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PREFACE.

P

Tugz first thirteen sections of the following
work were written immediately after I ob-
tained my degree. Sensible how imperfectly
qualified I must have then been for the
execution of a work of such extent, I laid
aside the manuseript, in expectation that
some one’of more years, experience, and talent,
would supply what was, and has continued
to.be, a desideratum in science—a complete
and uniform system of Algebraic Geometry.
After the lapse of several years, no work of
this description having been announced, I
again resumed my labours with increased ex-
perience and knowledge, and therefore with
increased confidence.

The part of the work now published has
been submitted to the best test by which an
elementary treatise can be estimated, the pur-
poses of instruction. Such  alterations have
been made as were suggested, and it is hoped
that the treatise, as it now stands, will be
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found properly adapted to initiate students
in' the elements of the science.

Such principles of algebra as are assumed
in the text, and not to be found in the com-
mon elementary treatises in our language,
have been explained and proved in the notes.
In these the student will also find a con-
siderable portion of historical information re-
specting the invention and progressive im-
provement of the different parts of geometry
which fall under his consideration throughout
the work, and other matter which, if intro-
duced into the text, would have broken its
uniformity.

Those who are acquainted with foreign
works on this subject will easily estimate the
extent of my claims on the score of originality.
Much new matter is not to be looked for at
this period in any elementary work, and there-
fore one may justly assume a double portion
of credit for whatever may be found. Con-
siderable improvement will be perceived in
the method and arrangement. The formulze
which have been given by other writers are
rendered more gencral, and therefore more
prolific in results, and more symmetrical in
form., A very considerable portion of the ex-
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amples and illustrations, both geometrical and
physical, will, I believe, be found to be ori-
ginal. The transformation  of co-ordinates,
which is in general so operose, and which is
the mean ordinarily used for discovering the
properties of curves, is very sparingly intro-
duced, most of the properties being dis-
covered without it with more clearness and
facility.

I have been very attentive in supplying a
defect which exists in every treatise on the
subject which I have ever seen, a total want
of examples illustrative of the application
of the abstract rules and principles of the
science. This deficiency prevails, without a
single exception, in all the continental writers.
Some will, perhaps, be of opinion that I have
fallen into the opposite extreme, and given
too much illustration. To this I have only
to answer, that in this science the illustrations
and examples are not confined in their effect
merely to the practice they afford in the
analytic art, but that they also store the mind
with independent geometrical and physical
knowledge. Besides, it should be considered,
that the only effectual method of impressing
abstract formulee and rules upon the memory,
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and, indeed, of making them fully and clearly
-apprehended by the understanding, is by ex-
amples of their practical application. The
quantity of examples necessary to make the
mind grasp any general principle is different
according to the various degrees of talent. A
sufficiency, at least, should be given for stu-
dents of very moderate capacity. It will be
much more easy for those of superior parts to
omit what they shall feel superfluous, than
for those, whose talents are of a lower stand-
ard, to supply what they might find deficient.

The title « Algebraic Geometry” has been
preferred to either of the titles, Analytic
Geometry” or ¢ the Application of Algebra
to Geometry,” because the one is equivocal,
and the other circumloeutory. The use of the
transcendental analysis has been brought as
an objection to the present title. I-do not,
however, think this a sufficient reason for
rejecting it.

It is but justice to myself to state a cir-
cumstance which, though it cannot affect the
intrinsic excellence of this work, if it have any,
yet must materially influence the estimation
in which its author will be held by the reader.
During most of the period in which I have



PREFACE. ix

been employed upon the present treatise,
from eight to ten hours daily of my time were
occupied in the labours of instruction: so
that this work may truly be said to be the
result of a few spare hours, and these always
hours of fatigue both of body and mind. This
I hope will plead, my apology for any over-
sights which may be found throughout the
work, of which probably there are not a few.

The typographical errors have been very
carefully collected in the errata. Their number
has been principally caused by the circum-
stance of my residence in a different country,
and nearly four hundred miles from London,
where I have found it expedient to publish
the work. The difficulties of transmitting
the proof sheets for correction with sufficient
punctuality and despatch were very great.
These difficulties would have been nearly in-
surmountable, owing to the enormous charges
of the post-office, were it not for the kindness
and attention of some members of parliament,
through whom the necessary correspondence
with the publishers in London was conducted.






INTRODUCTION.

GEOMETRY, in its most extensive sense, is the
science whose object is the investigation of the
properties of figure. Figure* is the mutual re-
lation of the limits of space among each other. It
is therefore an affection of lines and surfaces; lines
being the limits of superficial, and surfaces those
of solid space. The ideas expressed by the terms
line and surface admit no definition, and for
the same cause require none{. They are con-

# « Figure is the relation which the parts of the termination of
extension, or circumscribed space, have amongst themselves.”—
Locke.

+ Although the abstract terms line, and surface, admit no
definition, yet their species, with the exception of right lines
and plane surfaces, do; these, being simple ideas, are un-
definable.

¢« The several terms of a definition, signifying several ideas,.
they can altogether by no means represent an idea, which
has no composition at all; and therefore a definition, which is
properly nothing but the showing the meaning of one word by
several others, not signifying each the same thing, can, in the
names of simple ideas, have no place.”—LocxkE.

D’Alembert entertains a different opinion on the necessity of
defining those terms, and yet, at the same time, seems to admit
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ceptions so simple and obvious, that any necessity
of explaining them is superseded by an appeal
to the senses. It is only necessary to observe,
that the term solid is used without any reference
to body, merely to signify the space which a solid
body might occupy. Lines and surfaces are sub-
divided into numerous classes, marked by various
characteristic properties.

The first division of lines is into straight lines
and curves, and of surfaces into plane and curved.
Straight lines and plane surfaces admit no further
subdivision, for they are without any variety.
One indefinite straight line is so applicable to any

its impossibility. He, however, thinks a bad definition better
than none.

¢ Nous ne pretendons pas pour cela qu’on doive supprimer des
elemens de geometrie les definitions de la surface plane et de
la ligne droite. Ces definitions sont necessaires; car on ne
sauroit connoitre les propriétés des lignes droites et des surfaces
planes sans parler de quelque propriété simple des ces lignes et
des ces surfaces qui puisse étre appergue 4 la premiere vue de
Iesprit, et par consequent &tre prise pour leur definition. Ainsi
on definit la ligne droite, la ligne la plus courte qu'on puisse
mener d’un point & un autre; et la surface plane, celle a la-
quelle une ligne droite se peut appliquer en tout sens. Mais ces
deux definitions, quoique peut-&tre preferable & toutes celles
qu’on pourroit imaginer, ne renferment pas I'idée primitive
que nous nous formons de la ligne droite et de lasurface plane,
T'idée si simple et pour ainsi dire, si indivisible et si une, qu'une
definition ne peut la rendre plus claire, soit par la nature
de cette idée méme, soit par l'imperfection du langage.”—
D’ALEMBERT.
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other as perfectly to coincide with it, so that, in
effect, the two lines will become one. Straight
lines, then, can differ one from another only in
magnitude and position; but the figure of all
straight lines must be the same, and they must
therefore possess the same properties. Similar
observations apply with equal force to plane sur-
faces. This, however, is not the case with curves
and curved surfaces. Each of these classes con-
tains an endless variety of species, the investiga-
tion of the properties of which is the business
of the geometer. A more particular subdivision
will, however, be necessary before proceeding to
the discovery of these properties.

Lines may always be conceived to be described
upon surfaces. Under this point of view, curves re-
solve themselves into two classes. The first em-
braces those whose points, all situate in the same
plane, may be conceived to be described upon a
plane surface ; and the second, those whose points
not lying in the same plane, can only be conceived
to be described upon a curved surface. The former
are called plane curves, and the latter curves of
double curvature. The investigation of curved
surfaces involves necessarily the nature and pro-
perties of curves of double curvature, and there-
fore the whole range of geometry may be divided
into two principal parts :

Tue GeoMETRY oF PrANE CuURrvES, and
Tue GEoMETRY oF CURVED SURFACES.
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In conformity with this, the following treatise is
divided into two parts, under these denominations.

The first part might naturally be called plane
geometry. Names, however, are invented, not
after knowledge has reached its full extent, but in
its progress to that state. After the limits of a
science have been extended by the gradual ac-
cession of discoveries, terms are always to be
found which are used in a much more confined
sense than they might admit of ; because their in-
ventors, unacquainted with the extent which lay
undiscovered, only applied them to the parts then
known; and the difficulty and inconvenience
which always attend the alteration of received
names induced their successors to invent new
terms rather than disturb the accepted sense of
the old ones. To this cause the very limited
sense of the term, plane geometry, must be at-
tributed.

In the earliest infancy of the science, its limits
were confined to the properties of rectilinear
figures, or rather to the properties of triangles,
into which all rectilinear figures may be resolved.
The circle probably served at first as a mere in-
strument in the construction of rectilinear pro-
blems. The properties of this curve, however,
soon became the object of investigation, and were
discovered in a very early stage of the science.
The right line and circle terminated the inquiries
of the first geometers with respect to lines. They
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next turned their views to surfaces, and in these
they confined themselves to those generated by
the revolution of an angle round the line which
bisects it, a rectangle round one of its sides, and
a circle round ome of its diameters. They thus
acquired the notions and investigated the pro-
perties of cones, cylinders, and spheres. They
accordingly divided their geometry into two parts,
called plane and solid geometry.

The term plane geometry is still used in the
same sense, and is so much of the geometry of
plane curves as includes the right line and circle.
In plane geometry, treated according to the an-
cient method, nothing is permitted to be done
but what may be effected by a rule and compass,
and nothing is allowed to be true without proof,
except a few simple and general propositions
called axioms, and prefixed by Euclid to his Ele-
ments. On these axioms, and on the definitions,
the whole structure of plane geometry rests.

The science continued within these limits until
the time of Plato, about four hundred years before
the Christian era. The institution of the Pla-
tonic School forms a most striking epoch in the
progress of geometry. In it originated the
conic sections, the geometrical analysis, ,geo-
metric loci, and the discussion of the celebrated
problems of the duplication of the cube, and the
trisection of an angle. The geometers of this
school, finding that the ingenuity of their pre-
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decessors had nearly exhausted plane and solid
geometry as they had descended to them, con-
trived, by the combination of these sciences, to
produce new subjects for speculation. They con-
ceived a conical surface intersected by a plane,
and a line traced upon the plane by the points
common to it, and the surface of the cone. Hence
arose the conic sections, the properties of which
have employed the talents of geometers from that
time to the present, and which have been since
discovered to be the lines traced by the planets
and comets in their revolutions round the sun,
their common centre of attraction. These are the
first curves to which the attention of the student is
directed in the following work, though defined in
a different manner, and conformably to the ge-
neral system which has been adopted.

The invention of the geometric analysis, besides
its intrinsic excellence, has the additional interest
arising from our knowledge that it is the invention
of Plato himself. The other discoveries are known
to have originated in the Platonic school, but we
have no authentic record to prove their particular
inventors. It does not appear that Plato wrote
any work purely mathematical. The authority
of Proclus, however, proves him the inventor
of the geometrical analysis. Any geometrical
question, whether problem or theorem, being
submitted to analysis, is assumed as solved if it
be a problem, and as true if a theorem. From
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this assumption a chain of consequences is drawn,
which, by the ingenuity of the geometer, is con-
tinued until he arrives at some proposition known
to be true or false, if the question be a theorem ;
possible or impossible if it be a problem. The
final consequence points out whether the question
be true or possible, and, by retracing the steps, a
synthetical proof or solution may be found.

Geometric loci in the Platonic school were
conceived to be produced by indeterminate geo-
metrical problems in the manner explained in the
commencement of the following treatise. The
principal use to which they were applied by the
ancients was the solution of determinate problems,
by the intersection of two loci determined by in-
determinate problems. To give a very simple
instance ; if the problem to be solved be the de-
termination of a triangle, whose base, area, and
ratio of sides are given, the problem is resolved
by the intersection of a right line and circle ; the
former the locus of the vertex, where the base
and area are given, and the latter its locus when
the base and ratio of sides are given.

The celebrated problem of the duplication of
the cube was solved mechanically by Plato. Me-
nechme, a pupil of his, solved the same problem
by the intersection of two parabole ¥, and by the

* See art. 585.
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intersection of a parabola and hyperbola. This
was one of the first applications of geometric loci
to the solution of determinate problems.

Geometers next began to extend their in-
vestigations to the discovery of the lengths of
curves, and the areas contained by them. This
gave birth to the Method of Exhaustions, the most
refined and subtle invention of the ancients. In
this method, which was employed with such ad-
mirable ingenuity and address by Archimedes,
and by the use of which he effected most of his
discoveries in geometry, we may, by minute at-
tention, observe the germ of the differential and
integral calculus. This, however, must only be
understood of the metaphysical principle of that
wonderful science; for in their application to
geometry, to say nothing of the physical and al-
gebraical sciences, the powers of the calculus are
far beyond those of the ancient method.

By the Method of Exhaustions, the lengths
and areas of curves were compared, by comparing
those of inscribed and circumscribed rectilinear
figures. As the number of sides are increased,
the differences between the figures, and therefore,
a fortiori, between each of them and the curve, are
continually diminished. It is always possible so
to multiply the number of sides, that these dif-
ferences shall be made less than any assignable
magnitude. Under these circumstances, any pro-
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perty of the rectilinear figures which is inde-
pendent of the number of their sides will be
also a property of the curves. This would ap-
pear to a modern geometer sufficiently evident,
but the ancients were more fastidious, and to
remove all possibility of ‘objection, they con-
firmed the proof in every particular instance, by
an argument ex absurdo.

Although the ancients passed the limits of
plane geometry, yet, from the nature of the
method of exhaustions, all their demonstrations
were tedious and elaborate. When we enter upon
the investigation of any curve beyond the circle,
by this method, we are perpetually embarrassed,
not with the difficulties of the subject, but with
the inadequacy of the method, the insufficiency of
which is supplied at the expense of an immense
quantity of valuable time and talent.

- From the time of Archimedes, Apollonius,
Conon, Nicomedes, and Diocles, who lived about
three centuries before the Christian era, until the
seventeenth-century, an interval of two thousand
years, geometry made no considerable progress. In
the year 1637 Descartes published his Geometrie.
This work disclosed to the world his discovery of
the application of algebra to geometry, which
vanquished a great number of the difficulties
which had so long impeded the progress of that

science. In assigning to Descartes the entire
b2
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honour of the invention of Algebraic Geometry,
it is not meant that no mathematician before him
had applied algebra to the resolution of geome-
trical questions. On the contrary, we find many
such applications in the algebra of Bombelli, an
algebraist, nearly contemporary with Cardan, and
also in the works of Tartaglia, a mathematician of
the early part of the sixteenth century, and even
so far back as the time of Regiomontanus; but
more particularly in the works of Vieta. The
general method of representing curves by equa-
tions between two unknown quantities, and thence
deducing their various properties by algebraic
operations performed upon these equations, was,
however, unquestionably the invention of Des-
cartes.

This discovery suggested itself to Descartes in
the investigation of the following problem, which
had. been attempted without success by several
ancient geometers; among others by Euclid,
Apollonius, and Pappus. ¢ To determine a point
upon a given plane, from which, if a number of
right lines be drawn, inclined at given angles, to as
many right lines given in position, the continued
product of half the number of lines so drawn, shall
bear a given ratio to the continued product of the
remaining lines, if their number be even, and so
that the continued product of half their number
diminished by one, shall bear a given ratio to the
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continued product of the remaining lines, if their
number be odd. Thus, if » be the number of

lines so drawn, the continued product of % of

these shall bear a given ratio to the product of
the remaining lines, if # be even, and so that the

continued product of ”-%l of them shall bear a

given ratio to the continued product of the re-
maining lines, if # be odd.”” Descartes observed
that the problem was indeterminate, and that an
infinite number of such points might be found;
in other words, that the solution of the problem
was not effected by a point, but by a curve which
might be considered as the locus of the sought
point. He also found that all these points were
related to the lines given in position, and to the
given angles by one common relation, which he
expressed by an equation composed of constant
quantities, representing the several data of the pro-
posed problem, and which therefore are supposed
to remain the same, however the sought point
may vary its position, and two variable quantities
representing lines, the magnitudes of which de-
pending on the position of the sought point,
change as it changes. The sought point passing
through its various positions being supposed to
describe the locus, he assumed this equation to
represent the curve; for, any value being as-
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signed to one of the variables, the equation solved
for the other determines a point of the locus. It
is not difficult to conceive one of the variables
uniformly and continually to change its mag-
nitude, and the other at the same time to undergo
such a continuous change of magnitude, that the
condition of the equation will always continue to
be satisfied; the generating point will thus, by
continued motion, trace out the locus.

Descartes perceiving the importance and power
of the principle which he used in this solution,
immediately conceived the notion of founding
upon it the whole geometry of curve lines. By
this felicitous application of equations of two un-
known quantities, the science of geometry was
utterly revolutionised. Every curve described by
any given law being expressed by an equation
between two variables deducible from that law,
was thus brought under the dominion of algebra.
This equation, including the essence of the curve,
its various properties flowed from it; its different
branches, the limits of its course ; its asymptotes,
diameters, centres; inflections, cusps, and, in a
word, all its affections he found to be algebraically
deducible from its equation. Thus the equation
may be considered as a short formula in which all
the properties of the curve are embodied, and
from which the analyst is always able to deduce
them by fixed and general rules, which are not
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peculiar to the equation of any particular curve,
but indifferently applicable to those of all curves.

The immediate consequence of this memorable
discovery was, that geometry at once oversprang
the narrow limits which had circumscribed it for
ages, and took a range, the extent of which is
literally infinite. Instead of a few simple and
particular curves, which had hitherto constituted
the only objects of the science, the geometer dis-
cussed the properties of whole classes of cuarves,
distinguished and arranged according to the de-
grees of the equations which represent them.
The variety of curves thus became as infinite as
that of equations. The ancient geometry pro-
ceeded upon no general methods. It consisted
of scattered propositions arbitrarily put together,
connected by no necessary tie or general law.
The discovery of each particular property there-
fore cost the geometer a distinct effort of in-
vention, and demanded a separate expenditure of
intellectual energy; and, even when successful,
he was as often indebted to chance as to his own
sagacity. 'Thus, for example, their method of
drawing a tangent to one curve furnished no clue
which could lead to the solution of the same pro-
blem with another curve, and therefore the geo-
meter was beset with the same difficulties every
new curve he approached. The application of
algebra at once removed these defects. It de-
termined uniform and general rules for the in-
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vestigation of the properties of every curve what-
ever. Nay, it did not alone assist the operation
of the reasoning faculty, but actually supplied the
place of invention by furnishing means of dis-
covering curves in infinite variety. No equation
between two unknown quantities can be proposed
but a corresponding curve is immediately dis-
coverable, whose mnature and properties afford
matter for geometrical speculation.

To algebra we are indebted for the classification
of curves in different orders, forming, says Cramer,
a sort of geometrical arsenal, where the imple-
ments of the science are so arranged, that, with-
out hesitation, we can choose whichever may be
best adapted to the resolution of any proposed
problem.

Notwithstanding the extent and importance of
the invention of Descartes, something still re-
mained to be done before geometry could be con-
sidered to have reached that perfection of which
it seemed susceptible. No method had been
given by Descartes for the discovery of the
lengths and areas of curves; problems, known by
the names rectification and quadrature. Rectifica-
tion had even been by some geometers considered
impossible. Quadrature had been effected only
in a very few instances. Archimedes had effected
that of the parabola, and given an approximation
to that of the circle. Besides these deficiencies,
the method of drawing tangents, given by Des-
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cartes, although general, was, in many cases, at-
tended with considerable difficulties, and required
frequently the resolution of equations of the higher
orders. A very short period, however, gave to
the world a science which removed these dif-
ficulties, and may justly be considered to have
brought geometry to a state little short of positive
perfection.

The investigations which had arisen from the
invention of Descartes, directed the attention of
all the great geometers of the world to the dis-
covery of a general method of drawing tangents
to curves, which should be free from the objections
to which both the methods * which Descartes had
delivered were liable. Fermat, Roberval, Barrow,
Sluze, and others, severally attempted the general
solution of this problem without complete suc-
cess. Their methods were operose, frequently
impracticable, and never applicable to transcen-
dental curves in general. Although the essays of
these geometers did not subdue the difficulties of
the problem, yet every new attempt shed ad-
ditional light upon the subject, and gradually
facilitated the solution. At length attentive con-
sideration of the subject conducted two great
geometers to the discovery of the true and ge-
neral principles upon which all such problems de-
pended.

Newton and Leibnitz each claim the honour of

* See note on art. 132.
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the discovery of the Fluxionary or Differential
Calculus, which at once presentéd easy and ge-
neral methods for the solution of all problems of
tangents, rectification, and quadrature. The in-
vention of this science, unquestionably the most
splendid conception the human mind ever enter-
tained, whether we regard the nature of the
science itself, or the extent, variety, and im--
portance of its applications, was too grand an
achievement of genius not to rouse the ambition
even of the greatest men to claim the credit of it.
The mathematicians of the continent, on the part
of Leibnitz, and those of England, on the part of
Newton, each advanced their claims, and hence
arose the greatest and most protracted contest
which ever agitated the philosophical world. With
the exception of Newton himself, the parties dis-
played on both sides a degree of asperity and per-
sonal acrimony very inconsistent with the dignity
of the prize for which they contended.

