POK
/home/jaouen/pok_official/pok/trunk/libpok/libm/e_hypot.c
00001 /*
00002  *                               POK header
00003  * 
00004  * The following file is a part of the POK project. Any modification should
00005  * made according to the POK licence. You CANNOT use this file or a part of
00006  * this file is this part of a file for your own project
00007  *
00008  * For more information on the POK licence, please see our LICENCE FILE
00009  *
00010  * Please follow the coding guidelines described in doc/CODING_GUIDELINES
00011  *
00012  *                                      Copyright (c) 2007-2009 POK team 
00013  *
00014  * Created by julien on Fri Jan 30 14:41:34 2009 
00015  */
00016 
00017 /* @(#)e_hypot.c 5.1 93/09/24 */
00018 /*
00019  * ====================================================
00020  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
00021  *
00022  * Developed at SunPro, a Sun Microsystems, Inc. business.
00023  * Permission to use, copy, modify, and distribute this
00024  * software is freely granted, provided that this notice
00025  * is preserved.
00026  * ====================================================
00027  */
00028 
00029 /* __ieee754_hypot(x,y)
00030  *
00031  * Method :
00032  *      If (assume round-to-nearest) z=x*x+y*y
00033  *      has error less than sqrt(2)/2 ulp, than
00034  *      sqrt(z) has error less than 1 ulp (exercise).
00035  *
00036  *      So, compute sqrt(x*x+y*y) with some care as
00037  *      follows to get the error below 1 ulp:
00038  *
00039  *      Assume x>y>0;
00040  *      (if possible, set rounding to round-to-nearest)
00041  *      1. if x > 2y  use
00042  *              x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
00043  *      where x1 = x with lower 32 bits cleared, x2 = x-x1; else
00044  *      2. if x <= 2y use
00045  *              t1*yy1+((x-y)*(x-y)+(t1*y2+t2*y))
00046  *      where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
00047  *      yy1= y with lower 32 bits chopped, y2 = y-yy1.
00048  *
00049  *      NOTE: scaling may be necessary if some argument is too
00050  *            large or too tiny
00051  *
00052  * Special cases:
00053  *      hypot(x,y) is INF if x or y is +INF or -INF; else
00054  *      hypot(x,y) is NAN if x or y is NAN.
00055  *
00056  * Accuracy:
00057  *      hypot(x,y) returns sqrt(x^2+y^2) with error less
00058  *      than 1 ulps (units in the last place)
00059  */
00060 
00061 #ifdef POK_NEEDS_LIBMATH
00062 
00063 #include "math_private.h"
00064 
00065 double
00066 __ieee754_hypot(double x, double y)
00067 {
00068         double a=x,b=y,t1,t2,yy1,y2,w;
00069         int32_t j,k,ha,hb;
00070 
00071         GET_HIGH_WORD(ha,x);
00072         ha &= 0x7fffffff;
00073         GET_HIGH_WORD(hb,y);
00074         hb &= 0x7fffffff;
00075         if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
00076         SET_HIGH_WORD(a,ha);    /* a <- |a| */
00077         SET_HIGH_WORD(b,hb);    /* b <- |b| */
00078         if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
00079         k=0;
00080         if(ha > 0x5f300000) {   /* a>2**500 */
00081            if(ha >= 0x7ff00000) {       /* Inf or NaN */
00082                uint32_t low;
00083                w = a+b;                 /* for sNaN */
00084                GET_LOW_WORD(low,a);
00085                if(((ha&0xfffff)|low)==0) w = a;
00086                GET_LOW_WORD(low,b);
00087                if(((hb^0x7ff00000)|low)==0) w = b;
00088                return w;
00089            }
00090            /* scale a and b by 2**-600 */
00091            ha -= 0x25800000; hb -= 0x25800000;  k += 600;
00092            SET_HIGH_WORD(a,ha);
00093            SET_HIGH_WORD(b,hb);
00094         }
00095         if(hb < 0x20b00000) {   /* b < 2**-500 */
00096             if(hb <= 0x000fffff) {      /* subnormal b or 0 */
00097                 uint32_t low;
00098                 GET_LOW_WORD(low,b);
00099                 if((hb|low)==0) return a;
00100                 t1=0;
00101                 SET_HIGH_WORD(t1,0x7fd00000);   /* t1=2^1022 */
00102                 b *= t1;
00103                 a *= t1;
00104                 k -= 1022;
00105             } else {            /* scale a and b by 2^600 */
00106                 ha += 0x25800000;       /* a *= 2^600 */
00107                 hb += 0x25800000;       /* b *= 2^600 */
00108                 k -= 600;
00109                 SET_HIGH_WORD(a,ha);
00110                 SET_HIGH_WORD(b,hb);
00111             }
00112         }
00113     /* medium size a and b */
00114         w = a-b;
00115         if (w>b) {
00116             t1 = 0;
00117             SET_HIGH_WORD(t1,ha);
00118             t2 = a-t1;
00119             w  = __ieee754_sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
00120         } else {
00121             a  = a+a;
00122             yy1 = 0;
00123             SET_HIGH_WORD(yy1,hb);
00124             y2 = b - yy1;
00125             t1 = 0;
00126             SET_HIGH_WORD(t1,ha+0x00100000);
00127             t2 = a - t1;
00128             w  = __ieee754_sqrt(t1*yy1-(w*(-w)-(t1*y2+t2*b)));
00129         }
00130         if(k!=0) {
00131             uint32_t high;
00132             t1 = 1.0;
00133             GET_HIGH_WORD(high,t1);
00134             SET_HIGH_WORD(t1,high+(k<<20));
00135             return t1*w;
00136         } else return w;
00137 }
00138 
00139 #endif
00140