POK
/home/jaouen/pok_official/pok/trunk/libpok/libm/k_sin.c
00001 /*
00002  *                               POK header
00003  * 
00004  * The following file is a part of the POK project. Any modification should
00005  * made according to the POK licence. You CANNOT use this file or a part of
00006  * this file is this part of a file for your own project
00007  *
00008  * For more information on the POK licence, please see our LICENCE FILE
00009  *
00010  * Please follow the coding guidelines described in doc/CODING_GUIDELINES
00011  *
00012  *                                      Copyright (c) 2007-2009 POK team 
00013  *
00014  * Created by julien on Sat Jan 31 20:12:07 2009 
00015  */
00016 
00017 /* @(#)k_sin.c 5.1 93/09/24 */
00018 /*
00019  * ====================================================
00020  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
00021  *
00022  * Developed at SunPro, a Sun Microsystems, Inc. business.
00023  * Permission to use, copy, modify, and distribute this
00024  * software is freely granted, provided that this notice
00025  * is preserved.
00026  * ====================================================
00027  */
00028 
00029 #ifdef POK_NEEDS_LIBMATH
00030 
00031 /* __kernel_sin( x, y, iy)
00032  * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
00033  * Input x is assumed to be bounded by ~pi/4 in magnitude.
00034  * Input y is the tail of x.
00035  * Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
00036  *
00037  * Algorithm
00038  *      1. Since sin(-x) = -sin(x), we need only to consider positive x.
00039  *      2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0.
00040  *      3. sin(x) is approximated by a polynomial of degree 13 on
00041  *         [0,pi/4]
00042  *                               3            13
00043  *              sin(x) ~ x + S1*x + ... + S6*x
00044  *         where
00045  *
00046  *      |sin(x)         2     4     6     8     10     12  |     -58
00047  *      |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x  +S6*x   )| <= 2
00048  *      |  x                                               |
00049  *
00050  *      4. sin(x+y) = sin(x) + sin'(x')*y
00051  *                  ~ sin(x) + (1-x*x/2)*y
00052  *         For better accuracy, let
00053  *                   3      2      2      2      2
00054  *              r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
00055  *         then                   3    2
00056  *              sin(x) = x + (S1*x + (x *(r-y/2)+y))
00057  */
00058 
00059 #include <libm.h> 
00060 #include "math_private.h"
00061 
00062 static const double
00063 half =  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
00064 S1  = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
00065 S2  =  8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
00066 S3  = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
00067 S4  =  2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
00068 S5  = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
00069 S6  =  1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
00070 
00071 double
00072 __kernel_sin(double x, double y, int iy)
00073 {
00074         double z,r,v;
00075         int32_t ix;
00076         GET_HIGH_WORD(ix,x);
00077         ix &= 0x7fffffff;                       /* high word of x */
00078         if(ix<0x3e400000)                       /* |x| < 2**-27 */
00079            {if((int)x==0) return x;}            /* generate inexact */
00080         z       =  x*x;
00081         v       =  z*x;
00082         r       =  S2+z*(S3+z*(S4+z*(S5+z*S6)));
00083         if(iy==0) return x+v*(S1+z*r);
00084         else      return x-((z*(half*y-v*r)-y)-v*S1);
00085 }
00086 
00087 #endif