Without entering into any detail of the par-
ticulars of this memorable scientific war, we shall
merely observe, that in its commencement, Leib-
nitz appealed to the Royal Society for justice for
the injuries done to his fame by the British ma-
thematicians ; upon which the Society appointed
a committee to examine into and report upon the
rights of the illustrious candidates for the in-
vention of the Calculus. Their report was pub-
lished in 1712, under the title ¢ Commercium



INTRODUCTION. XXVii

Epistolicum D. Johannis Collins et aliorum de Ana-
lysi promotd.” The principal part of this pub-
lication consists of extracts from a correspondence
between Newton, Barrow, Gregory, Wallis, Keil,
Collins, Leibnitz, Oldenburg, Sluze, and others.
Upon this correspondence, the committee re-
ported as follows :—

I. < That Mr. Leibnitz was in London in the
beginning of the year 1673; and went thence in
or about March to Paris, where he kept a corre-
spondence with Mr. Collins, by means of Mr. Ol-
denburg, till about September, 1676, and thence
returned by London and Amsterdam to Hanover :
and that Mr. Collins was very free in communi-
cating to able mathematicians what he had re-
ceived from Mr. Newton and Mr. Gregory.

IL. < That when Mr. Leibnitz was the first time
in London, he contended for the invention of an-
other differential method, properly so called ; and,
notwithstanding that he was shown by Dr. Pell
that it was Mouton’s method, persisted in main-
taining it to be his own invention, by reason that
he had found it by himself without knowing what
Mouton had done before, and had much improved
it. And we find no mention of his having any
other differential method than Mouton’s before
his letter of the 21st of June, 1677, which was a
year after a copy of Mr. Newton’s letter of the
10th of December, 1672, had been sent to Paris
to be communicated to him, and above four years
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after Mr. Collins began to communicate that letter
to his correspondents ; in which letter the method
of Fluxions was sufficiently described to any in-
telligent person.

IIL. ¢ That by Mr. Newton’s letter of the 13th
of June, 1676, it appears that he had the method
of Fluxions above five years before the writing of
that letter. And by his Adnalysis per equationes
numero terminorum infinitas, communicated by Dr.
Barrow to Mr. Collins in July, 1669, we find that
he had invented the method before that time.

IV. ¢« That the differential method is one and
the same with the method of Fluxions, excepting
the name and mode of notation; Mr. Leibnitz
calling those quantities differences, which Mr.
Newton calls Moments or Fluxions, and marking
them with the letter d, a mark not used by Mr.
Newton. And therefore we take the proper
question to be, not who invented this or that
method, but who was the first inventor of the
method. And we believe that those who have
reputed Mr. Leibnitz the first inventor knew
little or mnothing of his correspondence with
Mzr. Collins and Mr. Oldenburg long before ; nor
of Mr. Newton’s having that method above fifteen
years before Mr. Leibnitz began to publish it in
the Acta Eruditorum of Leipsic.

¢ For which reason we reckon Mr. Newton the
first inventor; and are of opinion that Mr. Kiel,
in asserting the same, has been no ways injurious
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to Mr. Leibnitz. And we submit to the judgment
of the Society, whether the extract and papers
now presented to you, together with what is ex-
tant to the same purpose in Dr. Wallis’s third
volume, may not deserve to be made public.”
The foreign mathematicians, as might be ex-
pected, were by no means satisfied of the justice
of this decision, in which it was more than in-
sinuated that Leibnitz was guilty of a disgraceful
theft. Even to the present day a difference of
opinion on the subject exists, and the fire of party
zeal is far from being extinct. The foreign
writers generally contend that Leibnitz has the
merit of the invention, though some of them, at
the same time, allow that Newton was acquainted
with its principles first, although he did not
disclose them to the world. Bossut insinuates
that Newton, being president of the Royal Society,
must necessarily have had a strong influence on
this report; also, that it was made ex parte, and
that its publication was hastened to avoid intro-
ducing a defence which Leibnitz had in pre-
paration. The foreign writers, in general, strongly
deny the fact, that the principles of Newton’s
method, or any hints which could lead to them,
are contained in the letters and papers alluded to in
the report, and published with it. Montucla, one
of the most candid of the French writers on the
subject, says,  On ne peut douter que Newton
ne soit le premier inventeur des calculs dont il
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s’agit. Les preuves en sont plus claires que
le jour; mais Leibnitz est-il coupable d’avoir
publié comme sienne une decouverte qu’il
auroit puisée dans les écrits méme de Newton.”
At the same time he insists upon the injustice of
Newton to Leibnitz, in suppressing in the edition
of the Principia, published in 1726, a scholium
which appeared in the former edition, in which
Newton is alleged to have allowed Leibnitz the
merit of the invention. He also accuses Newton
of having been secretly the author of the notes
which accompany the Commerciam Epistolicum.
One of the latest attempts to keep the discord
of the scientific world alive upon this subject, is
the preface to the last edition of Lacroix’s 7raifé
du Calcul Differentiel et Integral, repeating again
all the former arguments on the subject, except
those on which the claims of Newton are founded.
He observes, « L’exposé fidéle que je viens de faire
de la naissance du Calcul Differentiel, d’apres le
Commercium Epistolicum, imprimé par ordre de
la Société Royale de Londres, ne peut laisser
aucune doute sur les droits incontestable de Leib-
nitz A la decouverte de ce calcul ; et comme il est
le premier qui Pait rendue publique, tandis que
Newton, preferant son repos 2 sa gloire et A I'in-
terét de ses contemporains, semblait avoir oubli¢
sa methode, n’est-il pas aussi celui qu’on doit
nommer le premier dans cette decouverte ?”’
Although there certainly still exists a difference
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of opinion as to the proportion of the merit of the
discovery to be allotted to each of these illustrious
claimants, yet, it seems to be generally agreed, that
a proportion is due to each. It is generally acknow-
ledged that, although Newton did not promulge
the method of Fluxions, yet that he has the
priority as to the invention. Even some of the
partisans of Leibnitz do not dispute this. On the
other hand, Leibnitz first gave formal publication
to the calculus. His notation also is'very superior
to that of fluxions—so much so, that even in these
countries it has nearly superseded it.

The first subject on which this surprising science
began to work its wonders was geometry. FPro-
blems, which solved by the ancient methods, or
even by those of Descartes, were tedious and em-
barrassing, were solved by the dash of a pen.
Problems which had foiled the talents of Archi-
medes, eluded the sagacity of Apollonius, and
under which, even the method of Descartes sunk
powerless, yielded with the utmost facility to the
new calculus. By the uniformity and generality
of its processes, it rendered geometry at once an
imposing and magnificent edifice, raised upon a
solid foundation, displaying an unity of design, a
justness of proportion, and a stability of structure,
which would strike an ancient geometer with
astonishment and admiration, were he to rise
from the tomb to behold it *.

% 8i les deux plus grands géométres de Pantiquité, Archi-
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From the date of its discovery to the present
day, the calculus has been rapidly advancing to-
wards perfection under the hands of the great
mathematicians of Europe, who have devoted
their talents to its improvement. Every impulse
given to the advancement of this science has pro-
duced a corresponding impression upon the other
parts of mathematics and physics, but on none
more perceptibly than Geometry. This branch
of mathematics is largely indebted to the calculus.
It owes to the integral calculus all solutions relative
to rectification and quadrature, and to the dif-
ferential calculus, the general method of tangents,
the general principles of contact and osculation,
the methods of detecting singular points, and its
entire power over transcendental curves.

One of the most remarkable circumstances at-
tending the progress of Geometry is the different
routes pursued by the British and foreign geo-
meters since the time of Newton. That great
man entertained a strong predilection in favour of
the ancient geometrical methods. A stronger
proof of this cannot be offered than his having
discovered, by the aid of the modern analytic
and fluxionary calculus, most of those wonderful

médes et Apollonius, pouvaient revivre, ils seraient eux-mémes
frappés d'etonnement et de I'admiration, en contemplant les
progrés que les sciences exactes ont faits depuis leur temps
jusq'au notre & travers des siecles barbares qui ont tant de fois
interrompu la marche du genie.—Bossur.
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truths communicated to the world in his Prin-
crria 3 and yet presented them in all the repelling
tediousness and circuitous complexity of the an-
cient geometry.

The method followed throughout this stupendous
work is such, as to induce foreign mathematicians
to ascribe the adoption of'it to motives which could
never have influenced a mind like Newton’s. ¢ La
clef des plus difficiles problemes,” says Bossut,
“ qui y sont resolus est la methode des fluxions ou
Panalyse infinitesimale, mais presentée sous un
forme moins simple qui rendait I’ouvrage penible &
suivre. Aussin’eut il d’abord tout les succes qu’il
meritait; on y trouva de Pobscurité des demon-
strations puisées dans des sources trop detournées,
un usage, trop affecté de la methode synthetique
des anciens tandis que I’analyse aurait beaucoup
mieux fait connaitre ’esprit et le progres de I’in-
vention. L’extreme concision de quelques en-
droits fit penser ou que Newton doué d’un sa-
gacité extraordinaire avoit un peu trop presumé
de la penetration de ses lecteurs ; ou que par une
faiblesse dont les plus grandes hommes ne sont
pas toujours exempts il avoit cherché & surprendre
un admiration qui le vulgaire accord facilement
aux choses qui passent ou fatiguent son intel-
ligence.” Alluding to the superiority of the mo-
dern analysis over the ancient methods, D’Alem-
bert says, ‘¢ Peut étre serons nous contredits ici
par les Anglois grands partisans de la Geometrie

c
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Ancienne sur la foi de Newton qui la louoit et
qui s’en servoit pour cacher sa route en employant
’analyse pour se conduire lui méme.”” Though
no one knowing the character of Newton can,
for a momenf, assent to these imputations; yet,
it is much to be regretted, that through an ill-
founded prejudice, he should ever have given oc-
casion to them.

In the hands of Newton the powers of the
ancient geometry were extended to their extreme
limit. Supplying their inadequacy by his own
sagacity, Archimedes had previously astonished
the scientific world by what he made them effect.
But even Archimedes would shrink from the com-
petition, if he beheld the miracles wrought by the
more than human genius of Newton, with the
same feeble instruments, very little improved.
Deeply impressed with the wonders they thus
beheld effected and guided by his avowed judg-
ment, the English schools of science, until a few
years since, have uniformly pursued the ancient
geometrical methods. The consequence has been,
that the progress of mathematical science has been
much slower in Great Britain than elsewhere.
At the death of Newton, Geometry had done all
that geometry could do, and the highest efforts
of human talent could stretch its powers no
farther. The students at our universities have
traversed the same ground in every direction
again and again. Ingenuity has been exhausted
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in supplying them with employment by the in-
vention of collections of contemptible geometrical
quibbles for their solution, which possess no other
excellence than their difficulty. Instead of ex-
panding the mind and invigorating the intellect,
presenting enlarged views, extended and general
theories, and storing the memory with useful and
elevating knowledge, they confer very little benefit
but what may justly be called geometrical trick.
While the schools of Great Britain were thus
wasting the splendid abilities by which they have
ever been distinguished, on objects so unworthy
of them, and throwing away the golden oppor-
tunities of honour which the progressive improve-
ment of analysis each year presented, far different
were the objects which exercised the rest of the
learned world. The Algebraic and Transcendental
Analysis were embraced with eagerness, and pro-
moted with rapidity. Every year witnessed new
accessions to these sciences, and consequent ad-
vancements in geometrical and physical know-
ledge. Impelled by these powerful engines, the
Newtonian philosophy, which at home stood nearly
where its illustrious founder had left it, abroad
advanced with the speed of light, and we find the
result of the various improvements it has received
up to the present day in the great work of Laplace.
The immense advantage thus gained upon us
by the philosophers of Europe in mathematical

and physical science became at length too ap-
c2
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parent to be longer overlooked. The university
of Cambridge was the first to begin the reforma-
tion. 'The works of Euler, and the French ma-
thematicians Laplace, Lagrange, Lacroix, and
numerous others, were introduced and studied
with activity. The notation of fluxions and fluents
was superseded by the more elegant and powerful
algorithm of the Differential and Integral Calculus.
Students, who hitherto seldom had courage to
labour through more than a few sections of the
Princiria, were now becoming familiar with the
pages of Laplace and Lagrange. That the change
effected in this great national institution is deep,
radical, and permanent, we have public proofs
in the works of Herscheli, Woodhouse, Babbage,
Peacock, and Whewell.

The university of Dublin, though later in adopt-
ing these measures of improvement, has not been
less vigorous in their prosecution, and will soon ac-
company her British sister passibus wquis. There is
something worthy of notice in the circumstances
attending the introduction of what is called the
“new science” into this university. Great changes
in the literary and scientific arrangements of an
extensive institution are generally slowly effected,
and produced by a combination of the industry
and talents of a number of individuals co-operating
for the attainment of the same end. In this in-
stance, however, the revolution was great, rapid,
and the work of one man. About the year 1811,
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Dr. Bartholomew Lloyd, then a junior fellow, was
elected to the professorship of mathematics. The
state in which he found the knowledge of that
science amongst the students, and, indeed, the
state in which it had remained for a century, was
nearly as follows.

Students in Dublin must be four years in the
university before they become candidates for the
degree of bachelor. Of this time, ten months
were spent in the acquisition of the first, second,
third, and sixth books of Euclid. These con-
stituted the entire mathematical knowledge ex-
pected even from the candidates for the highest
academical honours. A short selection of me-
chanics, taken from an old treatise by Helsham,
accompanied by a popular introductory pamphlet
to Natural Philosophy (both replete with errors),
a very few of the first elementary principles of
optics, and a selection from Keil’s Astronomy,
gave the under graduate employment for twelve
months. The remainder of the course (two years
and two months) was divided between the ancient
and modern Logic, and the Ethics of Cicero and
Burlemaqui. Such was the state of the under-
graduate course. 'The mathematical and physical
knowledge requisite in candidates for fellowships,
the situations of highest honour and emolument
in the university, consisted of Newton’s Arith-
metic, the properties of Conic Sections geome-
trically, Solid Geometry, Keil’s Trigonometry,
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Newton’s Optics, and a selection from the Prin-
creia; Maclaurin’s Fluxions were touched upon,
but with reserve. Such was actually the state
of scientific knowledge in this national academy
about the year 1812.

Such a course of study might have been very
proper in the university of Dublin in the year
1712 ; but in the year 1812, with the accumulated
discoveries of a century, the various scientific
establishments of Great Britain and the continent
all actively cultivating physical and mathematical
science in their most improved state, the con-
tinuance of such a system must have been con-
sidered disgraceful. Deeply impressed with this
feeling, Dr. Lloyd, singly and unassisted, con-
ceived and executed the most important and rapid
revolution ever effected in the details of a great
public institution. In order to appreciate the
benefits derived from his exertions, it will be only
necessary to compare the state of science already
described, with its state in the present year 1822,
Among the under-graduates, those who now look
for high academical honours read the works of
Cagnioli and Woodhouse on Trigonometry, Brink-
ley’s Astronomy, a course of Algebraic Geometry,
equivalent to the extent of the first part of the
present treatise, the Elementary Treatise of La-
croix on the Differential, and part of that on the
Integral Calculus; with Peacock’s examples as a
praxis ; a selection from the Mecanique of Poisson,
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including the Statics, the Dynamical principle of
D’Alembert, with its various applications; the
theory of the moments of inertia, the motion of a
body round a fixed axis, and most of the Hydro-
namics ; also the subject of the first seventeen
propositions, and the seventh section of the Prin-
creia, and the theory of projectiles in wvacuo, all
treated analytically.

The course of science read by the candidates
for fellowships has also advanced, but not nearly
in the same proportion ; and it is to be feared, that,
until some change takes place in the manner of
conducting the examination for fellowships, there
can be little hope of improvement. This is a
vivd voce examination held in the Latin language.
The object being to ascertain the knowledge which
the candidates have acquired in the different de-
partments of science and literature, it would ap-
pear that the medium of communication between
the examiners and candidates ought to be that
which would be most readily and clearly appre-
hended by both, and, therefore, that the English
language would be much preferable to any other.
TFor whatever facility may be acquired in speaking
a foreign, not to mention a dead language, no
one will have the hardihood to assert that it can
ever be spoken as freely and fluently as our
native tongue. Waving, however, for a moment
the objection to the language, concerning which
there may possibly exist some difference of opi-
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nion, what reason can be given for the exclusion
of writing? Will it be credited abroad, that in
the university of Dublin, at the election of fel-
lows, there is actually held an oral examination
in physics and mathematics, without any use
whatever of writing? The development of a
function by the theorems of Taylor or Lagrange,
or the integration of a differential equation effected
vivd voce, and in Latin, are probably phenomena
new to the learned world! It is unnecessary to
extend our observations on this subject further, as
its absurdity is so very apparent, that the strongest
exposure which can be given to it is a simple
statement of the fact.

It has been attempted here to present to the
student a very brief sketch of the history of geo-
metry to the present day. That the analytical
methods have been almost universally adopted by
the moderns in all questions which pass the mere
elements of geometry is undeniable. At the same
time, however, it is fair to state, that in Great
Britain the ancient geometry is not altogether
without some remaining partisans, who, in spite of
the many proofs of'its inefficiency, and in opposition
to the judgment of the great mass of scientific
talent of Europe, wish to found upon its principles
the whole theory of curve lines. To show how
vain such an attempt must prove, it is only ne-
cessary to examine how far it has succeeded, even
when seconded by talents of the first order. Pro-
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fessor Leslie has lately published a work upon the
Geometry of Curve Lines, which runs in some
measure parallel with the present, and in which
he avows himself the champion of ‘¢ a juster taste
in the cultivation of mathematical science.” In
plainer terms, the object is to produce a counter
revolution in geometrical science in Great Britain,
and to restore it to the state it had been in before
the introduction of the modern analysis.

This work presents the most conclusive proofs
how inadequate the method adopted in it is to
clucidate most of the subjects to which it is ap-
plied. Its failure has betrayed the author in many
instances into the use of a phraseology very un-
suitable to a mathematical work. Whenever it
becomes necessary to explain those properties of
curves which demand the higher instruments of
analysis, the Professor uses sometimes language
which really admits no meaning whatever, and
sometimes endeavours to remedy the weakness of
the method by the use of an highly metaphorical
and figurative style. He states that ¢ the oscu-
lating circle may be derived either from the con-
sideration of three approximating points, or from
that of a tangent and a point merging the same
contact.”” He describes ¢ points shooting into
extreme remoteness, and wvanishing in the disiance,”
“lines thrown off to indefinite distances,” *points
vanishing towards one another,” ** points absorbing
one another,” “ curves migrating into one an-
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other,” “tangents melting into the curve,” &c. &c.
If the author had used Taylor’s theorem in the
investigation of the singular points, and in the
determination of the tangents, he would never
have been driven to the humiliating necessity of
invoking the aid of poetry to establish the theo-
rems of geometry. Had he effected rectification
by the use of the integral calculus, his work
would never have been encumbered with such a
sentence as the following: ¢ The gradual ag-
gregation of increments constitute the line to
which the cumulative amount of the elementary
arcs which compose the curve is equal.”” But
these absurdities are not the worst consequences
-which the imbecility of the geometrical method
has produced in this treatise. The Professor
has been in many instances led into positive error.
The investigation of the osculating circle of the
logarithmic, and its point of greatest curvature,
presents a remarkable example both of absurdity
of style and fallacy of conclusion. After va-
rious compositions, conversions, and divisions of
ratios, and comparisons of minufe lines and seg-
ments, he concludes, that ¢ the radius of a circle
osculating at any point of the logarithmic curve is
a fourth proportional to the corresponding or-
dinate and tangent ;* this is immediately followed
up by a corollary to discover the point of greatest
s« incurvation,” as the Professor calls it. After
spending more than a page in describing the
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radius of curvature as ¢ occupying a stationary
limit,” and ¢ suffering a decrement at one end
and an equal increment at the other,”” in the course
of a slight mutation, he concludes, that the point
so found is the point of greatest incurvation,
because the line which represents the radius of
curvature is placed in the limit where it has, on
the whole, neither increase nor diminution, and
has therefore contracted into its minimum. The
radius of the osculating circle is, however, not
what he professes to prove it, neither is the point
assigned by him the point of greatest curvature.
Numerous other objections might be brought
against this work, and, indeed, against any other
proceeding upon the same principles, such as that
by the method of marking the order of a curve by
the number of its intersections with a right line,
many curves of the fourth order would be reduced
to the second, and therefore classed among the
conic sections, though having no properties in
common with those curves. It may be also ob-
served that there are many singular points, the
existence of which are not even recognised ; such
are conjugate points, points of undulation, &c.
Neither is any method given for determining the
different degrees of contact and osculation, nor
for finding in general the evolutes and involutes
of curves. Even those of the lines of the second
degree are omitted with the exception of that of
the parabola, which is casually thrown among



xliv INTRODUCTION.

the properties of the semicubical parabola, which
the Professor calls the Paraboloid. It is un-
necessary, however, to pursue these observations
farther *.

Professor Leslie is most justly esteemed a man
of the highest talents; his works in other depart-
ments of science are sufficient to establish his
fame, and are so many unanswerable proofs how
much the failure of his work on GEOMETRY is to
be ascribed to the method, and how little to the
author. The Professor engaged in an enterprise
which could not have been attended with success
had it been supported even by the genius of
Newton.

