build and execute the system
	Save your project
	Easily reproduce this tutorial
	Get more information & support
	Additional feature: schedulability analysis

	Resources
	More information
	Useful programs

