POK
/home/jaouen/pok_official/pok/trunk/libpok/libm/k_tan.c
00001 /*
00002  *                               POK header
00003  * 
00004  * The following file is a part of the POK project. Any modification should
00005  * made according to the POK licence. You CANNOT use this file or a part of
00006  * this file is this part of a file for your own project
00007  *
00008  * For more information on the POK licence, please see our LICENCE FILE
00009  *
00010  * Please follow the coding guidelines described in doc/CODING_GUIDELINES
00011  *
00012  *                                      Copyright (c) 2007-2009 POK team 
00013  *
00014  * Created by julien on Sat Jan 31 20:12:07 2009 
00015  */
00016 
00017 /* @(#)k_tan.c 5.1 93/09/24 */
00018 /*
00019  * ====================================================
00020  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
00021  *
00022  * Developed at SunPro, a Sun Microsystems, Inc. business.
00023  * Permission to use, copy, modify, and distribute this
00024  * software is freely granted, provided that this notice
00025  * is preserved.
00026  * ====================================================
00027  */
00028 
00029 #ifdef POK_NEEDS_LIBMATH
00030 
00031 /* __kernel_tan( x, y, k )
00032  * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
00033  * Input x is assumed to be bounded by ~pi/4 in magnitude.
00034  * Input y is the tail of x.
00035  * Input k indicates whether tan (if k=1) or
00036  * -1/tan (if k= -1) is returned.
00037  *
00038  * Algorithm
00039  *      1. Since tan(-x) = -tan(x), we need only to consider positive x.
00040  *      2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
00041  *      3. tan(x) is approximated by a odd polynomial of degree 27 on
00042  *         [0,0.67434]
00043  *                               3             27
00044  *              tan(x) ~ x + T1*x + ... + T13*x
00045  *         where
00046  *
00047  *              |tan(x)         2     4            26   |     -59.2
00048  *              |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2
00049  *              |  x                                    |
00050  *
00051  *         Note: tan(x+y) = tan(x) + tan'(x)*y
00052  *                        ~ tan(x) + (1+x*x)*y
00053  *         Therefore, for better accuracy in computing tan(x+y), let
00054  *                   3      2      2       2       2
00055  *              r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
00056  *         then
00057  *                                  3    2
00058  *              tan(x+y) = x + (T1*x + (x *(r+y)+y))
00059  *
00060  *      4. For x in [0.67434,pi/4],  let y = pi/4 - x, then
00061  *              tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
00062  *                     = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
00063  */
00064 
00065 #include <libm.h>
00066 #include "math_private.h"
00067 
00068 static const double xxx[] = {
00069                  3.33333333333334091986e-01,    /* 3FD55555, 55555563 */
00070                  1.33333333333201242699e-01,    /* 3FC11111, 1110FE7A */
00071                  5.39682539762260521377e-02,    /* 3FABA1BA, 1BB341FE */
00072                  2.18694882948595424599e-02,    /* 3F9664F4, 8406D637 */
00073                  8.86323982359930005737e-03,    /* 3F8226E3, E96E8493 */
00074                  3.59207910759131235356e-03,    /* 3F6D6D22, C9560328 */
00075                  1.45620945432529025516e-03,    /* 3F57DBC8, FEE08315 */
00076                  5.88041240820264096874e-04,    /* 3F4344D8, F2F26501 */
00077                  2.46463134818469906812e-04,    /* 3F3026F7, 1A8D1068 */
00078                  7.81794442939557092300e-05,    /* 3F147E88, A03792A6 */
00079                  7.14072491382608190305e-05,    /* 3F12B80F, 32F0A7E9 */
00080                 -1.85586374855275456654e-05,    /* BEF375CB, DB605373 */
00081                  2.59073051863633712884e-05,    /* 3EFB2A70, 74BF7AD4 */
00082 /* one */        1.00000000000000000000e+00,    /* 3FF00000, 00000000 */
00083 /* pio4 */       7.85398163397448278999e-01,    /* 3FE921FB, 54442D18 */
00084 /* pio4lo */     3.06161699786838301793e-17     /* 3C81A626, 33145C07 */
00085 };
00086 #define one     xxx[13]
00087 #define pio4    xxx[14]
00088 #define pio4lo  xxx[15]
00089 #define T       xxx
00090 
00091 double
00092 __kernel_tan(double x, double y, int iy)
00093 {
00094         double z, r, v, w, s;
00095         int32_t ix, hx;
00096 
00097         GET_HIGH_WORD(hx, x);   /* high word of x */
00098         ix = hx & 0x7fffffff;                   /* high word of |x| */
00099         if (ix < 0x3e300000) {                  /* x < 2**-28 */
00100                 if ((int) x == 0) {             /* generate inexact */
00101                         uint32_t low;
00102                         GET_LOW_WORD(low, x);
00103                         if(((ix | low) | (iy + 1)) == 0)
00104                                 return one / fabs(x);
00105                         else {
00106                                 if (iy == 1)
00107                                         return x;
00108                                 else {  /* compute -1 / (x+y) carefully */
00109                                         double a, t;
00110 
00111                                         z = w = x + y;
00112                                         SET_LOW_WORD(z, 0);
00113                                         v = y - (z - x);
00114                                         t = a = -one / w;
00115                                         SET_LOW_WORD(t, 0);
00116                                         s = one + t * z;
00117                                         return t + a * (s + t * v);
00118                                 }
00119                         }
00120                 }
00121         }
00122         if (ix >= 0x3FE59428) { /* |x| >= 0.6744 */
00123                 if (hx < 0) {
00124                         x = -x;
00125                         y = -y;
00126                 }
00127                 z = pio4 - x;
00128                 w = pio4lo - y;
00129                 x = z + w;
00130                 y = 0.0;
00131         }
00132         z = x * x;
00133         w = z * z;
00134         /*
00135          * Break x^5*(T[1]+x^2*T[2]+...) into
00136          * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
00137          * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
00138          */
00139         r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] +
00140                 w * T[11]))));
00141         v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] +
00142                 w * T[12])))));
00143         s = z * x;
00144         r = y + z * (s * (r + v) + y);
00145         r += T[0] * s;
00146         w = x + r;
00147         if (ix >= 0x3FE59428) {
00148                 v = (double) iy;
00149                 return (double) (1 - ((hx >> 30) & 2)) *
00150                         (v - 2.0 * (x - (w * w / (w + v) - r)));
00151         }
00152         if (iy == 1)
00153                 return w;
00154         else {
00155                 /*
00156                  * if allow error up to 2 ulp, simply return
00157                  * -1.0 / (x+r) here
00158                  */
00159                 /* compute -1.0 / (x+r) accurately */
00160                 double a, t;
00161                 z = w;
00162                 SET_LOW_WORD(z, 0);
00163                 v = r - (z - x);        /* z+v = r+x */
00164                 t = a = -1.0 / w;       /* a = -1.0/w */
00165                 SET_LOW_WORD(t, 0);
00166                 s = 1.0 + t * z;
00167                 return t + a * (s + t * v);
00168         }
00169 }
00170 
00171 #endif