That the preceding observations may not be
misconstrued, nor wrested to a sense never con-

* It is a strange circumstance, that in the preface to this
work the author states, that ¢ the differential and integral cal-
culus” really derives its main advantage from its algorithm, or
that clear and compact form of notation invented by Leibnitz,
and improved on the continent by his followers, the Bernouillis,
Euler, and Lagrange, and yet at the same time states, that
where he has found it necessary to depart from the ancient
method, he has substantially applied the principles of the cal-
culus without its algorithm, which amounts just to this, that
finding the ancient methods, of which he is so enthusiastic an
admirer, fail in carrying him even to the limited extent to which
he has penetrated into the geometry of curves, he has been
driven to the disagreeable necessity of having recourse to the
more powerful calculus of the moderns ; but that in these cases,
he has uniformly taken care not to introduce the use of that
from which these methods derive their cardinal excellence.
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templated, the student is not to suppose that the
following treatise is meant to supersede or replace
the ancient geometry. That science must always
be viewed with admiration by every person ca-
pable of appreciating the clearness, elegance, and
variety, which, by the mere exercise of reason,
may be drawn from one of the simplest of our
ideas. But that admiration can only be co-ex-
tensive with the perspicuity and facility it confers
on the investigation of the properties of figure.
This science then, confined within proper bounds,
must always continue to be cultivated and taught;
but they are really its greatest enemies who at-
tempt, by straining its powers beyond their natural
limit, to apply them to subjects which they can
involve in obscurity and difficulty.

As far then as the elements of geometry ex-
tend, the ancient methods are used with con-
siderable advantage. Not requiring that abs-
traction which the more powerful analysis of the
moderns demands, and directly addressing the
senses as well as the understanding, they are
adapted with peculiar fitness for the initiation of
a student into the science. But, beyond this
point, the young geometer will require engines of
greater efficacy ; and even though the requisite
expertness in the use of these should cost him
some labour, the acquisition of the powers with
which they will invest him will amply repay him.
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The clearness, rigour, and exactitude of the
ancient geometry have been much and deservedly
extolled, and it is not to be denied that, by great
efforts of ingenuity, it may be and has been car-
ried beyond the limits which have been assigned
it.  The modern methods have been stated to be
inferior to them in two respects; in giving less
occasion for the exercise of the reasoning faculty,
and less rigour to the demonstrations. It may
very fairly be answered, that the extent of the
knowledge to be acquired is so great, the space
allotted by Providence to the life of man so small,
and the limits of his intellectual powers so con-
fined, that it is perfect folly to create difliculties
for the mere purpose of vanquishing them. Surely
the natural obstacles which every where present
themselves in the prosecution of scientific spe-
culations are sufficient to exercise our faculties
without raising up artificial difficulties. ~When
two methods of arriving at the same truths pre-
sent themselves, to select the most intricate and
difficult, purely for the glory of the conquest, is
little short of wilful sacrifice of time and ability.

As to the second objection, that the modern
analytical investigations are inferior in rigour to
those conducted upon the principles of the ancient
methods, it is absolutely unfounded. The truth
is, the objectors here confound the terms clear-
ness and rigour, or probably have not a very
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distinct notion of the true nature of their own
objection. Without taking advantage of the ob-
scurity of their ideas, we will first explain the real
nature of the objection, and then refute it. Locke
very justly observes, that demonstrative truths are
less clear, but not less certain than intuitive, and
he illustrates his observation by the very ap-
propriate simile of a face seen after many re-
flections. Owing to the aptitude of the mirrors
to absorb part of the light, the brilliancy of the
image is deteriorated by every reflection it suffers,
but the features continue the same faithful copy
of the original.  So it is with the certainty of the
conclusions to which we are led by the demon-
strative process. That certainly admits of no
degrees, although the clearness of our perception
of it does. As the number of intervening proofs
requisite to establish any proposed truth increases,
so in proportion does it lose in clearness; but it
certainly is in nowise impaired. That equal quan-
tities increased or diminished by equal increments
or decrements continue still equal, and that the
squares of the lines containing a right angle are
together equal to the square of the line joining
their extreme points, are propositions equally cer-
tain, but by no means equally clear. The reason
of this is, that the former is immediately per-
ceived without the intervention of any proof
whatever; it carries its own evidence with it, so
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that it never presents itself before the mind with-
out being accompanied by the reason of its truth;
but with the latter it is quite otherwise. Its cer-
tainty depends upon a long series of truths an-
tecedently established, which have been re-
gistered in the memory, and which themselves
must be ultimately capable of a resolution into
self-evident elements. Now, if the mind of man
were so capacious as to contemplate simulta-
neously all these, then the clearness of the one
proposition would be equal to that of the other.
But this is not so. The human mind, circum-
scribed in its powers of contemplation, can en-
tertain ideas only in succession, and must there-
fore arrive at demonstrative truths by a succession
of proofs. The number and nature of these proofs
regulate the clearness of our perception of a truth,
but do not affect its certainty.

To apply these reflections to the point in ques-
tion; if the partisans of the ancient geometry in
asserting its superior rigour, mean that it imparts
to its demonstrations an higher degree of cer-
tainty, they speak illogically, and use terms with-
out any distinct import ; certainty does not admit
degrees. If they mean that the conclusions to which
the modern analytic method conducts are short of
certainty, and must therefore be considered as
only probable; the charge can be easily refuted.
This method reposes upon the same principles as
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the ancient geometry. Nothing 1s assumed in it
without proof, but what is also assumed in that
science. It is true that much in it is mechanical,
and it is in this very circumstance that one of its
perfections consists. Regulated by certain rules
previously established by proof, the pen of the
analyst relieves his mind from many painful
details in the demonstrative process, without
shaking the validity of his conclusions, and leaves
him free and unwearied to pursue new truths. If
it be desired, he can always give his demonstra-
tions all that pretended rigour which they are sup-
posed to want by translating the algebraic opera-
tions into ordinary language, and which is pre-
cisely what Newton has done in his Principia *. But
most probably what is meant to be imputed to the
modern methods is a deficiency in that clearness
and perspicuousness with which the use of the
ancient method is attended. To this it may be
answered, that in elementary questions the ex-
cellence of the ancient method is not denied, and
that in all geometrical investigations beyond these,
this boasted clearness is not to be found; but on the
contrary, that the demonstrations are intricate and
embarrassed in the extreme, frequently indirect,

#* Mais il ne tiendra qu’a ’analyste de donner ensuite a s
demonstration ou & sa solution la rigueur prétendue qu'on croit
lui manquer il lui suffira pour cela de traduire cette demon-
stration dans le langage des anciens, comme Newton a fait la
plupart des siennes. D’ALEMBERT.

d
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always tedious, and requiring such a degree of
acuteness, that none but an expert geometer is
able to follow the thread of the proof; and all
this applied to questions that are solved by the
analysis of the moderns with perfect facility. On
the other hand, the want of clearness in this ana-
lysis arises not from any fault in the instrument,
but from the very abstruse and general nature of
the questions to which it is usually applied;
questions which are utterly beyond the most ex-
tended powers of the ancient geometry. Those,
however, who are skilled in the analytical method
feel too sensibly the extent of their powers to un-
dervalue them; and the truth is, they are only
decried by those who are ignorant of them, and
who, as a learned writer observes, derive a species
of consolation from stigmatizing as useless that
which they do not understand.

The following treatise is designed to embrace
GeoMeTRY in its full extent. It is conducted by the
modern Analytical Method in its most improved
state. It is divided into two parts; the first contain-
ing the GEoMETRY oF PLANE CURVES,and thesecond
the GEoMETRY OF CURVED SURFACES. The processes
throughout the work have been rendered as ele-
mentary as the extensiveness of its object would
admit. It is desirable that students who _havé
passed the first elements of plane geometry and
the rudiments of algebra should be qualified to
commence algebraic geometry. With this view
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the differential and integral calculus is not intro-
duced into the first part until after a very detailed
investigation of the properties of lines of the se-
cond degree, and an extensive collection of ques-
tions, adapted for exercise, as well in these pro-
perties as in the general principles of algebraic
investigations. As far as this point the student
may proceed without the aid of the calculus, and
this part may precede the study of that science
with considerable advantage, as it familiarises him
with the species of investigations which first led
to its invention. Previously to advancing further, it
will be necessary to acquire a knowledge ofthe first
principles of the calculus. The elementary work
of Lacroix, as far as the section on maxima and
minima, with the ordinary methods of integrating
algebraic and trancendental functions of one va-
riable will be sufficient for the remainder of the
first part. In this part the simplest and most
elementary principles of integration are uniformly
adopted. Those who are more expert in the use
of the calculus will probably, in many instances,
find methods more expeditious or elegant than
those which have been used. These have in ge-
neral been chosen, as better suited to the limited
knowledge of a junior student, and possibly in some
instances from oversight. The general method
of drawing rectilinear tangents, rectification and
quadrature, the theory of evolutes, the general
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principles of contact and osculation, and the
manner of discovering singular points, are ex-
plained by the calculus, and these principles ap-
plied to lines of the second degree. Passing to
transcendental curves and algebraic curves ex-
ceeding the second degree, the properties of all
these, which offer any interest to the geometer,
whether arising from their intrinsic beauty, or
from their utility in physical applications, are very
fully discussed. These, besides possessing the
student with a large portion of interesting and
various geometrical knowledge, serve for exercise
in the manner of investigating algebraically curves
in general.

The geometry of plane curves is next applied
to the illustration of a variety of important theo-
rems relating to the roots of algebraic equations,
and the method of determining these roots by
the intersection of curves is explained, and ex-
amples of its application given. The general
properties of algebraic curves are developed as
far as they appear to possess any particular in-
terest. To enter further into the discussion of
them would have swelled the bulk of the volume
without any adequate advantage to the student.
Those who may be desirous of further information
on this subject are referred to Cramer’s Introduction
a P Adnalyse des Lignes Courbes, Euler’s Analysis
Infinitorum, Stirling on Newton’s lines of the
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third order, and De Gua’s work entitled 7 Usage
de I Analyse, &c. ‘The first part is concluded by
a very copious collection of questions in geo-
metry and physics, for general exercise in the
principles thus far explained, as well as to point
out the utility of this science. The questions in
physics are adapted to the junior students; this
part of the work being altogether superfluous for,
those who are more advanced.

The second part, which will contain the Geo-
METRY oF CurvED Surrackes, will necessarily re-
quire a more extensive knowledge of the calculus.
The student, however, as he advances, will find
little difficulty in gradually extending his know-
ledge of that science.

Exiguus nascitur, sed opes acquirit eundo.

Hitherto, no treatise whatever on Algebraic
Geometry has appeared in Great Britain, and
even in France no complete treatise upon the
subject has ever been published. The works
of the different French mathematicians, entitled
« Geometrie Analytique” and “ I’ Application de I’ Al-
gebre & la Geometrie,” do not in general include
any curves beyond those of the second degree;
and even their discussion of the properties of these
is very incomplete. Nomne of them whatever ex-
plain the application of the calculus to the geo-
metry of curves; this part of the science being
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confined to works upon the calculus. One com-
plete system of geometry, proceeding uniformly
upon the most improved algebraic and tran-
scendental analysis, seemed a desideratum in
science, to supply which has been attempted in
the following treatise.



PART THE FIRST.

THE GEOMETRY OF PLANE CURVES.






CORRIGENDA.

Page 6, line 12 and 14, for ¢D, 7ead cB

)

29,

—y
.93,

141,
144,

157,

21, for —c. read —c'.

3, for by’ — a, read by'x

4, for ya'y read by’

15, for B', read B”

22, et seq., for =, reud =—

1, for B(n)3, read B(n)2

26, for sa’ — ay read s(a’ — ')
2 from bottom, for 4AE, read 4AF
8, for r2, read R

3 from bottom, for >0, read <0
12, for (99), read (100)

6 from bottom, for B, read C

14, for xx/, read v¥'

last, for B, read D

1 1
11, for —, read -

last, for ex'?, read e

21, for @, read o

23, for ¢ — w, read w — @

7, 10, 13, for =—, read =

9, for %, read B2

13, for (203), read (204)

5 from bottom, for aAcy’, read A%y

12, for point, read part

17, 19, for p, read p'

3 from bottom, for as the, read as the squares of the
19, for (167), read (92)

6 from bottom, for 2' — 2/, read 2’ — z

5, for : 12, read : R

4 from bottom, for 4c¥, read 4AF

3, for —, read -+

13, dele —

13, for », read z

16, for (y — y)dv + (&' — 2)dy, read (y' —y)dy + (2’ — z)da
2, for AB have a limit, but Ac, read Ac have a limit, but AB
last, for n + 1, read n — 1

22, for 4ry, read 8ry

1, 2 from bottom, for c, reud @

5, for ¢, read d

6, for ¢, read ¢

4, for AP, read AY

5 from bottom, for point of contact, read origin

1, for r& +v =0, read :‘;—T +v
7, dele of @

nen—1
2 from bottom, for nth, read

Tz o

cut, for EPB, read EP'B

3 from bottom, for AD = —, read AD' = -~
13, for 8'D’, read BD'

13, for ED, read EA

3 from bottom, for 4, read ¢

11, for 0, read ¢

15, 21, for m, read p

cut, for AB'c and AF'V, r¢ad ABC and £¥'v.






A
TREATISE

ALGEBRAIC GEOMETRY.

SECTION I

Of the conmection between indeterminate geometrical ques-
tions, and algebraical equations between two variables.

(1). TuE object of Algebraic Geometry is the investiga-~
tion and analysis of the figures and properties of geometrical
magnitudes, by means of the symbols and operations of
Algebra.

No necessary connection subsists between the notation of
Algebra and the ideas required to be expressed in geo-
metrical investigation. Some conventional connection must
therefore be established between these sciences, in order that
the magnitudes and figures contemplated in the one may
find corresponding expressions in the symbolical language of
the other.

Let several finite right lines,
A, B, ¢, D, be related to any B
right line v, in the same man-
ner as the algebraical symbols,
a, b, ¢, d, are related to unity. p
The symbols, a, b, ¢, d, are then
said to express the right lines
A, B, C, D.

The square of the right line v, bears to the rectangle

B
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under, B and c, the same relation as unity bears to the pro-
duct be.

The rectangle under two lines is therefore expressed by
the product of the symbols which express those lines.

In like manner, the square of any symbol represents the
square of that line which the symbol expresses.

If a: 3:: c: D, and that a, B, and ¢ be expressed by

@, b, ¢, then p will be expressed by Ea?

In like manner, all geometrical relations find repre-
sentatives in algebraical symbols.

When the expression A =a or B = b is used, the mean-
ing is that @ or b is the algebraical expression for the line A
or E.

(2.) Having thus established a connection between the
language of algebra and the magnitudes, which are con-
templated in geometry, either may be conceived to represent
theother. That is, a geometrical question can be expressed
algebraically, by translating its conditions into algebraical
notation, and, vice versd, an algebraical question may be
expressed geometrically, by using geometrical magnitudes
as representatives of the algebraical symbols.

An example will illustrate this.

A geometrical problem reduced to an algebraical question.

C To cut a line (aB), so that
A | B the rectangle under the whole
line (aB), and one parg (8¢), shall equal the square of the
other part (ac).

Let AB == a, AC = @, and *.* AB — AC = @ — @

By the conditions of the question, a(a — @) =a* .-
@® 4 ax == a*; thus the question becomes an algebraical
one, scil. to find the roots of #* + aw — «* = 0.
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An algebraical question reduced to a geometrical problem.

To find the roots cof the equation 2 + az = a2

By transposition a(e¢ — ) = 2% Let a = a», and
AC = & BC = @ — & . rectangle under a3 and Bc must
be equal to the square of ac. Hence the question is re-
duced to the geometrical problem, to cut a line so that the
rectangle under the whole line, and one part, shall equal the
square of the other.

(3.) It is therefore apparent, that geometrical problems,
which relate to mere magnitude, without involving the ideas
of figure or position, may with great facility be expressed
by the notation of algebra. And that, on the other hand,
algebraical questions can with equal facility be represented
by geometrical quantities, in which nothing is considered but
mere magnitude. But inorder to institute a connexion be-
tween those sciences, and to bring each under the dominion
of the other, much more is necessary. Figure and position
are affections of magnitude, in which the geometer finds
objects of investigation much more extensive and interesting
than magnitude, considered merely with respect to quantity,
could supply. 1Itis, therefore, expedient to establish some
principles by which figure and position, as well as magnitude,
can be expressed algebraically.

(4.) A method of representing the figure of a line by
an equation is furnished by a striking analogy, which sub-
sists between indeterminate geometrical problems and equa-
tions in which there are two unknown quantities.

In a geometrical problem, whose data are insufficient for
its solution, the point which is sought cannot be deter-
mined, but yet its position may be considerably restricted ;
for the conditions which are not sufficient to fix the exact
place of the point, may yet be sufficient to confine it, as to
position, within certain limits. That is to say, though an

»2
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indefinite number of positions may be assigned to the sought
point, which will all equally fulfil the conditions proposed,.
yet positions might be assigned which would not fulfil those
conditions. 'The space on which those points are placed,
which fulfil the conditions of the question, is called the locus
of the sought point. If the conditions require the sought
point to be always in a given plane, the locus is usually some
line on that plane, the figure and properties of which de-
pend on the conditions of the question. If the point be not
restricted to a given plane, the locus is commonly a surface.
A very familiar example will illustrate this. Let it be re-
quired, 7o find a point in a given plane, whose distance
Jrom @ given point is given. An indefinite number of
points will equally fulfil the conditions of the problem, but
yet all points will not. The first condition excludes every
point of space except those situate on the given plane. 'The
second excludes all points on the plane, except those situale
at the intersection of the plane, with a sphere, whose radius
equals the given distance, and whose cenire is at the given
point. If the first condition were removed, and the second
retained, the locus would be the surface of the sphere; and
if the second were removed, and the first retained, the locus
would be the given plane.

Every line described upon a plane may be considered as
the locus of a point, restricted by certain conditions which
have a necessary connexion with the nature of the line,

(5.) Analogous to this, in an equation containing two
unknown quantities, neither can be absolutely determined.
A great diversity of values can be assigned to the symbols
representing them, which will all fulfil the conditions of the
equation. The symbols, expressive of the unknown quan-
tities, thus capable of receiving different values, are thence
called variables, in opposition to the other symbols involved
in the equation, which are called constants, because their
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values are supposed to remain the same through all the
changes which the wariables undergo. Any value being
assigned to either variable, a corresponding value of the
other will necessarily rvesult, and thus each variable is sus-
ceptible of such a series of values as render the correspond-
ing values of the other possible. Therefore, though each
variable cannot be absolutely determined, yet certain limits
and restrictions may be assigned to its variation, and those
are deducible from the conditions expressed in the equation,
just in the same manner as in an indeterminate geometrical
problem the position of the sought point restricted, though
not absolutely fixed, is deducible from the conditions pro-
posed in the problem.

Thus, for example, in the equation ¥ = ax, y and x, the
variables are susceptible of an iniinite serles of values.
Their variation is restricted, however, by the condition that
x shall vary as y. Again, in the equation %* 4 2* = &%,
from which results

Y= Ja* — a® @ = a® — g
The first shows that.  is susceptible of all values not ex-
ceeding that of a; for any value of 2 exceeding « would
render y impossible. The second equation shows that the
values of y are subject to the same restriction.

(6.) The analogy just pointed out originates in this cir-
cumstance : scil. if an indeterminate geometrical problem be
expressed by an algebraical equation, that equation will con-
tain two unknown quantities; and, wvice versd, if an equa-
tion of two variables be represented geometrically, the result
will be an indeterminate problem which will generate a
locus.

An indeterminate problem reduced to an equation. .

Given the base (a5), and the sum of the sides (ac and sc¢)
of a triangle, to find the vertex (c).
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c Let A3 =@, Ac =y, B =,
and let the excess of the sum of the

: sides above the base be d.

A B vy +xr=a+d
Any values of y and «, which fulfil the conditions of this

equation, represent the sides of a triangle, whose vertex
solves the problem.

An equation represented by an indeterminate geometrical
problem.

In y + ¥ = @ + d, to express the values of y and «
geometrically. Let @ = an, Ac 4+ cB = a + d, .* Ac and
cp represent 3 and 2. That is, describe the locus of the
vertex of a triangle, whose base aB = @, and the sum of
whose sides ac + ¢p = ¢ + d, and then the sides of any
triangle on the given base, and whose vertex is placed on
the locus described, will be representatives of 7 and « in the
equation y + @ = a 4 d.

Since an equation of two variables can be represented by
an indeterminate problem, from which a locus may be de-
duced, the figure of which depends on the conditions of the
problem proposed, and therefore on the equation from which
the problem results, an equation may, therefore, be con-
ceived to represent the figure of a line, that is, the figure or
species of the line is deducible from the equation. By this
means figure, as well as magmnitude, is expressed algebraically.
The equation from which the species of any line is deduced
is said to be the equation of that line, and the line is said to
be the locus of the equatien.

(7.) In both the preceding examples the process is partly
arbitrary, and at the discretion of the analyst. In the first,
the sides of the triangle were represented by the variables.
These might, however, have been made the representatives
of other lines, as the perpendicular and ecither segment,
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cither side, and the cosine of the angle it forms with the base,
or any trigonometrical function of that angle, or trigono-
metrical functions of the angles at the base, or, in fine, any
two quantities, either of which being given would, with the
data of the problem, determine the vertex. Hence, in re-
presenting an indeterminate problem by an equation, ¢ any
quantity, which, being given, would have rendered the pro-
blem determinate, may be represented by a variable.” Sub-
ject to this restriction, the choice of quantities to be repre-
sented by variables is arbitrary.

(8.) The form of the equation of a given locus depends
on the quantities selected as variables. If, in the example
given, the variables represented the perpendicular and either
segment, the equation would have been of the second de-
gree; if one of the sides and cosine of the angle, at which it
is inclined to the base, had been selected, the equation would
also have been of the second degree, but still different from
the last.

From these observations it appears that,

Ist, ¢ Any line, being considered as the locus of a point,
restricted in its position with respect to some fixed points or
lines by given conditions, may be expressed by an equation.”

2d, ¢ The form of the equation, expressing any given
line, depends on: the quantities represented by the variables.”

(9.) In the second example, the geometrical quantities,
selected to represent the algebraical symbols, of which the
equation is composed, are arbitrary. Thus, instead of
being represented by the sides of the triangle, they might
have been represented by the perpendicular and segment, or
in any other manner whatever. But on the manner of re-
presenting them depends the nature of the line which the
equation generates, 'Thus, had they been represented by
the perpendicular and segment, the locus would have been
a right line. Hence it appears,
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1st, ¢ Any equation between two variables may be con-
ceived to generate a line which is called the locus of the
equation.”

2d, ¢ The species of the line which a given equation
generates depends on the manner in which the symbols in
that equation are geometrically represented.”

SECTION II.

Of the manner of representing equations between two
variables by relation to axes of co-ordinates.

(10.) In the investigation of the loci of equations, pro-
secuted in the following part of this work, the method
most usually adopted, of representing geometrically the
symbols composing those equations, is as follows :

Let y and @ be the variable symbols in any equation.

- Two indefinite right lines,

/“t - (vY') and (xx"), being assumed
oL 1 . . . .

]/ n a given plane, ntersecting at

, /s, a given point (aA) at a given
X P X © 8 P ( } ©

angle, are called axes of co-
ordinates. Every system of
Y values of the variables (7 and )
resulting from the equation, are represented by portions
(ap and ar) of those axes, measured from the point (a) of
their intersection. 'Through the extremities (P, p) of those
values, parallels (pM, pm) to the axes of co-ordinates are
drawn, the intersection (ar) of which is the point of the locus
corresponding to the assumed system of values (ap, A®) of
the variables y and & ; and in the same manner all points of
the locus are determined.

In order to make a geometrical distinction between the
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positive and negative values of the variables, they are
measured from the point () of intersection of the axes in
opposite directions. Thus, if the positive values be taken
towards Y and x, the negative are taken towards y' and x/.

Any system of values of the variables are called the co-
ordinates of that point whose position they determine.

The point of intersection (A) of the awxes of co-ordinates
is called the origin of co-ordinates.

Suppose the positive values of y measured from A towards
v, and those of @ from a towards x, then,

+y, < x characterises a point in the angle xay

- Y, —_— - - - - x'ay
-y, —x - - - - x'ay!
- %, S+ - - - - xAY'

y=0, +x - - on the line | ax

y=0 - - - - - ax
+y 2=0 - - - - AY
-y, =0 - - - - AY
y=0, =0 - - - the origin A

Particular values of the variables y, x, are distinguished
usually by traits, thus, /2, y"a’, &ec. and the points di-
stinguished by those values are denominated the points
Y, yla’, &e. A point on vy’ is expressed glo, and on
xx!, 2o,

(11.) Another iethod of re- X
presenting equations geometrically ij
is also occasionally used. In the / £
preceding method, let the origin ' ___ '[ %
. 9

(a) and one only (xx') of the axes
be given in position. Let the :
other axis (zz") be inclined to it at 2

a variable angle. Let cach system of values of the variables
be thus represented: let one of the variables (2) be ex-
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pressed by any trigonometrical function of the angle (zax)
at which the axes of co-ordinates are inclined, and the other
(y) as before, by a portion (ap) measured along the axis
(z2"), whose position is variable. The extremity ( p) of this
portion (ap) is the corresponding point of the locus.

The value of that variable which is represented by the
distance of the point in the locus from the origin, is called
the radius vector. The origin is called the pole of the equa-
tion.

An equation represented thus is called a polar equation ;
and for distinction the variables represented by the radius
vector is called %, and the variable angle by w. The equa-
tion is thus expressed, z = F(w).

Particular values of z and w are in this case also usually
distinguished by traits, thus, 2/, 2"s", &c., and thus cha-
racterised are called the points 2o/, 2", &c.

(12.) As the angles which the axes of co-ordinates form
with each other, and with lines which intersect them, and
also the angles which lines in general form with each other,
become frequently objects of investigation, it is expedient to
adopt a concise and clear notation to express them.

The angle of ordination is expressed thus, - yx
"The angle under radius vector and fixed axis - w
The angle under any line and an axis of co-or-
dinates - - - -lx, ly
The angle under two lines - - /i

Thus, sin. ya is sine of ordination.

Sin. I/ = sin. ofthe angle under the lines thus deniominated.

All angles are supposed to be measured in the same
direction.

(13.) Equations are classed according to their degrees.
The degree of an equation is estimated by the number ex-
pressing the highest dimension of the variables which enter
it.  Thus an equation, in which single dimensions only
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occur, is called an equation of the first degree. One, in
which the variables enter in dimensions not exceeding two,
is called an equation of the second degree, &c.

A general equation of any degree is one which embraces
within its extension every particular equation of the same
degree. Such a formula must necessarily consist of a series
of terms, including every dimension and combination of the
variables not exceeding the proposed degree, and an ab-
solute term, which for symmetry might be conceived to be
involved with dimensions of the variables, whose index is
cypher. In this formula each term must include a literal
coefficient, expressive, in general, of any value, > 0, < 0,
or = 0. Thus, the general equation of the first degree is,

Ay 4+ Bx + ¢ =0,
That of the second degree,
AY® + By + c2® 4+ by + Ex + F = 0, &ec. &ec.
And in all such formulee the symbols 4, 3, ¢, &e. are each
understood to represent quantities, > 0, < 0, or =0, as
the case may be in particular instances.

The loci of equations are investigated according to their
degrees, beginning from the first.

The discussion of a general equation is the investigation
of its locus, and the effects produced on the locus by the
various values and signs which its constant quantities may
have in particular cases.

SECTION III.

Discussion of 'the general equation of the first degree.

(142) Let the fixed axes vy’ and xx' be assumed.

In the general equation, Ay 4 B2 + ¢ = 0, the coefficient
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of one or other of the variables must be finite; for if 4 = 0,
and B = 0, *. also ¢ = 0, and the equation would cease to
exist.
Let a represent the finite coefficient, and putting the equa-
tion under this form,
(83
Yt3I

X A

Let ap and AP be any system of
values of y and x resulting from

. . c
this equation. Let aB = -

¢ B B

Bp=l’[/+1—'."‘z‘£’=-——:—. Let
the parallels vm and pu be drawn,
and since AP = pum °.* 2 __ 5

pM A

“* Bp : pM is a constant ratio; and since B is a fixed point,
the locus of u must be a right line, z'r,

(15.) This right line being designated by the symbol, Z,
o o =2 _ _ 2 Henceall equations in which -2 5
sin. fy pMm A A
the same, represent parallel lines.

(16.) If 3 =0, - sin. lz = 0, *.* the line L1/ is parallel
to xx/, 4. e. in general, ¢ If the coefficient of either variable

= 0, the equation is that of a right line parallel to the axis
on which the values of that variable would be measured,”
** Ay + ¢ = 0 is the equation of a parallel to the axis xx,
and Bx 4+ ¢ = 0 a parallel to YY. Inthese cases, if ¢ =0,
the first, by dividing by a, gives y = 0, and the latter, by
dividing by B, gives « = 0: these are the equations of the
axes themselves.

(17.) If neither of the coefficients (a, ) = 0, the right
line, being parallel to neither axis, meets both, To find the
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points where it meets Y/, let # = O in the general equation,

ey =- —CA—, the distance of B from the origin (a). To find

. C .

where it meets xx/, let y =0 2 = — 5 the distance ac.
(18.) If ¢ = 0, the points ¢ and B coincide with a, .

Ay + Bz =0 is the equation of a right line through the

origin.

(19.) If A and s have the

. . c
same sign with ¢, *© —— and
A

¢ .
——, are both negative, .- the
B

right line intersects both axes of

co-ordinates at the negative side
of a.

(20.) If a and B have a sign

. c
different from c, .+ — - and Y

c .. .
— - are positive, - the right

line meets both axes at the po-
sitive side of the origin.

. . ¢
different sign from B, *.© — —
A

(21.) If A and ¢ have a /

]

. . c . .
is negative,and — 5 1§ posi-
tive, -.* the right line meets
vY' at the negative and xx' at

the positive side of the origin.
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(22.) If B and ¢ have a sign

. Cc .
different from 4, .© — — 1s po-

.. c . .
sitive, and — — is negative, -’
B

the right line meets vY' at the
positive, and xx' at the negative side of the origin.

SECTION 1IV.

Of the equations of right lines restricted by certain con-
ditions.
PROP: I
(28.) To find the co-ordinates of the point of intersection of
two right lines, whose equations are given.
Let the given equations be
Ay + Bz + ¢ =0,
Aly + 3z + = 0.
The point of intersection being that point whose co-ordinates
must fulfil the equations of both right lines ; let the variables
in these equations express them, and the resulting values are,
Bc' — Bc Al — Ale
Y= = T T —an
(24.) If the numerators of these formule be finite, and
AB' — A'B = 0, the lines are parallel, the pbint%of intersection
being supposed infinitely distant. "This condition of paral-
lelism was offered before, where it was established that lines

.. B B
are parallel if — = b ¢. BA' — 3/a = 0.

But if at the same time that AB'— A'8=0, also Ac'—a'c=0,
and ‘. B¢/ — B'c = 0, the two lines coincide, for then their
equations being put under the forms,
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B
:1/—';—-2"2‘-{— =0,
!

Lole

B

i1 . B B c c
are identical, since — = —, and —= —.
A, A A A
PROP. II.

(25). To investigate the condition on whicl three right lines
will have a common point of intersection.

Let the equations of the lines be

Ay + Br + ¢ =0,
Aly + 5w + ¢ =0,
Ay + "z + ' = 0.

By equating either of the co-ordinates of the point of in-
tersection of the first and second, with the corresponding
co-ordinate of the intersection of the second and third, there
will result, after reduction, the equation,

A(8"c¢" — B'c")  Al(Bc" — 8'c) + A(B'c — BC) = 0,
expressing the required condition.

If any of the lines be parallel to either axis of co-ordinates,
the formula must be determined by that variable which is
common to the three equations.

PROP. III.

(26). To find the equation of a right line passing through
a given point.
Let the point be g'+', and the sought equation
Ay + Bx + ¢ = 0.

Since #'#' is on the right line, ' A% 4+ 32’ + ¢ = 0,
“+ by subtraction

Ay + Bx — (ay + B2') = 0, or

AMy=y) + 3(x — 2) =0
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This formula might also be demonstrated thus: the
equation must be such as that when g2’ are substituted
in it for yx, the whole shall be equal to cypher; hence
¢ =— (ay' + B2).

PROP. 1V.

(27.) To express the equation of o right line passing

through two given points.

Let the co-ordinates of the points be /2, o"2". By (26)
the equation of a line through g"2" is

Ay — 9 + 3(z — ') = 0.
But since this line also passes through g2/, the equation
must hold good after substituting #/' for ya; -
Ay =y + 8@ —a") =0
From this and the former, the result is
(@ — 2y — (ff — ) + g’ —3'a' = 0;
or, (@ — ') (y = ") = (¢ —4") (& — ") = 0.
PROP. V.
{28y To ewpress the equation of a right line making given
angles with the axes of co-ordinates.
Let the given angles be Iz, Jy. Let the general equation

of the right line be divided by a, and it becomes

B C
y+—;x+—;=0.

B sin. {x c .
Let — ==~ —=————, and — sin, Iy = ¢; " the sought
A sin. 1y A

equation is
sinefy .y — sinn le . a2 + ¢ =0.
PROP. VI.
(29.) To express the equation of a 7right line passing
throuoh a givoen point, and making oiven angles with
g 8 » 4 i
the axes of co-ordinates.

The given point being ¥'2/, and the given angles ly and



ALGEBRAIC GEOMETRY. 17

iz it follows from (26) and (15) that the sought equation is
s ly . (y — o) — sin. lz (v — 2') = 0.

PROP: VII.

{80.) To express the angle under two lines as a function of
their equations, and of the angle of ordination.

Let the equations be
Ay +Bx 4+ c =0,
Aly 4+ B2 + ¢ =0;

Cosinle_ B sin. {'x B!
" osin. ly ~a sin. lfa/z—?'
But, ly = yx — la, Iy = yo — lz;
B sin.le B sin. Iz B
Csin, (yx—lz) A’ s (yw—lx) A

By expanding the denominators, and dividing both numera-
tor and denominator of the first by cos. {z, and of the second
by cos. /z, the results solved for tan. lz and tan, Ja are
tan, lx = ° sm'ﬂ, tan, lez= — 3
B COS. Y& — A 5’ cos. yr—A
Let the angle under the lines be /7,
U = (lx —Uz);
tan, & — tan. I
1+tan. lwtan, iz
Substituting in this formula the values found above,
(a8 — AB) sin. yr
Aa' 488 — (aB' +4'B) cos. ya’

B'sin. ya

o tan, o=

tan, ll' =

which expresses the angle {/ as a function of the two equa-
tions, and the angle of ordination.
(31.) Cor. 1. If the angle of ordination be right,
cos. yr =0 .
AB' —a'B

[ —
tan. Il = -

o



i8 ALGEBRAIC GEOMETRY.

(32.) Cor. 2. If the angle under the lines be right, tan, i

is infinite, *,*
AA'4-BB' =~ (aB' +4'B) cos. yx = 0.
(33) Cor.3. Ifll =y,
aa'+ B3 — 248 cos. yx = 0.
(34) Cor. 4. Ifll' = ya = 90°,
aA + BB = 0.

(85.) Cor. 5. If ! coincide with the axis of @, Il/= Iz ;

and 8 = 0, (16.)

B sin. yx
tan. lz = Y

B cOS. Yo — A’
(86.) Cor. 6. In like manner, if # coincide with the axis
of y, Il = ly; -
A sin, Yz

A COS. Y& — B

tan, Jy =

PROP. VIII.

( 87.) To find the equation of '@ right line inclined ot a given
angle to a given right line.

Let the given angle be //, the given right line
ay + B + ¢ = 0, and the sought line Ay + Bz + ¢ = 0.
In the formula

(aB'~ A'B) sin. yx
Aa'+B8'—(aB'+ 4'B) cos. ya”’
found in (30), by dividing numerator and denominator by

tan. [l =

!
. B . .
aA', and solving for L the result is, after reduction,
P

¥ msin (ya—Il)+a sin. 17 )
A7 asin (yx +0)—Bsin. U7
therefore the sought equation is
{asin.(ye+U)—ssin.0 \y+ { B sin.(yo—I0) +asinll |z -
= 0,

where ¢" is indeterminate.
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o

(88.) Cor. 1. 1If the angle of ordination be right,
sin, (ya 4 Ul') = cos.!l'; - in this case the formula becomes
(A cos. l{—Bsin.ll)y + (Bcos. il + asin. Il)a =" = 0.

(89.) Cor. 2. To find the equation of a line perpendicular
to a given line.

In the general formula (37) let 27/ =90°, -. sin. (ya + ) =

+ cos. yx; .- the equation sought is
(Acos.yxr — B)y — (Bcos.yx — A)x + ' = 0.

(40.) In this case, if the angle of ordination be right, the

equation is
By — ar — ¢’ =0,

which is the equation of a right line perpendicular to a given
line, and referred to rectangular co-ordinates.

41.) Cor. 8. To find the equation of a right line inclined
to a given right line at an angle equal to the angle of
ordination.

Letyx = Il', . sin. (yx — ') = 0, and sin( yr + ) =

sin. 2y = 2sin. yx cos. yx ; *.* the sought equation is
(2acos.yz — B)y + ax 4 "= 0.

(42.) The formulee established in the preceding questions
may be further modified by subjecting the right lines sought
to pass through a given point ; the general formula (87) will,
in this case, by (26) become

{asin. (yo 4 ) — Bsin. il'} (y — 3/
+ {3 sin. (yz — ) + asin. '} (x — 2') = 0.

(48.) The formula in (40) becomes

B(y —Y)— a@—2)=0.
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It is clear that (29) is a particular case of (37), and can be
deduced from it.

PROP. IX.

(44.) To express the length of a line joining two points.
Let the points be y», y/'#/, and L the sought length ;

L=/ (y—y)?+{x—2) +2y—y) (x—2') cos. yx.
If the co-ordinates be rectangular,

L= v(y—y)+ (@ —a)
These formule are derivable from the common principles of

geometry.
PROP. X,
(45.) To express the intercept of a given right line between
two points situate on it

Let the right line be A’y 4+ 8z 4- ¢ = 0, and- the points
1

B
= '—'—AT; ‘. smce

— (o — (y=y) Ry—y)
L= (v — %) V(” x,)z"L" +( )cos yus

+/ A+ 82— 248 cos. ya
- .
A

yx, and y'a'.

L= (x—&).

PROP, XI.

(46.) To cxpress the distance between any point on a given
line and the point where it intersects another gioen line.

Let the lines be Ay + ' 4 /=0, and Ay + 32 + ¢ =0,
and let the point given on the first be /2. In the formula



ALGEBRAIC GEOMETRY. 21

in (45), substituting for @ its value for the point of inter-
section found in (23), the result expresses the sought
distance,

Ay +pal ¢
Lo== ——

T2 1 w2 Oalnl e
e A4 B2 —ZA'B cos. yx
AB — alp ~ g

PROP. XIIL

(47.) To cxpress the length of a line druwn from a given
point to meet a given right line, and inclined to it in a
Siven angle,

In the formula of (46) substitute for A" and o' the values
for them in the formula found in (87), and the result will
be the formula sought; but for brevity, let the substitution
be only made in the terms of the denominator, retaining the
symbols 4/, ' under the radical, signifying, however, the
values in (87), the result is

Ay 4-sa' ¢ /A% B*—24" cos. ya
L= — . .
sin. 2/ A%4-B2—2A3 COS. Y&

(48.) Cor.1. 1If the co-ordinates be rectangular, the

formula is

Ay 4+ 2+
e,
sin. Il o/ A% 4 B?

for cos. yx = 0, and by the values in (88), A" -}-B2=1%4-32

{49.) Cor. 2. T'o express the length of a perpendicular
drawn_from a given point to a given right line.

In (47) let sin. U/ =1, -

&A%+ B2 —2a8 cos. ya
A% 4 32— 243 cos. Yo

L oma o (Aj/’ + B’ 4 )
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(50.) Cor. 3. If the co-ordinates be rectangular, also
_ Ay +salte
A/ A% 4 B? )

(51.) Cor. 4. To express the length of a line drawn_from
a given point to meet a given line, and inclined fo it at an
angle equal to the angle of ordination.

In (47) let I' = yx, and let A’ and 3’ have the values
in (37) restricted by the condition of ' = ya,
AY 4+ Ba4-c
A/ A%+ 3% —2A1 cos. yx

1, == e

SECTION V.

Propositions calculated for exercise in the application of the
equations of the first degree.

PROP. XIII.

(52.) To investigate the intersection of the three perpen-

diculars from the angles of a triangle on the opposite
sides.

Let the base, ac, of the
triangle be taken as axis
of , and a perpendicular
ay through it as axis of
Y5 let the co ordinates of
b be 2y, those of ¢, 2/,
y' = 0. Letad, bV, cd,
be the three perpendiculars. The equations of the three
sides result from the formula of (27). Hence,

& 5 c - X



Q2

ALGEBRAIC CEOMLTRY. 23
The equation of ab is - 2y —yx = 0.
"The equation of ac is - - - y=0.

The equation of b¢ is (¢! — 2y — yl(x — 2") = 0.
Hence, those of the three perpendiculars result from the
formula (43):
The equation of ad' is yy' — (2" — 2')o = 0.
The equation of ' is - x —a = 0.
The equation of ec' is ¥y 4 2/(x — 2') = 0.
Eliminating 7 from the first and third, the value of & for
the point of intersection is &', and this value being sub-
stituted in either, we find the co-ordinates of the point, 0, of
intersection of aa' and ec!,
(2 — &)
—
(58.) Cor. Hence, it follows that the three perpen-
diculars intersect in the same point; for since the values of x
for the points & and O are the same, the same perpendicular,
bl, must pass through both.

Y = s X = a

PROP. X1V.

(54.) Toinvestigate the point of intersection of the bisectors
of ‘the three sides of a triangle drawn through the several
vertices.

The axes of co-ordinates
being as before, and ad/, b0/,
edy being the bisectors, and
the point b being ¢/, and

¢, 2"0;

The co-ordinates of point @' are =, )
«~

Y

L Rl YR A1t ose A A A T T J—
L'he co-ordinates of point ¢ are =, -5~
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Hence, by formula (27),
The equation of ad' 1s (2 + 2")y — ylz = 0.
The equation of b8/ is (22" — 2"y — /(2x — 2") = 0.
The equation of ¢’ is (& — 22")y — y'(x — 2") = 0.
The values for y and « found from first and second are ;

) yl . x!__}_‘z,"
Y = 5 X =5
< (94

The same values being found from the second and third,
proves that the three bisectors meet in this point.

It is obvious from the proportion of v’ to 7/, that each
bisector is divided at their common point of intersection in
the ratio of 1 : 2.

(55.) Cor. From the principles of Mechanics, it is ob-
vious that this point is the centre of gravity of the triangle.

PROP. XV.

(56.) To investigaie the point of intersection of perpen-
diculars to the three sides of a triangle, drawn through
their several points of bisection.

7 The axes of co-ordinates being

as before, the equations of the

\l e \\ three perpendiculars result from
the equations of the sides ex-

~#  pressed in (52), and of the co-

ordinates of the points ', ¥, ¢, in (54), by the formula
(43). Hence,

o

!
The equation of cois y'(y -- % A G %} = 0.

The equation of do is
& —l—z"

y(y-”—)-l—(x-w)(w— ) = 0.

"
The equation of Yo is @ — & = 0.
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By the first and second equations we find the co-ordinates
of the point of intersection of ¢'o and o to be,
yerat—aat a2t

2y ’ 27

Hence, since the same values result from the second and
third, it appears that the three perpendiculars meet in this
point.

(57.) Cor. The distance r of the point o from each of the
angles of the triangle may be hence found,

(?/IQ+ x’z ___xlx”)z +ymxne

TE .
Let ab = ¢, bc = ¢, and ac = ¢". Hence, y* + 2 = ¢},
Coe? + e — 2

2 = ¢, also, ¢¢ + ¢ = + 2, 2 = —a :

Y =

R = ¥'? 4 x/* =

By substituting for 3 + «®, its value, and changing 2 into
¢, we have
(CQ — C’! x!)q, + lech

2 —
R? = 1y .
. 2+ 2 —¢lle
And since 2c'a' = ¢® + "% — £, o ? —(x! = —g
e+ " — ¢'?)2 i
Also, y* = ¢® — 2* = ¢* — g-————&,,;——l Making these
substitutions, and observing that (¢* + c¢® — ¢"™)? —
(¢ + ¢" — ¢?)2 = 4e¥(¢? — (™), we find that
cc'? cc -ccc!
R® = =0 "R = 5 = 5oy
dy» Ry Ryc
Let the area of triangle be a, *.* 3/'c" = 24, hence
ccle!
B = —.
4a

This expression being symmetrical with respect to the
three sides, must be the same for each of the three vertices,
and therefore the distances of the point o from the three
angles are equal. Hence it appears also, that the point o
is the centre of the circumscribed circle, and the value of r
1s its radius, expressed as a function of the three sides.
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'
The equation ® = ;—;, which gives 2ry = cc/, proves

that the rectangle, under any two sides of a triangle, is equal
to the rectangle under the perpendicular on the third side,
and the diameter of the circumscribed circle.

If v = 0, ¢ = "4/, and hence ¢ + ¢ = (™, ‘., there-

. fore, the angle is a right angle ; hence the angle in a semi-
circle is right.

Ifv" > 0, ¢ > "2, o ¢® + ¢ > ("% -.c the angle b is
acute, and *.* the angle in a segment greater than a semicircle
is acute.

IfY" < 0, @ < 2, * ¢ + ¢ < (", - the angle b is
obtuse; and, therefore, the angle in a segment less than a
semicircle is obtuse.

PROP. XVI.

(58.) The three points of intersection, 1% of the perpendicu-
lars from the angles of a triangle on the opposite sides ;
2°, of the bisectors of the sides s 3% of the perpendiculars
drawon through the points of bisection of the sides, will be
in the same right line.

The equation of a right line through the points yx and

Y'x! 1s,

(y =Y ~-x)— (v —¥Y)(zx—X) =0
Substituting, in this form, the values already found, it be-
comes, after reduction,

Y By —y) Q' —a") —{3(2"—2)a'—y'2| (Ba —a' —a")=0.

The values for v" and x" being substituted for  and # in this

equation, will fulfil the conditions, and therefore the right

line joining the points yx and ¥'x' must pass through y"x".
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PROP. XVII.

(69.) T'o investigate the intersection of the bisectors of the
three angles of o triangle.

The axes of co-ordinates being
placed as before, let aa’ and c¢c’ bi-
sect the angle ¢ and ¢ respec-
tively.

The equation of ad is,

y—tang. La.x =0 iz I ¢
The equation of ¢c' 1,y + tang. L ¢.(x — ¢") = 0.

But since ¢ , sin. @ 4t , sin. ¢
ut since tang. I = ————, and tang. Le=——

%2 71 + cos. o’ S22 1 + cos. ¢’

! / ! ! /

. a . d —

and sin. ¢ = ‘Z, cos. @ = —, sin, ¢ = %,cos.c: —
c ¢ c c

the equations, by these substitutions, become,

(¢ + x’)y - 3/'»’” =0,

(d+ =2V +y@—c)=0.
From the two equations, the co-ordinates of the point of in-
tersection are,

! Al I /
o= —YC o dlet@)
ctc +c” c+c+c'
24
But 9/¢' =24, v Y"= ———— . also
g ? ctc -+

el = 2 + e — 2 o ch(c + x') — (C + C‘")Q — % =
, o edd—d e+t
(C + c + C") (C + - C’) .o U ) —_— 5 —_c

~

The values of x" being symmetrical with respect to the sides,
will be the same, whichever side is assumed as axis of x;
hence it follows, that the three bisectors meet at the same
point, and that the perpendicular distances of that point,
from the sides of the triangle, are equal. Hence, also, that
point is the centre of the inscribed circle; and the value of
y" expresses the radius of that circle as a function of the
sides of the triangle.
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PROP. XVIII.

(60.) T'o find the locus of a point from which two right lines,
drawn at given angles, to two lines given in position,
shall have a given ratio.

Let the equations of the two right lines given, in position
referred to rectangular co-ordinates, be,
Ay +Br4c=0,ay + 82+ =0.
The given angles heing ¢ and ¢/, the point, whose locus is
. L m
sought, being yr; let = T But by (48)
B Ay + BX +¢
TS g Waf g2
) oLl
g Arhrlesd
sin. ¢/ 4/ 2 + By
o (ay - Bx + ¢) /A" + 82wl sin @' = (Aly - B'a 4 )
VA% + B% . m sin, gn,
which being a simple equation, the locus is a right line.

PROP. XIX.

(61.) A parallel to the base of a triangle being drawn, and
its points of intersection being commected with the ex-
tremities of the base, to find the locus of the intersection of
the conmecting lines.

Let ac be tae axis of @, and
that of y perpendicular to it;

w/«?r also, let the perpendicular di-
. \‘ stance of the points v and E,

P ,//XJ\ from Fhe base, b.e 0. Since the
P I ™\ s equation of AB is ya'—y'r=0,
A ¥ ¢ Y and p is a point on it, the
!

D L b . .
valueof & {or the point v 15 PR Fhe equation of sc¢ being

e
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Y@ — &)=y (w—2") =0, and the point £ being on the line, the
blal—a"y+ y'a"

value of & for the point E is 7 Hence,
. . by —x
The equation of aE is, y = =) Fya
. . by .
The equation of ¢ is, y = Y .

o\
' —uj
Eliminating b from these equations, we find the equation of
the locus of the point of intersection,
Y22 — 2"y — 2w + 2" =0, or
2 ’ 2
Y@ —5) =yx + Y 5= 0,

which by (27) is the equation of a right line passing- through
. , &' ..
the points y'«', and =5 0: hence, the locus sought is a right

line, bisecting the base, and passing through the vertex.

PROP. XX,

(62.) A parallel being drawn, as before, to find the locus off
the intersection of perpendiculars to the sides through its
extremities.

The co-ordinates of the points » and &, being expressed
as above, and the equations of the sides, as in (52) the
equation of the perpendicular through o is,

Y@y —b) + @v - bi,') =0.
Y

The equation of perpendicular through = is,
=) byl

Y B
Eliminating b from these equations, the result is,
(,'l/[y + w'm) {yvg_*_ (x'-—- x’l)e } — {,yly_*_ (x'__ x”)(w—-x") } (yltz _Jl_x’Q)
But,

Yy —b) + (& — 2") (x - 0.
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o+ (@ — )= 0% g 4 at =
2 2 2

R +d —¢

2!

A expressing the area. Making these substitutions, the equa-

tion, after reduction, becomes,

4ay(c—c)+x{ (4 )—(c*—c*)*} +ce*(*—c" 2—c*)=0,

which, being an equation of the first degree, shows the locus

sought to be a right line.

.yl = 24,

PROP. XXI.

(68.) To find the locus of a point firom which the sum of the
perpendiculars, drawn to several right lines given in po-
sition, may have a given magnitude.

Let the equations of the right lines given in position be,
Ay +sx =0,
Ay + 3z +d =0,
Ay + Bl + =0,
A(”\/}/ 4+ 3™y 4 o™ = Q.

The co-ordinates of the point, whose locus is sought, being

expressed by the general symbols y, the perpendiculars re-

spectively are,

N Ay -+ 3BT +c
- vV AZ4 32 ’
P Aly+sle+c!

’\/A“—f-]}’z
Ayilotd

Pl =

Al gl ?

P

2

o Ayt
P - —
o A2 L e

the conditions of the question give the equation,
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A, A(n) )

A
e A
'\/AQ-}- B2 /\/Altz + B!Q VA(n‘g +Bm‘3f

¥+

B B/ B{n)
{ + ’ ...+ }x _I_
\/AQ+ B2 \/ A2 + B® /\/A(n,ez + g2
¢ o

+ =M
A/ A% + B2 \/A’Q—l— Bl ?
which being a simple equation, shows the locus to be a

right line.

PROP. XXII.

(64.) To express the area of a polygon as a function of the
equations of the sides, and the co-ordinates of « point
within it,

Let the equations of the sides be expressed as in the last
prop. By the formula (27) it appears that y'a/, y"2", being
the co-ordinates of the extremities of the first side, A=a' -,

B= — (_y,"]/”)- Hence’ VA% B2 = v’(y' —y")2+(.7c’—x”)2=c,
¢ being the first side of the polygon; and for the same rea-
son, the several denominators of the values of », P!, ?", &ec.
are the successive sides ¢, ¢, ¢, ¢, &c.

Let the figure be supposed to be resolved into triangles,
by lines drawn from the point within it to the several angles,
A being the area
2 =vc +7vc +2d. ... P (1) e
2 = (ay + 82 +c)+ (WY + B2+ ) ..

(a"y + W2 4 ™), (2),

which is the required function, /2’ being the co-ordinates of
the point within the polygon. If the figure be a regular
polygon, of which ¢ is the side, (by equat. 1), we have

2A . .
p4P 4P I’(“)Z—c—. This value being inde-

pendent of y'a'.
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(65.) Cor. It follows that, in a regular polygon, the sum
of the perpendiculars on the sides from any point within it,
is of a certain magnitude. If, at the same time, the per-
pendiculars are equal to each other,

24
p=
ne’
which is an expression for the radius of the circle inscribed
in a polygon, whose side is ¢, and whose number of sides
is .
PROP. XXIIL
(66.) To inscribe in a triangle a parallelogram, whose sides
shall have a given ratio.

Let aBc be any given triangle ;
let ac be assumed as axis of 2,
and ay making the angle vac
equal the angle of the proposed
parallelogram. The co-ordinates

of B being o'/, those of ¢, 20, the
equations of AB and BC are ex-
pressed as in (52.) Let s and
s be the sides of the proposed
parallelogram ; and by the terms

..s . m
of the question, P Sub-

A D ¥ C  stituting in the equation of aB
sa! -
s for y, we find @, or ap = —; and, in like man-
Y
ner, substituting s for y in the equation of sc, we find
s — o ,
@, or AE == ——— + &,
9!

If the parallelogram be situate as in the first figure,
( (y —s5)z'

s = AE — AD " ¢ BRI and this combined with the
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m I/’ 2"

. sno
equation §' = — gives § = ———.
m ny' +ma

But if the paral-

lelogram be inscribed as in the second figure,

Na! 1l
(=N my'x .
AR ——',Z)—-, and, therefore, s = —,—y-———T, Hence, 1n
ny' —max
! 0l
my'x . .
general, s = povm Brugeep according as the side of the paral
Y T

lelogram parallel to the base lies above or below the vertex.

Hence, there may be two parallelograms inscribed, which
will equally fulfil the conditions of the question.

plt

Ifm=mns= ff—x,

If m = n, and the angle of the parallelogram be right,
the formula solves the question, to find the side of a square
inscribed in a triangle. In this case g is the altitude,
and ya" = 24,5 = J&ﬁ%ﬂ.

Hence two squares may be inscribed on each side of a
triangle, except when the side and perpendicular on it are
equal: in that case, the lower sign renders s infinite; and
the other value of s, half the side on which the square
stands.

(67.) Cor. 1. The sides of squares inscribed on the sides
of the same triangle, are inversely as the sum of each side,

and the perpendicular on it.
1l
(68.) Cor.2. The formula JJ'E 7> points out a geome-

trical construction for the inscription of a square, by the
equation being expressed as a proportion,
Yy +ayal s
If the upper sign be taken through s, let 8p be drawn
parallel to ac, and take cE = Ap and join pE, and through
¢ draw cr parallel to Ep, and through & let a parallel
D
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to ac be drawn, and c1 will
be the side of the inscribed
square.

If the lower sign be taken,

take cE upon ca and equal

to Ap, and draw ED, and pa-
rallel to it draw cr. The
parallel to ac through ¥ will

determine c1, the side of the
A E c square.
If 3/ = 2", £p coincides with ap, and ¢ is infinite.

PROP. XXIV.

(69.) 7o find the equation of a right line, such that the per-
pendiculars drawn from several given points to it shall
have a given magnitude (M.)

The points being y'a', y'a", y"a", ... y™x™, let the

sought equation be Ay + Bx + ¢ = 0.

By the formula (50), the condition of the question is ex-
pressed thus:

Ay +Brdc  ay'+ Ba' -+ ¢ Ay(") + ™ +c
/AT vartsr T at
or, — a(y +y + ...y —s@@ +a" 4+ ...a") —
ne — Ma/AZ 52 = 0.

By dividing by #, and eliminating c,

= M,

__y_—_}-y Loy 2+ a™
Ay ——) + (¥ - )
M »\/Ag“{“BQ: Q.
! (41) »i i Ve )
Or(.y-—'y—‘}.—";- Y )+tan lx(x-—ﬂc—hl-%———f- —

M
— sec, o = 0.
n

As the value of the angle /z still remains undetermined, the
line sought cannot be absolutely determined; but its position
is limited ; for let ¢ be a point, whose co-ordinates are
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! gLy a L™
g =YYy A 2™
n n
A perpendicular, drawn from this point on the sought line,

will be (50) % Hence it follows, that if with this point as

. M . . .
centre, and a radius = P circle be described, any line

drawn, touching this circle, will have the required property.
If the question required, that the sum of all the perpen-
diculars should be = 0, scil. that the sum of those on each

side of the sought line should be equal, then —1% = 0, there-

fore the circle vanishes into the point ¢, and any right line

drawn through this point would have the required property.
(70.) Cor. The point ¢ is manifestly the centre of gravity

of a rectilinear figure, formed by joining the given points.

SECTION VI.
Of the transformation of co-ordinates.

(71.) Tt is frequently desirable to express the equation of
the same locus referred to different systems of co-ordinates.
This is effected by expressing the values of the co-ordinates
of any point related to one system of axes, in terms of the
co-ordinates of the same point referred to the other system,
and in functions of this position of the two systems of axes
with respect to each other. The values thus expressed, being
substituted in the equation, related to the one system, give
the equation of the same locus referred to the other system.
Let yx be the co-ordinates of any point related to one
system of axes, and y'a' those of the same point referred to
the other system. Let m, n, p, ¢, a4, b, be quantities deter-
mined by the mutual position of the axes. Suppose, then,

2
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y=my +na' 4 a,and v = py + g2’ + b If these
values of y and  be substituted in the equation of any locus
related to the axes of y and @, an equation will result be-
tween the variables 4/ and &/, 4. e. one of the same locus
related to the other system of axes. The question will, there-
fore, be resolved when it is shown what functions of the
position of the axes the quantities m, n, &c. are."
(72.) Let Ay, ax, and a'Y/, A'%/,
be the two systems of axes. Let
the co-ordinates of the point M
X referred to these axes be y=mwmp,
‘x = Ap, y = My, o' = AP
: Draw a'a" and »'p' parallel to
AN P X Ay and A", and ?p' parallel to
Ax. Let aA" = 2, AlA" =", vy =" + pp' + p'm, or
y=y" +?p+ pv,and x = 2" + A'p + Pp. Expressing
the angles under the respective axis by the notation ex-
plained in (12.)

. 7 : !
sin. #' sin.y'z
Pp == . pPM = = TR
sin. y& sin. yx
i ! sin. 3y
= 052 Py = = 'ny'.
sin. yz sin. yx
Hence,
y Y sin. yx4a'sin. a'w
y=y+ sin. ya ’
!sin. ' ! sin. o
y , & sm.2ly+y s yy
r=x" + .

sin. yx
(73.) If the axes a'Y/, a'x/, be parallel to v, Ax,
y=Yy +, w=a" +a
(74.) If yo = 90°% - sin, yo = 1, sin. 2y = cos. ',
and sin. y'y = cos. Yz, "
y =3y 4y sin. yv + 2'sin. 2,

x =2 + 2 cos. ¥'x + y' cos. Y.
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(75.) If y'a! = 90°,
y' cos. ¥z +a! sin. 2/
sin. y&

—

Yy = Y + 2

&' sin. ya' —y' cos. ya
sin. ya ’

z=a +

(76.) Ifym =ylxy — 90,)’
y=y" + sin.alz + gy cos. ',
2 = a" + « cos. ¥z — y'sin. xla.
(77.) If the two systems have the same origin, y" =0,
and 2/ = 0.

SECTION VIIL
The discussion of the general equation of the second decree.

(78.) When an equation is constructed in the manner
described in (10), its locus, if it have any, is a line in the
plane of the axes of co-ordinates, whose points are deter-
mined by supposing each variable sﬁsceptib]e of an unlimited
series of values, positive and negative, and the equation
thereby furnishing a corresponding unlimited series of values
of the other variable, and thus determining the course of the
locus. Under this view, it might appear that the locus, of
every equation whatever, was (like that of the first degree)
a line of unlimited extent. 'This would, in fact, take place
did it not frequently happen, that certain values being as-
signed to either of the variables, the equation furnishes 1m-
possible symbols for the values of the other. Such values,
since they have no arithmetical, have no geometrical repre-
sentatives; or, in other words, the locus has no point corre-
sponding to such values. Tn what manner this circumstance
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affects the figure of the locus, whether by limiting its extent
in one or more directions, or by completely circumscribing
it, is determined by certain rclations between the constant
parts of the equation. The values of these affect some-
times the form and properties of the line, and sometimes
only its position with respect to the axes of co-ordinates.
The general equation of the first degree was found to ge-
nerate a right line, whatever’ the values of the constant
parts might be, and, therefore, in this case they merely
affected the position of the line ; but its figure and properties
were independent of their particular values. This, however,
does not happen in other cases. In equations of the higher
degrees, it is found that not only the position of the locus,
but its nature, form, and properties, depend on the relative
values of the constant parts ; and that loci of different species,
that is, having different forms and properties, will be ge-
nerated by equations of the same degree, according to the
relative values of the constant parts.

(79.) The classification of the different species of lines
included under a general equation, and the investigation of
the functions of the constant parts, which characterise each
of those species, is called the discussion of the general
equation,

(80.) An equation of the second degree is one which in-
volves the variables in powers or products not exceeding two
dimensions. flence, an equation of the second degree; pre-
sented under its most general form, is,

Ay®? + By + ca® + Dy + Ea + F = 0 (a).
Where 4, 3....E represent, generally, the respective
coefficients of the dimensions of the variables admissible into
an equation of the second degree, and F the sum of all the
terms not involved with the variables.
The solution of this equation for the two variables gives
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= Bx+D+_1__ 2—4inc)a? -+ 2nD—2AE 23—
=——go T QA,\/ (B*—4ac)a?+2(np—2AE)r + (D*—4AaF) (D)
= - Bl/QC \/ (B*—4ac)y*+%(BE—2¢D)y 4 (D°—4cF) (C)-

These solutlons appear to exclude those equations of the
second degree which do not contain the squares of one or
both variables. But it will be shown in (86) that these cases
can be brought under the above solutions. In what im-
mediately follows the values of A and c will be considered
finite.

To construct the equation, let any fixed lines, v¥' . xx/,
be assumed as axes of co-ordinates. Let the suffix of the
radical in () be represented by =% and that in (c) by &'

The value of y consists
Br+D

2a

of two parts scil. —

an

24" i x
value of y in the equation
2ay + B2 4+ 0 =0, there-

fore, if the line Bp be T

the locus of this cquation, and any value, ap, be as-
. . BX+D .,
signed to x, the corresponding value of — 2_: will- be

pp! drawn through p parallel to vy’ to meet the right line
)

Bp. The other part «2/11

is real, = 0, or impossible, ac-

according as »* > 0, =0, or < 0. If »*> 0, let
R , R

m =+ o and p'm = — oG and the values of y corre-

sponding to & = AP, are M and M/, and, therefore, v, »/,
are the points in the locus.

If r? = 0, there would be but one value of y, scil. »¥,
and the corresponding point ' of the locus would be on the
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line 8. If »? <0, y would be impossible, or, in other
words, the locus would not meet the parallel pe' in any
point whatever.

In like manner the value of x consists of two parts, scil.
By +E M RE
_ iyt and .
2c 2c

B i The first is the value of
2 in the equation 2cx +

By + E = 0; there-
fore if the right line,

©F, be the locus of this
equation, and any value,
E Ap, be assigned to g, the
corresponding  value of

By will be », p/, a parallel to xx/, drawn from p to
QC P: ] 2 P p

meet the line xr. The other part 5y I8 real, == 0, or im-

possible, according as ®* > 0 = 0, or <0.

iy r'
If r2>0, let p'm = + 5o and p'm! = — B and pm and

p'm! are the values of a, corresponding to y = ap, and
m, m!, therefore the points are the locus.

If 2 = 0, there would be but one value of z, scil. y,
and the corresponding point, p', of the locus would be on
the line &'r.

If » <0, the locus would not meet the parallel, pp/, in
any point whatever.

The lines 8p and Er have the property of bisecting a
system of parallel cords in the Jocus. Such lines are called
diameters; and the cords which they bisect are called their
ordinates.

The course of the locus of the equation of the second
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degree 1s limited to that series of values of each variable
which give real values of the other. It appears that from
that series, all values of x, which fulfil the condition,
22 <0, and all values of y, which fulfil the condition, "2 <0,
are excluded. It will therefore be necessary to determine
how the sign of »? is affected by the values of 2, and how
that of r" is affected by the values of . As these circum-
stances depend on the roots of the equations, »® = 0,
and »" = 0, it will be convenient to consider the cases,
B2 — 4dac > 0, B2 — 4ac =0, and 8* — 4ac < 0. (See
Notes.)

(81.) If B® — 4ac > 0, let the roots of the equation,
r? = 0, be a', 2".

If 2, 2", be real and unequal, all values of z included

2

R .
between &' and 2", render T ane S 0, and since B2 = 4acC

>0, v »?<0; - all values of y corresponding to such a
series of values of @ are impossible. All values of > 2,
or < 2!, render r* > 0, and # = &', or @ = &', render
r¢ = 0; -. all such give real values of 7.

RQ

If 2'2" be impossible, all values of z give ———
B2 —4ac

> 0,

. ’2 > 03 *.render all values of y real.

If a = 2", all values of @ (except # = 2') render

]5_9?4176 >0, and . 1r* >0, and @ = &/, gives R? = 0;
.= all such values give real values of y.

By the same reasoning, let #'y" be the roots of the
equation ® = 0.

If y'y" be real and unequal, all values of z between ¢
and y' give impossible values of «, and all others real values
of .

If 44" be impossible, all values of y give real values
of .
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If 3/ = 7/, all values of y give real values of .

(82.) If B2—4ac=0, ' R2=2(8D —2AE)x4(D*—4AF).

If 3D — 2aE > 0, let &' be the root of &2 = 0; all values
2

2(Bp— 2AE) >0,

r? = 0; . all such values of & give real values of y. All

of ¢ > & give * »*> 0, and 2 gives

e Swp—2am) <
impossible values for y.
If (B30 — 2aE) < 0, - all values of @ > 2' give

values of ® < 2’ gi k< 0, 0 give

- R'—_"Q . .
(50— 2ax) 0, = 2 < 0, ~ all values of y impossible.
All values of # <af give ———— < 0, ** ' > 0, and

BD —2AE :

x = &' gives »¢ = 0; all values of y corresponding to such
values of x are real.

If (BD — 2aF) = 0, *.* R* = p* — 4aF, . all values of
y are real, if p* — 4aAF be not < 0, and impossible, if
(p% — 4ar) < 0.

In like manner in this case, let »'* = 2(3x — 2cpd)y +
(* — 4crF).

If 32 — 2cp > 0, all values of y > 2/, or y = ¢/, give
real values of #, and ¥ < 7/, give impossible values of .

If 3 — 2cp < 0, ¥ > % renders « impossible ; but all
other values render @ real.

If e — 2D =0, all values of & are impossible, if
£* — 4cr < 0, real if not.

It is observable that 830 — 2aE = 0, and 3E — 2cp = 0,

are fulfilled at the same time, for BD — 2AE = — QILC(BE —

2cp), on condition that B2 — 4ac = 0.
Also, if B2 — 4ac = 0, and BD — 24E = 0, (p* — 44x),
and (82— 4cr), will have the same sign, and be at the same
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2

B
4a2

(83.) If 82 — 4ac < 0, as before, let 22" be the roots of
1= 0.

time = 0, for £¢ - 4cF = (D% — 4ar).

If #'2" be real and unequal, all values of @ between a'

2

. R
and 2’ give i < 0, r* > 0,and e = 2, 2 = 2,

give ®* = 0; .+ all such values of 2 give real values of y.

B

Allvalues of 2 > &', or < &', give oyl 0, . r* <0,

*.» all corresponding values of y impossible. .
R

If 22" be impossible, all values of x give > 0,

B*—4ac
and ' % < 0, *. all values of y impossible.

If &' = a', all values of # (except « = ', or & = 2") give
E%IE > 0, &2 > 0, . all values of y impossible; but
a = &' gives R? = 0, *. y real.

In like manner, if %'%" be real and unequal, all values of
y included between ' and 7', as well as ¥ = #', and y = 7/,
give real values of 2, and all other impossible values.

If y'y" be impossible, all values of y give impossible values
of x.

If 3 = 3, all values of « are impossible, except. those
corresponding to y = gy y = y'.

(84.) To determine the conditions. by which 22" and
4'y" are real, equal, or impossible, let the equations\ R =0
and ®? = 0 be solved ; hence the roots are respectively

—(BD —2AE) +2 /AM
r= B%—4uc ’

- (3E—~2cD) £2 v/ CM
= B2—4ac ’

where @ = AE® -+ ¢D? -+ 4 = BDE = 4Acr,
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Since 4 and c are both supposed finite:

If #'2" be real and unequal - AM > 0.
If 3/'y" be real and unequal - cm > 0.
If o' = a,ory =9" - - M= 0.
If 2’2" be impossible - - aM < 0.
If y'y" be impossible - - cm < 0.

(85.) To investigate the course of the locus under the
condition, B2 — 4ac > 0.
‘ 1. Let 22" be
real and unequal;
let &' = ap, &' =
AP, and through
r and ?'let the in-
definite parallels,

yy'and y"y" to vy'
bedrdwn: No point

of the locus lies be-
Y |y tween these paral-
lels (81); but it
. . Bx' + D
-meets the line yy' at a point v, such, that po = — — o
B2 + D
218
Beyond the limits of the parallels, the locus spreads to un-
timited extent in two opposite branches (81), touching those
lines at v and /.

and the line 3"y" at the point v/, so that ¢’ = —

2. Let 22" be impos-
sible, all values of y are
in this case real (81).
Let aAp be that value
of @, which renders °r
the least possible value ;
draw ' parallel to yv/

to meet the line Bp,
whose equation is 2ay
4+ Bxr + p = 0; take
PM = 4 g, and P'M/ =
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— 1. Through the points M, ', let the indefinite parallels
bd, b'd to Bp be drawn.. Since p'm, P’ is the least value
that the radical in (b) can receive, the locus must be ex-
cluded from between those lines; but the radical being
susceptible of every magnitude, however great it extends in
two opposite and unlimited branches beyond them, touching
them at the points M, M.

3. Let o/ = &": in this case »* = (¢ — ')/ B* — 4AC,
and as all values of y are real, the equation is that of two
right lines.

Similar inferences follow with respect to the roots y'y".

1. If they be real and unequal, the curve touches two
right lines parallel to xx/, is excluded from between them,
and extends indefinitely beyond them.

2. If they be impossible, the curve touches two right
lines parallel to the diameter, whose equation 1s 2cy +
Bz + Dp = 0, is excluded from between them, and extends
indefinitely beyond them.

8. If y = 4, the equation represents two right lines.

Hence, in order that the locus of an equation, fulfilling
the character, 52 — 4ac > 0, should be a curve, it must
also satisfy the condition, Mm>, or < 0; if not, it will
represent right lines,

Curves thus characterised, are called Hyperbole.

(86.) If the squares of one or both variables be not con-
tained in an equation which does contain their product, it
comes within the character 8% — 4ac > 0. But the in-
ferences which have been just made with respect to the locus
cannot be immediately applied to this case, because they
were made on the supposition, that the equation contained
the squares of both variables. However, if the axes of co-
ordinates, to which such an equation is related, be trans-
formed by the general formulee given in Sect. VI. (72), such



46 ALCEBRAIC CLEOMETRY.

a position may be assigned them, that the values of the co-
efficients of the squares of the variables shall be finite.
In the equation
Ay +Bay + cda® + oy + vle + ¥ = 0.
Suppose 4!, or ¢/, or both = 0, but 3' finite, let the
equation resulting from transformation of the axes be
Ay® 4+ syx + ca® + vy + Bx + ¥ = 0.
Such values being assigned to the quantities composing the
formule in Sect. VI. as will render A and c finite.
From the values of A, B, ¢, in terms of 4/, ¥/, ¢/, and the
angles under the axes of co-ordinates,

(sin.g/ysin.2le — sin. 2'ysin.y/2)?

=B°

B2—4ac=(3"— 44'c") :
sinL® ya

(sin. gy sin. xa’—sin. 2'y sin,y'z)?

i ye.
The quantity (sin. 73/ sin. @' — sin. a'y sin. y/z), must be
> 0, for being a complete square, it cannot be < 0, neither
can it be = 0; for if sin. y¢/' sin, '@ — sin. &y sin. Y'w=0,
sin, gy sin. 2y
Sy Sn @
would be coincident. Hence, since the quantities 8 and

and . .+ the new axes of co-ordinates

sin.? yx are essentially positive, the quantity 82 — 4ac > 0,
in which A and ¢ are finite, and which 1s an equation of the
same locus as that in which A/ = 6 and ¢/ = 0, all that has
been proved of curves characterised by 5% — 4ac > 0: on
the supposition that o and c are finite also, apply to the
cases where A or ¢, or both, are = 0, provided that B is
finite.

(87.) To investigate the course of the locus when

B2 — 4duac =

Let ap = 2/, ap = %/, and let the indefinite parallels 33/
and xa' be drawn.

If o — 24k > 0, the locus touches ', and lies entirely
at the positive side of it.  Sce (82).
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If sp — 2k < O,
the locus touches yy/, 7]
and lies entirely at the
negative side of it.

If Be — 2cp > O,

the locus touches @/, - 2z ,/z'

v

and lies entirely at the - /

positive side of it. Al P x
If 32 — 2c¢p < 0,

the locus touches a2/, Yl ol

and lies entirely at the negative side of it.

If 8p — 248 = 0, and . also Bz — 2cp = 0 (82), the
equation is that of right lines. If p® — 4ar > 0, or = 0,
and *.- also 82 — 4¢F > 0, or = 0; but if p? — 4ar < 0,
and °.’ also E? — 4cr < 0, there is no locus.

This class of curves characterised by 3* — 4ac = 0, and
BD — 2ar finite, and consisting of one unlimited branch,
extending in one direction, are called Parabole.

Equations of the second degree, in which the square of
one of the variables and also their product is wanted, come
under the character B2 — 4ac = 0; but for the reason
before stated, the conclusions preceding cannot be imme-
diately applied to them, However, if a transformation of
axes be effected as before, it will follow that since ' = 0,
and also A’ or ¢ = 0, . 32 — 4ac = 0, for the other factor
has been proved finite (86). Hence, since by the trans-
formation, A and ¢ become finite, and at the same time
p* — 4ac = 0; those loci come under the class of Para-
bole, and the preceding references apply to them.

(88.) To investigate the course of the locus when
B® — 4ac > 0.

To fulfil this condition, A and ¢ must have the same
sign.

1. If 2’2" and - also 7/, &' be real and unequal, let
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- [ 174
Y/ 7 v Ap = 2/, A = af,
2

" — 9/ | R——/)
& / o AP =y, ap =y

£ Let the indefinite
, parallels,ys/ and y/"y"
v v to YY', and #'2' and
a L » 22" to xx'be drawn.
£ v B2+ D
Let po == oy’
X A ) 37 ps
AT & / v+
Z U= — H
T 7 ly 2a
! "
By +E By 4+ E .
pol = — %, Pl = — J—,@c—_; from (83) it appears

that the locus touches those parallels at v, v, v", v, and is
included between each system.

2. If 24", and - also y%" be impossible, no locus
exists (83).

3. If o' = af, and - also 3/ = ¢", the variables have

Bx'--D s+ B

each but one real value, scil. y= — —5—, # =— —5— 3
AN

».» the locus is in this case a point.

Hence, in order that an equation characterised by
3% —4ac < 0 may be that of a curve, it must also fulfil
the condition m > 0.

Curves, thus characterised, are called Ellipses.

(89.) To recapitulate the preceding results.

If p?—4ac> 0 and M not =0, the equation represents loci,
called Hyperbole.

- - - >0 m=0 : - Right lines.
- - - =0 Bp—2AE not =0 - Parabole.
- - - =0 8p—2aE=0, "~ 4aF not < 0 Right lincs.
- - - =0 BD—2sE=0, p?*—4ar< 0  No locus.
- - - <0 >0 - - - Ellipses.
.- - <0 M=0 - - - A point.

- - - <0 M <0 - - - No locus.



ALGEBRAIC GEOMETRY. 49

SECTION VIIIL

Qf the diameters, axes, and asymptotes of the lines of the
second degree.

(90.) In the discussion of the general equation, it was
proved that two right lines bisected systems of chords parallel
respectively to the axes of co-ordinates, Hence arose the
definition of a diameter. An inquiry naturally presents it-
self, whether every system of parallel chords has not a cor-
responding diameter.
To determine this, let
ay + bx 4+ ¢ = 0 be
a line meeting the
curve at ¢, ¢. To
consider this as one
of a system of paral-

lel chords, Iet:—ai be A 2L P

considered as given,

c . . C .
and —as indeterminate. By eliminating y by this and

the general equation, the roots ap, ap' of
2abc — sea— pba+Ea? Fa? 4 Ac2—Dca
AP —sbatcar " ° Ab*—Bba+ca? =%
which -is the resulting equation, will be the values of x for
the points ¢, ¢. Let cc' be bisected at 1, Mp be drawn
parallel to Ay,
b= ap+aph N 2abc —Bca—nba +-£a?
2 20T 2(Ab%*— Bba + ca?)
By substituting for ¢ its value in ay + b2 + ¢ = 0, and
denominating AP by @, and M by y, the equation of the
locus of M is found to be,

(36 — 240)y - (2@ == BD) ¥ 4 va — Db = 0,

x4+

' A
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This being an equation of the first degree, the locus sought
is a right line, and consequently a diameter to which the
parallel chords are ordinates. If the curve be a parabola,
the condition 8% — 4ac = 0, gives
24 (Ea —pb)
" Ba—2ab
by eliminating ¢. The co-efficients of the variables in this
equation being constant, prove that all diameters of a parabola
are parallel to the line 2ay + Bz = 0.

2
As 3}- = 24, the equation may also be expressed
 2c(ra~—0b)

BY -+ 2cx 4

28y + B2 + =0,

2ca —~Bb

PROP. XXV,
(91.) Given a diameter, to determine its ordinates.
10, If 82 — 4ac be not = 0, let the given diameter be
ay -+ bx + ¢ = 0, and its ordinates ay 4~ be +- ¢ = 0.
b 2a—3b b  2d-3sb
T Sa—2a  a T »d—2ab
Which equations determine either the diameter or its or-
dinates when the other is given.
20, If B*—4ac = 0, let the diameter be 24y + sz + ¢ =0,
jfla=sh) D fama
T Ba—2b 7 " a  2(-=dY)

PROP. XXVI.
(92.)) To find the equation of « diameter through a given
point.
The equation of any line through the given point y'a’ is
dy + Ve — (dy + ba) = 0.
This being a diameter, let its ordinates be ay + bz + ¢ =0,
o =3B — b,V = 2a — 8D, ay + U2’ = Db — Ea.
o (82—44ac)y + (BE—2¢D)
@ T T (3°—4ac)d+(zD—2ax)
Therefore the equation of the diameter is
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{(3® = 4ac)? + (B0 —24E) | (y — ) —
{(3% = 4ac)y' + (38 —2cp) }(x — o) = 0.
"The equation of its ordinates is,
R4y + Bx + D)y + (22! + By + B + ¢ =0
where ¢ is indeterminate.
(93.) Cor. 1. If 3* — 4ac = 0, and therefore
BE— 2CD B
3D —2aE 2
2y —y) + 3z — &) =0,
2y —y) + 2w — ) = 0,
(94.) Cor. 2. If B° — 4ac be not == 0, the equation of the
diameter be'mcr divided by (82 — 44ac) becomes

2
)(y~J’) (' + o == CD)( =0,

—4AC
which is a rlght line through the point,

BE —2CD \ BD — 2AE
Y= — =, al = — — ;
B2 — 4AC BY==4AC

therefore all diameters of an ellipse, or hyperbola, intersect
each other at this point, and, vice versd, all right lines

C . . .
=— the diameter becomes either of

Iy
(@ + 4:A(,

passing through this point are diameters.

(95.) De¢f. The point 2" is called the centre, and the
ellipse and hyperbola are thence called by the common name
of central curves. Since 3° — 4ac = O renders the co-
ordinates of this point infinite, the paradols may be con-
ceived to have a centre at an infimte distance.

PROP. XXVII.

(96.) In central curves, if any diameier be parallel to the
ordinates of another dicmeter, the laiter will be also pa-
rallel to the ordinates of the former.

. a0 . .. .
For, in (91), if P determine the position of a diameter,

X

— determines that of its ordinates, and vice versé.
a -

Def. Such diameters ave called conjugate diameters.
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PROP. XXVIII.

(97.) o discover whether any and what diameters intersect
their ordinates perpendicularly.
10, If 82 — 4ac be not = 0, let the sought diameter be
dly — ") + ¥ (r—a') = 0,
4" 2" being the co-ordinates of the centre; and its ordinates

b 2ca-3b
ay + bxr + ¢ = 0, by (91), o= 12?3215’ and by (32)

ad + bl — (ab + abl) cos. yx = 0; hence,
(B— 24 cos. yx)0*+ 2(a — )b -+ (2¢ cos. yx — B)d*=0,
U c—a% yv(c—Aa)*+ B2+ 2cos. ya(2ACCOS. Y& —BA—BC),

d= B—2A. cos. Y&
o . .
These values of o are always real. For if the quantity under

the radical be arranged by the dimensions of B, and equated
with zero, we shall find
B2+ 2(A+C) cos. yx. B +4Ac cos. yx +(c—A4)2=0,
which, solved for B, gives after reduction
B=(C+A) c0s. Y2+ (C— A) sin. yzy/ —1;
which beir'lg impossible, the suffix of the radical in the

values of — is always positive. 'The equations sought are *.*
a

(B — 2acos. yx) (y — y") + (¢ — A)
+ (¢ — A) + 8% 4+ 2 cos. ya (A OS. y& — BA — BC)

X (z — a") = 0.
20, If 32 — 4ac! = 0, let the sought diameter be
24 (Ea— pb)
2A_y+Bx+ 'Y _—m——— .

Since it is perpendicular to the line ay + bz 4 ¢ =0,

yr—2
2aa + B0 — (24b + Ba) cos. yx=0, .- %: ET;AyZ)s g/i'

Making this substitution
241 BE +2AD — (8D +24E) cos. ya | 0
BY—4AB c0s. yz | 4A* -

2y + Bx +



ALCEBRAIC GEOMETRY, 53

Such diameters are called axes, and it appears that ellipses
and hyperbole have two, and parabolz but one.

y
(98.) The two values of - fulfil the condition (32), there-

fore the axes of central curves are at right angles.
(99.) Hence also the axes are conjugate diameters.

PROP. XXIX.
(100.) To find the intersection of a curve with its diameter.

1°. If 82 — 4ac = 0. Let the equation of the diameter be

2ay + B2 + = 0. v
The elimination of y be- c
tween this and the ge- \/
neral equation gives

4AF 4 ¢*—2pc
2(sD —24E)

Therefore every diameter
of a parabola meets the .
curve in one, and but one / ARp ®
point.

2°. If B2 — 4ac be not
= 0, the diameter s @ (y — 3) + b (x — 2") = 0,
where 3"2" is the centre. Eliminating y, we find
A(ay"+b2")° — pajay” +ba") 4 Fa® 0

Ab*—3sba + ca® -

2% — 222 +

"The roots of which, after expunging the terms which mutu-
ally destroy each other, and dividing both terms of the frac-
tion under the radical by B* — 4ac, are

v = ol + \/ M a®
T = B2 —4ac * Ab?—Bba+ ca®
Where M retains its signification in (84).

Supposing these values of @ to be real, let ¢ be the centre,
and v, v/ the points of intersection. Since pp and »’p are the
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two values of the radical, they are equal *.* ¢cv = ¢v'; therc-
fore every diameter which meets an c¢llipse or hyperbola is
bisected at the centre. It is from this property that the centre
has received its name.

(101.) Def. The points where a diameter meets the curve
are called the wvertices of that diameter.

(102.) Def: The vertex of an axis is called a vertex of the
curve.

(103.) When a diameter of central curves is spoken of as
a finite line, that portion of the diameter intercepted between
its vertices is meant.

PROP. XXX.

(104.) To find what diameters of central curves meet them.
1t will be necessary to determine how the values of ¢ and b

affect the suffix of the radical in (100) negative, and what not.
2

The gigll of ’the factor Xzﬁ‘.;“ depends on the re-

a
~ Bba 4 ca®
lation of the values of ¢ and 0 to the roots of

0 b . b B4+ B —dac

A—==B—+c=014i¢ —=——or-—,
al a+ ? a 2A

b
Let these values of = be r, 7. If they be real and un-

. b
equal, scil. if 3* — 4ac > 0, all values of " betwesn 7 and

a® b b
— —_— = == f e
a0%—Bba —z—ca2 <0 H oL =T

7 render

ar b
i on is infinite; and f — have any value >
ab?—3sba+ ca® Hite; an J i
aQ
— > 0.
or < 7, Tt
If  and #' be 1mposs1ble5 scil. if 82 - dac < 0, all values

) * .
- e —— >
of @ render A —sbatcat ~
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The roots # and 7/ cannot be equal, for then 3%—4ac=0,
which is contrary to the hypothesis.

If 32— 4ac > 0, and M > 0, the factor — <0,

B2 — 4iac
therefore the real values of x are those corresponding to

a? b
e < 0, or to those values of — intermediate
Abt —Bba+ ca? a

between # and 7, and the impossible values are those which
b .
correspond to values of - >r,or <7, Let the diameter

sin. dx
sin. dy’

be called d, *.* —i—;—:: Through the centre c, let

the lines ss and s's' be drawn, so that, calling ss, Z, and
sin. Iz . osin. Ja
O T b
s, I, r = = X —.
sin. Jy sin. Iy
In order, therefore,
that a diameter d
should mect the curve,
sin. dx
sin. dy

sin. o

>———, and
sin. Jy’ g /

sin. lx »
. The lines

must be

sin. Iy
ss and s's' extend ad
infinitum  without
meeting the curve.

"Those diameters fulfilling the condition M, > SM, or
sin. dy’ ~ sin. ly

sin. J'x

sin. y’

s'cs include between their sides all those diameters which

meet the curve, and consequently include the curve itself’;

and the angles s'cs' and scs' include all those diameters which

do not meet the curve. Hence the angles scs' and
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do not meet the curve, and consequently exclude the curve
itself.
(105.) The values of r, 7', being

b BE /B2 — 4dac

a 2A
Since wﬂ:*ﬁi:::‘:, the values of 7, +,
24 B}/ B2—4aAc

may be expressed thus,

B+ /B —4AC
24 ?
2c

" B4 vB—dac

7r =

uations of the lines ss and s's' are therefore
The equat f the ] d ¢'s' are therefore,

2(y — ") + (B + /87— dac) (x —a") = 0,
2c(x — &") + (B + /B2 — 4ac) (y —y") = 0.
Though these right lines pass through the centre, yet they
are not diameters, for if they were, the equation of their
ordinates would be (92) respectively,
28y + (B2 4/ B — dac)a + ¢ = 0,
2 + (B + /B = dac)y + ¢ = 0.
That is, the ordinates would be coincident with the diameters
themselves, which is contrary to the definition of ordinates.
(106.) These lines, therefore, are not themselves diameters,
but may be considered as the limits of diameters. 'They se-
parate those diameters which meet the curve, called #rans-
verse diameters, from those which do not meet it, called
second diameters. As the diameters, both transverse and
second, approach to coincidence with these lines, they also
approach to coincidence with their ordinates; and the lines
ss and §'s' are the limits at which that coincidence actually
takes place: these lines are called asymptots.
(107.) From the position of transverse and second dia-
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meters, it is plain that the ordinates of the former intersect
the same branch of the curve, but these of the latter opposite
branches.

(108) If B® — 4ac > 0, and M < 0, inferences similar
to those already made will follow, with this difference, that
the angle sc¢/, scs/, will then include the curve; and the
diameters which mect it and the angles scs!, s'cs, include
the second diameters.

(109.) If 82— 4ac < 0. 1In this case, if the equation re-
present an ellipse, m > 0, therefore — Ez——_n-lm> 0; but the
values of 7, 7/, are impossible, and therefore
m—%m > 0, hence the values of z, in (89), are al-
ways real and unequal, therefore every diameter of an ellipse
intersects it in two points.

(110.) If the axes of an ellipse be unequal, the greater is
generally called the transverse, and the lesser the conjugate
axis. In an hyperbola, the axis which meets the curve is
called the transverse, and the other the conjugate axis.

SECTION IX.

Of the different jforms of the equations of lines of the second
degree, related to different axes of co-ordinates.

(111.) That an equation of the second degree should in-
clude under it any or all of the three classes of curves which
have been investigated in the discussion, it is not necessary
that every dimension of the variables, consistent with its ge-
neral character, should be found among its terms. A term
wanted does not necessarily render the equation less general,
if its gencrality be estimated only by the curves included
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under it. But, in another sense, the generality is always
impaired by such deficiency, which, though it may not ex-
clude from the extension any of these classes of curves, yet
it may restrict the curve in its position with respect to the
axes of co-ordinates by which the equation is constructed.
As this circumstance gives great facility to the develop-
ment of the properties of lines of the second degree, it will
be useful to ascertain the form of the equation, (that is, the
terms of which it consists,) corresponding to certain par-
ticular positions which the curve may assume with respect
to the axes of co-ordinates.

PROP. XXXI.

(112.) To find the form of the equation when the curve
passes through the origin of co-ordinates.
In order that this should happen, the conditions y = 0
and x = 0, should be co-existent, *.* ¥ = 0, “.* the form is
Ay® + B2y + C2® 4 Dy + Ex = 0.

PROP. XXXII.

(118.) 70 find the form of the equation when o diameter
and its ordinates are parallel to the axes of co-ordinates.
The diameter, whose ordinates are parallel to Y/, is

2y + x4+ D=0
In order that this should be parallel to xx/, the condition
B = 0 is necessary ; therefore the form sought is
Ay® + c2® + py + B2 + r = 0.
In this case, also, provided that A and B are both finite, the
diameter
2ox 43y + 5 =0,

has its ordinates parallel to xx/, and therefore the curve is

central, and the axes of co-ordinates parallel to a system of

conjugate diameters.



ALGEBRAIC GLOMLTRY. 59
PROP. XXXIII.

{114.) T'o find the jform of the equation when either axis of
co-ordinates is coincident with o diameter whose ordinates
are parallel to the other.

In addition to the condition B = 0 in (113) let » = 0,
then the diameter 2ay + 3z + p = 0 will be coincident
with xx/, in this case the form is

ay* 4+ ca® + Ex +F =0,

(115.) But if in addition to 3 = 0, also & = 0, then the
diameter 2cx + By + £ = 0 will be coincident with vY/,
and the form will be

Ay® + ca® 4+ py + 7 = 0.

In this case, if r = 0, the origin is at the vertex of the

diameter, and the equation becomes
ay* + cx* 4 B2 = 0.

(116.) If all these conditions, 8 = 0, £ = 0, b = 0, be
fulfilled together, the axes of co-ordinates coincide with a
system of conjugate diameters, and the form is

AY* + ca* +F =0.

(117.) In any of these cases, if the origin be on the curve,
the form is had by omitting ¥.

(118.) In case 3 = 0, if the curve be a parabola, a or ¢
must also = 0.

PROP. XXXIV,

(119.) To find the form of the equation when the centre of
the curve s at the origin.

The co-ordinates of the centre in (94) must each = 0, in
order that the centre should be at the origin; .
BD — 2AE = 0, BE — 2cp = 0.

If o and = were finite, these equations would give

B2 — 4ac = 0, which united with ecither of the above con-

ditions, would render the equation ecither impossible, or that
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of right lines; therefore, in order that the equation shouid
be that of a curve, the conditions must be satisfied by o =0
and £ = 0, which shows that when the centre is on the
origin, the form is

Ay® + Bay + ca® + ¥ = 0.

PROP. XXXV,

(120.) To find the form of the equation of the hyperbola
when the awxes of co-ordinates are, one or both, paral-
lel to the asymplots.

In order that ss (105) should be parallel to yv', 4 = 0,
and in order that §'s' should be parallel to xx/, ¢ = 0, and
in order that both should take place together, A = 0, ¢ = 0;
hence,

(121.) If an asymptot be parallel to xx/, the form is

Bry + cx® + vy + Ex + F = 0.

The equations of the asymptots are in this case

(x— a2 =0, ora + —DI; =0,

(@ — ) + 3(y — o) = 0.
(122.) If an asymptot be parallel to xx/, the form is

Ay® + By + vy + v 4 ¥ =0
and the equations of the asymptots are
E
y + Y = 0,
Aly — ¥") + Ble — 2") = 0.

(128.) If both axes be parallel to the asymptots, the

form is
By -+ DY + v 4+ 1 =0;

and the cquations of the asymptots are

D E
x—}«—;:, y—l—-;io.

i
N

(124.) If an asymptot be coincident with v/, . a
5 = O therefore the form is
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ca? 4 By + Bx 4 7 = 0;
and the equations of the asymptots are
z =0, cx+ B(y—y") = 0.
(125.) If one asymptot be coincident with xx/, ¢ =0,
E = 0, the form 1s
Ay* 4+ Bxy + By + D = 0;
and the equations of the asymptots are
y=0, ay + Bl@ —2a") = 0.
(126.) If both asymptots be coincident with the axes of
co-ordinates,
A=0,¢c=0,0=0, 8=0;
Bry -+ F = 0.

PROP, XXXVI.

(127.) To find the form of the equation of the parabola
when one axis is a diameter and the other parallel to its
ordinates, the origin being at its veriea.

If the equation be that of the parabola, ¢ = 0, and the
origin being on the curve, ¥ = 0, therefore the form is
ay? + Ex = 0.

PROP. XXXVIL

(128.) To express the equation of @ central curve related to
a system of conjugate diameters as axes of co-ordinates,
and in terms of those parts of the diameters which are
intercepted within the curve.

. F .
In (116) y = O gives a® = — - and @ = 0 gives
F ¥ . F e
y? = — —, let — — = a®% and — — =8 If the curve
A c A

intersects the axes of co-ordinates, 24’ and 28’ will be the
parts intercepted, and the equation sought is
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A’QyQ + B2 = A!szlq;

A" being positive, or made so by changing the signs, the
curve will be an ellipse, if 8> > 0; an hyperbola, if 8% < 0,
for 82 — 4ac = — 4482,

(129.) If a? = r"® = B" and ya = 90°, the equation is

ya + a® = L LA

In this case the curve is a circle, since all points are a given
distance r' from the origin.

(180.) To express the equation of the circle in its most
general form, the origih and inclination of the axis should
not be limited. A circle being defined to be a curve, every
point of which is equidistant from a fixed point ¥, its
equation must be (44)

(4 — 9) + (@ — @) + 2y — ) @ — &) cos. g =
or y? 4+ 2cos. yx . yxr + 2* — 2(Y' + &' cos. yx)y —
2(a + 3y cos.yx)x + y* + & + 22’ cos.yx — v? = 0.
Hence the general equation represents a circle, if Ao = c
and the axes of co-ordinates are assumed at an angle, whose

. . B
cosine is 5.
(131.) To express the equation,
Ay? + ca? 4 Ex = 0.

In terms of the conjugate diameters ; if y =0, the value of
x being 24/,

E E
Ol = — e Al =
) ¢’ 2c’
if & = 4/, the value of y will be &, -.
E2
B = —
4ac
A e
hence — = — —-, and the equation becomes
¢ B

ARy 4 B%? — 24’8y = 0.



ALGEBRAIC GEOMETRY. 63

SECTION X.

Of the equations qf tangents, normals, subtangents, and
subnormals.

Previous to an investigation of the properties of .those
curves already defined, it will be necessary to determine the
equations of certain lines related to the curve, and on which
those properties depend.

PROP. XXXVIII.

(182.) To express the equation of a line passing through a
given point and touching a curve of the second degree.

Let the value of y in
the equation a(y — ¥') +
bz — &) = 0 of a right
line (em) passing through
the point (r) y'' be sub-
stituted in the general
equation of the second

degree, and the result
solved for a, gives an A L
equation of the form

m + a ~/v'%a*— 2rab + r*b®
v= ) ?
in which &2 and =" represent the quantities under the
radicals in (80) (b) and (c), 3¢’ being substituted for y,
and
— » = (¢ — 4ac)ya’4(8p — 2AE)y'+(3E — 2cD)2’!
— (DE — 2BF);
the values of m and n being of no importance to the present
inquiry.
In like manner the value of & in the equation of the line
M being substituted in the general equation, and the result
solved, for y gives




64 ALGEBRAIC GEOMETRY.

m' + b /v — 2rab - n0?
n ‘
The line is a tangent when the points a and m' unite as in
pm, therefore they must have the same co-ordinates ; hence,
r'%a? — 2rab 4 R = 0,

which gives

b r+2yuF
ST
a pt+2yur
or == s
b 12
and therefore — = —
¢ p4+24/ My

Where u represents the formula (84), and
¥ = ay” 4 saly' + ca” + py + EX -} 13
hence, the equation sought is
2y — o) + (¢ + 2 vurF) (v — &) =0.

Since the radical is susceptible of two signs, there may be
two right lines from the same point touching the curve;
thelr equations may separately be represented thus,

Ry — ) + @ + 2 Vur) (z —2) = 0,
(e — &) + (» 4+ 2 /M) (y — 3/) = 0.
(133.) If the point '2' be on the curve ¥' = 0, and
r ®% ® Qca'+By+E
T TR T o
therefore the equation of a tangent to a point %2’ on the
curve is

(2ay'+ 32’ +0) (y—y) +(2c2' + 3y + ) (x—2') = 0.

Hence, and by (92), it follows that the ordinates to a dia-
meter are parallel to tangents through its vertices, and that,
therefore, these tangents are parallel to each other. It also
follows, that the tangents through the vertices of a diameter
are parallel to its conjugate.

(184.) De¢f. A right line passing through the point of con-
tact, and perpendicular to the tangent, is called a normal.
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PROP. XXXIX.

(135.) To find the equation of the normal.

From the equation of the tangent and the formula
in. (89), it may be inferred that the equation of the nor-
mal is

[(Rca! + By + 1) — (2ay' + B2’ + D) cos. y&l(y — V)
~[(2ay' + B2’ +0)— (22’ + BY + E) cos. yz] (x— ) = 0.

PROP. XL.

To find the subtangent.

(186.) The portion '8
of either axis of co- )
ordinates intercepted
between the points
B, P, where the tan-
gent and a parallel
P'r to the other axis
through the point ®/
of contact intersect it,
iscalledasubtangent.
In (133) the value of
(#' — @) corresponding to 7 = 0 is the value of the sub-

¥

tangent s on the axis of #, and the value of (3 — y) cor-
responding to @ = 0 is the subtangent s' on the axis of 3
therefore

' 24y B2+

S= =Y G Loy
2ca’ 3y 1

g = , 2ca'+By -+ E

B TUES TR

PROP. XLI.
(187.y To find the subnormal.

A vportion, pr, of cach axis of co-ordinates similarl
2 M y
»
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situated with respect to the normal and the parallel pr' is
called a subnormal, and its value is found in the same
manner from (135),
(2ca' + By +£)—(24y + B2+ D) cos. Y
s=—9 "(28y + 32’4+ ) — (2ca’ + BY +E) cos. ya’
, (2ay'+32' 4+ 0) —(2ca’ + By +E) cos. Yz
*(2ca' + 3y +8) —(28y + B2'+ D) cos. ya’

§ = —ux

SECTION XI.
Of the general properties of lines of the sccond degree.

PROP. XLII.

(188.) If several pairs-of intersecting right lines parallel
to two right lines given in position meet a curve of the
second degree, the rectangles under their segments inter-
cepted between the several points of intersection and the
corresponding points of occurse with the curve, will be in
a constant ratio.

I Let the axis of co-or-
dinates be those lines which
meet the curve, the points
where they intersect it are

F found by supposing suc-
~ cessivelyy=0and x =0
AP P in the general equation,

and are therefore deter-
mined by the roots of
cx? + vr + F = 0,(2)
Ay + oy + F=0,(3).

F F
Hence, ar x AP = + o and Ap x ap'= + o therefore
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ApX AP A

Apxap ¢
The values of A and ¢ are not affected by a trans-
formation of origin without a change of direction, and there-

fore, since the axes of co-ordinates are supposed parallel to
c . . AL
right lines given in position, — 1s constant.
¢

(189.) Cor. 1. If the roots of (2) or (3) or both are
equal, the lines ax or ay or both will be tangents, and the
rectangle under the roots is the square of the tangent;
hence the proposition (188) is extended to the squares of
tangents intersecting secants or intersecting each other.

(140.) Cor. 2. Ifaorc =0
in (2) or (8), the equation in

4
which this takes place has but y
one root, and the secant in-
tersects the curve in but one P
point.
(141) Cor. 8. If ¢ = 0, X

the right line Ax intersects the /A' P\
curve but once, in this case
Ap X Ap' & AP,

(142) Cor. 4. If
A = 0, in like manner Y
Ap meets the curve
but once, and

AP X AP o€ AD.

(143.) Cor. 5. If b
A = 0and ¢ = 0, each /\\
of the lines ax and Ay
meets the curve but A P B
once, and AP 0 Ap.

(144.) Cor. 6. If
when A = 0, or ¢ = 0, B be finite, the curve must be an

2
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hyperbola, and Ay or

Y
ax is parallel to an
asymptot. Hence, in an
hyperbola, if ap be pa-
o] rallel to an asymptot,
/ \ and App/ be a secant
/A_ TN Z parallel to a line given

- in position,
; Ap X Ap' 0 AP.

(145.) Cor. 7. But if o = 0or ¢ = 0, and also & = 0,
the curve must be a parabola, and Ay or ax a diameter.
Hence a similar inference follows with respect to the dia-
meter of a parabola, as the parallel to the asymptot of an
hyperbola scil., if Ax be the diameter, Ap X Ap > AP

(146.) Cor. 8. If A =0 and ¢ = 0, the curve is an
hyperbola, and the lines ax and Ay are parallel to the asym-
ptots. Hence, in this case AP 2 ap.

(147)) Cor. 9. By (141) and (144), it appears that a
parallel to the asymptot of an hyperbola and a diameter of
a parabola intersect the curve but once.

(148.) Cor. 10. In central curves the rectangles under
the segments of secants are as the squares of the diameters
to which they are parallel.

(149.) Cor.11. In central curves the squares of the
ordinates are as the rectangles under the segments of the
diameter to which they are applied.

(150.) Cor.12. In a parabola the squares of the or-
dinates to any diameter are as the intercepts between therm
and the vertex of the diameter to which they are applied.

(151.) Cor.13. In a circle the rectangle under the seg-
ments of secants and the squares of tangents drawn through
the same point are equal.

(152.) Cor.14. In central curves intersecting tangents
are as the parallel diameters,
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(158.) Cor.15. If ap, a¥ (fig. to Art. 157) be tangents,
and pcE be parallel to ap, then pc: pr:pE. For
DC X DE:DP%:: AP?: AP?:: DF?: DP%
PROP. XLIIL
(154) To express the equation of a line joining the points
of contact of two tangents drawn from a given point.

In the equation found in (133), let yx be considered con-
stant, and the co-ordinates z'a' of the point of contact
variable, and their denominations consequently changed, the
equation becomes

(2ay'+ 84 +0) 3+ (22’ +8y' + E)2 + py' 412+ 2F =0,
by considering that the point yx must fulfil the conditions
of the general equation of the curve.

PROP. XLIV.

(155.) The line joining the points of contact is an ordinate
to the diameter passing through the point of intersection
of the tangents.

Tor the equation found in (156) is that of a line parallel
to the line whose equation is found in (92), as that of the
ordinates of a diameter through y'a'.

PROP. XLV.

(156.) T'he locus of the intersection of tangents through the
extremities of a chord parallel to a line given in position
is the diameter to which that chord is an ordinate.

For tangents through the extremities of any ordinate in-
tersect on the diameter to which it is an ordinate.

PROP. XLVIL
(157.) Every secant drawn from the point of intersection of
two tangents, and meeting the curve in two points, is cut
harmonically by the curve and the line joining the points
of contact.

Suppose the intersection s of the tangents, the origin, and
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the secant (acc'), the axis of
2; hence,

Ac X adl = 4+ —,

ald ol'd

and ac + acl = —

In the equation (154) of
the line joining the points of
contact, let y=0,which gives

2acx acd

ot ad’ and hence, ac, as,

2r :
AB = — —— therefore a3 =
E

Ac are in harmonical progression.

(158.) Cor. If acs intersect the curve in but one point c,
a3 will be bisected at ¢, since in that case Ac' is infinite, and
therefore the ratio of ac to aB is 1:2. This takes place
when ac is the diameter of a parabola or parallel to the

asymptote of an hyperbola.
PROP. XLVIL

(159.) To find the locus of the intersection of tangents
through the extremities of a chord passing through a
Ziven poind.

In the equation found in (154), let the variables yz be
changed into constant co-ordinates (/') of the given point,
and let the co-ordinates z/a' of the point of intersection of
the tangents be changed into variables yx, and the equation
becomes

(249 + 32+ )y +(2ca'+ BY' + E)r 40y + E2' 427 =0.
Hence, the locus sought is a right line parallel to the or-
dinates of the diameter passing through the given point,
and intersects that diameter when the tangents through the
extremities of the ordinate through y'«' intersect it.

(160.) Cor. Hence, if the given point be upon the axis
the locus will be a right line perpendicular to the axis.
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PROP. XLVIIL

(161.) The lines joining the points of contact of every pair
of tangents drawn from points in any right line intersect
cach other at the same point.

For if the diameter be drawn whose ordinates are parallel
to this right line, and from their point of intersection two
tangents be drawn, the point at which the line joining the
points of contact of these tangents intersect the diameter, is
that through which the line joining the points of contact of
every such system of tangents pass.

(162.) Def: Any diameter being axis of @, and a tangent
through its vertex axis of 7, the equation is

Ay? 4+ ca® + Ex = 0,

. . E .
The line representing — — is called the parameter of the
P 12) " 4

diameter, which coincides with the axis of .
To express the equation of the curve in terms of the
parameter p we have
E 28"

p:-———:

A Al

by which substitution the equation becomes
ka +—2%x2——pac=0.

Tt appears that the parameter of any diameter of an ellipse
or hyperbola is a third proportional to the diameter itself, and
the diameter conjugate to it.

(163.) D¢f. The parameter of the axis is called the
principal parameter.

(164.) Def. A point of the awis, whose ordinate is equal
to half the principal parameter, is called the focus.

PROP. XLIX.
To find the distance of the focus from the vertex.

Let the equation be
Ay* + ca* +ux =0.
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. E . : .
In this, — a being substituted for ¥, the result is

daca® + 4AEx + £* =0,
the roots of which are

_ Eg§ . \/ A—C
x = 201 15 " %
The value of x expressed as a function of the semiaxes
A’ is

12
r=20 74/ 1=5y = v F vF

If the curve be an ellipse, A'® and B have the same sign,
and therefore the value of x is real only where A’ > 3!
Hence, there are no_foci on the lesser axis of an ellipse, and
there are two on the greater axis, equally distant from the
centre, and the square of their distance (¢) from the centre
is equal to the difference of the squares of the semiaxes; i. .

¢t = Al* — g

If A' = B/, the distance between the foci vanishes, and
they both coincide with the centre, which takes place when
the ellipse is a circle.

The quantityi—, is called the eccentricity of the ellipse,

and therefore a circle is an ellipse whose eccentricity = 0.

If the curve be an hyperbola, o’ and 8 have different
signs. In this case, if A” > 0 and 8% < 0, the value of x is
real, and ¢ = +/A* + B?; but if A* < 0 and 3% > 0, the
value of 2 is impossible. Hence, in an hyperbola there are
no_foct on the one axis, but two on the other equally distant
from the centre; and the square of their distance from the
centre is equal to the sum of the squares of the semi-
axes; % €.

¢t = A — B2,

If the curve be a parabola, ¢ = 0; therefore one value of
x becomes infinite, and the other is — % = 1p, where p ex-
presses the the principal parameter.

Hence, in a paraboie there is but one focus on the axis at
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a distance from the vertex equal to a fourth of the principal
parameter.

. The axis passing through the foci of an ellipse or hyper-
bola 1s the transverse awis, and the other the conjugate
axis.

(165.) De¢f: 'The right line, which is the locus of the in-
tersections of tangents drawn through the extremities of any
chord passing through the focus, is called the directriz.

PROP. L.

(166.) To determine the position of the directriz.

The equation related to an axis and a tangent through its
vertex being
Ay* 4+ cx? 4 Ex = 0;
and the co-ordinates of the foci being

. y_ _E \/A‘——C)

the equation of the directriz must be (159)

= \/A 1¢=0;
x—Qc{ A—cC }_ ’

but if ¢ = 0, the equation of the locus is

w—w’:O,orm—«%:O.

If the curve be the ellipse or hyperbola, the equation of
the directriz expressed as a function of the aves, is
AQ
r=A+—.
c

. . . . A?
Hence the distance of the directrixz from the centre is P

An ellipse or hyperbola has therefore two directrices
equally distant from the centre, and perpendicular to the
transverse axis, and a parabola but one, which is also per-
pendicular to the axis.
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SECTION XII.
The properties of the ellipse and hyperbola.

PROP. LT,

(161.) 4n ellipse or hyperbola being expressed by an equa-
tion related to its axes as axes of co-ordinates, to express
the lengths of any semidiameter, and its semiconjugate, in
terms of the co-ordinates of its vertexr.

B Let 32’ be the vertex of the
B /] D given semidiameter ¢cp = A,
/*\ Ale =ylz + xle;
E 5] A but by equation of curve
A% 4 3% = A%BY
hence,

AQBQ + cexlg
=8+ e’

A% =

erm——————— C .
Wheree = + A% — B%and ¢ = T the distance of the focus

from the centre.
The equation of co being yx' — y'vr = 0, that of cF its
conjugate must be, (92),
A%y + Ble = 0.
By this equation, and that of the curve, the co-ordinates of
their intersection are,
!
y = -I%J’ xXr = %.
Therefore, if ¢r = 8/,

B2 A%y’g A* — o2yle

2

B

A ' Be a® 7’
or 3” = A% — 222,
In the ellipse A > ex/, and in the hyperbola A < ea';
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hence, in ellipse A" and 8% are both positive; but in the
hyperbola B is negative, *.* B' is impossible, *. in each sys-
tem of conjugate diameters of an hyperbola, one is a trans-
verse diameter,and the other a second diameter.

PROP. LII

(168.) In an ellipse, the sum of the squares of any system
of conjugate diameters is equal to the sum of the squares
of the axes; and, in an hyperbola, the difference of the

squares is equal to the difference of the squares of the
axes.

For, by adding the values of A and 8", in (167), the
result for ellipse is,
A" - B = A%+ B%
And, since in hyperbola 8 and B2 are both negative,
A% — B2 = A% — B2,
(169.) Cor. Hence, if the axes of an hyperbola be equal,
every system of conjugate diameters will be equal: such a
curve is called an equilateral hyperbola.

PROP. LIII.

(170.) Tofind the relation between the angles, at which any
two conjugate diameters are inclined to the transverse
axis.

By (167) the equa-
tions of ¢p and cF are,

yx' — Yz =0,
AyYly + B%2lr = 0,
hence, o C A
/ 2 ol
B2Y
tang. pca = %,—, and tang. Fca = -- yOYE therefore,
-

tang. DCA X tang. FCA = — —E
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In the ellipse, therefore, the product of the tangents is
negative, and therefore they must always have different
signs, . the angles must have different affections. Hence
if cp lies in the angle Bca, cr must lie in the angle BcE;
and if ¢p lie in Beg, ¢r must lie in Bca.

In the Ahyperbola the same product is positive, since B is
negative, and therefore ¢p and cr lie both in the same
angle.

(171.) Cor. 1. In an ellipse, if a second system of con-
jugate diameters were at right angles, it would be a circle ;
for in this case tang. pca. tang. ¥ca 4+ 1 = 0, therefore
B2 = A% therefore the curve would be a circle.

(172.) Cor. 2. In an hyperbola, if B* = A% tang. DCA.
tang. Fca = 1, hence in an equilateral hyperbola, the con-
Jjugate diameters make complemental angles with the trans-

verse axis.

PROP. LIV,

(178.) To express the polar equation of an ellipse, or hyper-
bolay the centre being the pole, and the angle being

measured_from the transverse axis.
By (167) A" = % + e%?, for A’ substitute 2, and for x
BQ
% cos. w, and the equation will become z* = 7————7-,
1—e2 cos? w

which is the equation required.

PROP. LV.

(174.) Diameters which make equal angles with the trans-
verse axis are equal.

For z in the last Prop. is a function of cos.? w, and if two
liameters make equal angles, the angles which they form,
when measured in the same direction, are supplemental : the
squares of their cosines are equal.
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PROP. LVI.

(175.) To find the greatest and least diameters.

The value of z in the polar equation isa maximum, wher
ecos. wis a maximum, Intheellipsee < 1, ecos. w < 1,
*» 1 — ¢cos. wis a minimum, when cos. w a maximum, 4. e.
when w = 0. Also z is a minimum, when cos. w a mini-

z .
mum, ¢. ¢. when w = 5 Hence, in an ellipse, the greatest
diameter is the transverse axis, and the least the conjugate
axis.

In the hAyperbola, =z will be infinite when cos® w =
1 s
T T Al Y
the values of = are impossible, and between it and unity

. Between this value of cos. w, and cos. w = 0,

they are continually diminishing.

Hence, if a line be drawn through the centre, represented
by the equation y — tang. w.x = 0, or Ay — Bx = 0, all
the diameters between this line and the transverse axis meet
the curve, and all between it and the conjugate are second
diameters. Hence the least transverse diameter of an hy-
perbola is the fransverse axis.

(176.) Cor. 1. The line represented by the equation,

Ay — Bx = 0,
is an asymptote (105) for similar reasons: the other is,
Ay + sz = 0.

PROP. LVII.

(177)) The asymptots of an hyperbola make equal angles
with the transverse axis, and are the diagonuls of a rect-
angle, formed by lines drawn through the vertices of each
parallel to the other.

For the tangents of the angles which they make with the
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transverse axis measured
in the same direction, are

5 N - N 2 B B .
P + —, and — —, which are
A A
E S A therefore supplemental, and
therefore the angles Hca,

/ H'cE are equal, * cm, cn'
are the asymptots.
PROP. LVIIL

(178.) To find whether any and what system of conjugate
diameters in an ellipse are equal.
In order to be equal they must, by (174), make equal

angles with the axis, " tang. pca = tang. rca, but
2 B
tang. DCA . tang. FCA = — ——=, " tang. Dea =—, and
B . .
tang. FeA = — —, the equation of the equal conjugate

diameters are,
Ay —Bx =0, Ay -+ sxr =0.

(179.) Cor. 1. The equal conjugate diameters are the
diagonals of the rectangle, formed by tangents through the
extremities of the axes, and are in that respect analogous to
the asymptots of an hyperbola.

(180.) Cor. 2. If an ellipse and hyperbola have the same
axes, the equal conjugate diameters of the ellipse are the
asymptots of the hyperbola.

(181.) Cor. 8. The equation of the ellipse, referred to
equal conjugate diameters as axes of co-ordinates, is
2® + 2% = A", being analogous to that of the circle.

(182.) Cor. 4. The co-ordinates of the vertices of equal
conjugate diameters are found from the equations

Ay — 3z = 0, and A’y® + B%? = A%B%



ALGERRAIC GEOMETRY. 79

They are, therefore,

.3 L A

Y = o = X = = =,
Y= V2

(183.) Cor. 5. If a'be one of the equal conjugate diameters,

Q 2
ge AT

.

(184.) Cor. 6. The value of « in the cor. 4. being inde-
pendent of 3, and that of i independent of a, shows, that if
one axis of an ellipse is given the locus of the extremities of
equal conjugate diameters are parallel lines.

PROP. LIX.

(185.) To find when the rectangle, under a system of con-
Jugate diameters, is a maximum and minimum.

By (167), A'* = 3> + ¢%® 8° = A% —e%?, . A% =
(4% — %) (3* + e22?).

For the ellipse, the factors of this product have the
same sign, *.* their sum is constant, -.* the product is a maxi-
mum when they are equal; hence, the major limit is the
equal conjugate diameters.

It is evident, also, the product is a ménimum when they
are most unequal, ¢. e. when x is a maximum, *.- & = A;
hence the minor limit is the axes.

For the hyperbola, the factors have different signs, there-
fore their difference is given, consequently there is no major
limit. The minor limit is found by taking 2 a minimum,
i, e. x = A, *. the minor limit is the axes.

PROP. LX.

(186.) To find the limits of the sum and difference of a
system of conjugate diameters.
Tet s = A’z + B2 + QA/B', and D2 = A/z + B2 e QA’B'.
In an ellipse, 4" + 8" is a given magnitude, -.* s is a
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maximum or minimum at the same time with a's'; hence,
the major limit is the equal conjugate diameters, and the
minor the axes.

For the same reason the major limit of o is the difference
of the axes, and it has no minor limit.

In the Zyperbola, A'* — B2 is constant, and *.* since A’ in-
creases without limit, 8’ must also increase without limit, and
- s must increase without limit.

Also, since sp = a” — 3%, and s increases without limit,
p must diminish without limit.

Also s is a minimum where a' and 8' are so; . e. where
they are the axes. It is evident that » is at the same time
a maximum,

PROP. LXI.

(187.) 4 system. of conjugate diameters being axes of co-
ordinates, to find the equation of a tangent through a
given point.

The given point being 7/a!, the equation sought by sub-
stituting for a2y + B2, its value 48" is,
A%yly + Bdx = a"B".

PROY. LXII.

(188.) To express the subtangent and subnormal of an
ellipse and hyperbola related to a system of conjugate
diameters as axes of co-ordinates.

Let s = subtangent, s = the subnormal, and § = the
angle under the conjugate diameters.
Al AY'% cos.f — B yla!
v 0T A%yl — B cos. §*

: o
. . A
For the ellipse a"%y/? = 8'2(a"2 — 2/?) "o s == — - 2. And

By the formula, in (136), s =
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. B!
if A, B, be the axes of the curve =+ For the
Al
hyperbola A%y = B(2'* — ), "0 s = &' — —; andif
, B!
A', ' be the axes of the curve s = T

(189.) Cor. 1. Since in ellipse
a2
cH=a'+s= o) and in hyperbola

A2 X
cu=a —s = It follows that,
in an ellipse or hyperbola, if a tangent

and ordinate be drawn from any point
D to meet the same diameter, the

semidiameter is a mean
proportional  between
the parts of the dia-
meter intercepted be-

tween them and the
centre.

(190.) Cor. 2. The
value of s, being independent of /, is the same for any num-
ber of ellipses or hyperbolas described on 24’ as diameter,
and having the conjugate diameters coincident with cr.

PROP. LXIIL
(191.) To empress the magnitude of the normal related to
the axes, as axes of co-ordinates.
If s be the subnormal, and #'2' the point on the curve, N
being the normal, x* = s* + %*; but by the last Prop.

4,02 C adgle 4,12
P ot o M
a*? A%

But A%/ = as? — B%%, ' A% 4 B = B(A* — c22).

2

iw
o (&)

N® = (A2 — ex?).

23
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PROP. LXIV,

(192.) Any semidiameter is a mean proportional between the
parts of the tangent which is parallel to it, intercepted be-
tween the point of contact, and any system of conjugate
diameters.

Let the semidiameter c¢p
through the point of con-
tact, and its conjugate cF
be the axes of co-ordinates,
and let cv/,and c¥' be any
other system of conjugate
diameters.

The point p' being 2"/, the
equation of cp' is

yx' — Yz =0,
and that of cr' is
A%y + slale = 0.
In each of these, let A’ be sub-

stituted for x, and the cor-
responding values of y are,

;
DT = ﬁz, and o1/ = —~ -ﬁ.
z . AY
Hence, DT X DT = — B
The sign being negative for the ellipse, and positive for the
hyperbola, shows that they are at different sides of ¢ in the
one, and on the same in the other.

PROP. LXV.

(193.) The triangles formed by ordinates to any diameter co
Jrom the extremities of a system of conjugate diameters,
and the intercepts between them and the centre are equal.
For if the point v’ be g/, the co.ordinates yz of the point
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! ol
¥ are by (167), ¥ = B%, w="2,

Since the angles y'#/, and ya are supplemental, their sines
are equal, therefore the area of the one triangle is

12 si
2 sin. yx .
‘y—T'g—, and of the other is
yrsin, yr B’ Al sinoyx el sin yx
= — X =T == .
2 FUBBE -4 2 2
PROP. LXVI.

(194.) If on the axes of an ellipse as diameters circles be de-
scribed, that on the transverse axis will be entirely outside
the ellipse, touching it at the extremities of this axis; that
on the conjugate will be entirely within the ellipse, touch-
ing at the extremities of its conjugate axis.

Let A be the semi-

transverse axis, and B the —
semiconjugate; let Y be
the ordinate of the large

circle on a, B — _JA

Y? = A* - 2% \\
but in the ellipse \\
B* B*Y? N\
2 — -—(A"—w") — , \\‘\ P
A® A* ~

and since A? > 3% ¥ > y, therefore every part of the circle
must be outside the ellipse.
In like manner, let x be the ordinate of the diameter 2B

of the other circle.
x? = B¢ — %3
A2 Az
— (2 2y — o2 :
= (B*—y*) = = X And since

2

but in the ellipse

B < A, X < &, therefore every part of the circle lies within
the ellipse.
It is obvious that they touch as stated above.
G2
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(195.) Cor. %:—%, all ordinates to the diameter AE of

the circle are cut in the same ratio by the ellipse.

PROP. LXVIL
(196.) If a circle be orthographically projected on & plane,
to which it is inclined at an angle (0), its projection will
be an ellipse.

The projection of the diameter of the circle, which is
parallel to the plane, is a line on the plane equal and parallel
to it. Ordinates being supposed to be drawn to this diameter
of the circle, their projections will be perpendicular to the
projection of the diameter, and have to the ordinates them-
selves the ratio of the cosine of angle of projection to radius,
which being a constant ratio, the locus of their extremities
must be an ellipse, by (195.)

PROP. LXVIIL.

(197.) The angles in the semiellipse, whose base is the trans-
verse axis, are obtuse; those in the semiellipse, whose base
is its conjugate, are acute.

The proof is obvious from (194), and the angle in the
semicircle being right.

PROP. LXIX.

(198.) To find the limits of the angle inscribed in a semi-
ellipse on either axis.

Let any point on the ellipse be %'/, the equation of two
lines passing through the extremities of the axis and that
point are, ’

Yy —a)—y@—a) =0, y@+a)—y'(x+a)=0.
By the formula, in (31),
24y

3/"+x

tang. I/ = — -—
o -—A?'
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But by the equation of curve

2

Qg2
alr = %z (82 =4?), *." tang. l! = — AT

Wy

If A > = this is negative, therefore the angle being ob-
tuse, is a maximum when its tangent is a minimum, which
is when y = B, since AB* is invariable. Butif A < s, the
angle being acute must be a minimum in the same case.

Hence in a semiellipse, whose base is a transverse axis,
the greatest angle which can be inscribed is that whose
vertex is at the extremity of the conjugate axis. Andina
semiellipse, whose base is the conjugate axis, the least angle
which can be inscribed is that whose vertex is at the ex-
tremity of the transverse axis.

PROP. LXX.

(199.) If two right lines be drawn firom the extremities of a
diameter of an ellipse or hyperbola to any point onv the
curve, the diameters parallel to these are conjugate.

In order that the two lines through the centre,
y—ar =0,y —de =0,

BZ

2

should be conjugate diameters, the conditions ea' = —

must be fulfilled. But if the two right lines connect a point
in the curve with the extremities of a diameter, their equa-
tions related to that diameter, and its conjugate are,

Y@ = a) —y@—a)=0, ya +4) —ylz +4)=0,
12
and, in this case, ad' = Fy:—f’ and by the equation of the

le 2
B B
-H'y——,‘Z-——,'.'aa’:— —
2 — A ‘A
hence lines parallel to these must be conjugate diameters.
(200.) Cor. 1. Hence is obvious a geometrical method of

drawing a diameter conjugate to a given one.

BZ
curve y* = ?(A2 —a'?), .
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Let c¢p be the given dia-
meter, and AE any other;
from £ draw a line EL paral-
lel to cp, join AxL, and
through ¢ draw a diameter,
cr, parallel to ar; cF is the

semidiameter conjugate to cp.

(201.) Cor. 2. To find a system of conjugate diameters,
which shall contain a given angle.

On the transverse axis describe a segment of a circle, which
shall contain the given angle, and join the extremities of the
axis with the point where this segment intersects the ellipse,
diameters parallel to these lines will be conjugate, and con-
tain the given angle.

(202.) Cor. 8. The equal conjugate diameters are parallel
to the lines joining the extremities of the axes.

(203.) Cor. 4. The property expressed in the proposition
furnishes a geometrical method of drawing a tangent at a
given point. Find, as in Cor. 1, the diameter conjugate to
that through the point, and a line through the point parallel
to this is the tangent.

PROP. LXXI.
(204.) To find the most oblique conjugate diameters.

L Let a perpendicular p be

drawn from the extremity o of

any diameter A'on its conjugate,
1)

sin. pcr(9) =7 But the equa-

tion of ¢¥ being
Ayly + %2’z = 0.
A’lyll +ng!2
«/A4y/2 +B4x'2

By formula (50), » = — . But by the equa-
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tion of the curve,
A%Y'e = A%R% — B%72, 0 A%)? 4 B2 = B(A* — c%?) =
A%8%(A? — '),y
AB
=
But, by (167),
B? = A% — €222, *. sin. § = —‘A,—B—,.
A's

Hence the sine 8 is a minimum, when A'8' is a maximum, ¢. ¢.
when A' = B, hence the most oblique conjugate diameters
are those which are equal.

(205.) Cor. Since a tangent through the vertex of any
diameter is parallel to its conjugate, the value of the sine of
the angle under any diameter and the tangent through its

. AB
vertex 1s, ——.
A'B

PROP. LXXIL
(206.) The rectangle under the mormal to any point, and
the transverse axis is equal to the rectangle under the
conjugate axis, and the semi-diameter conjugate to that
passing through the point.

For, by (191), x = % VA—¢%2%, and by (167),
B = /A% — %% . 2aN = 2BBL

PROP. LXXIII.

(207.) To find the magnitude of a parallelogram formed by
tangents through the wertices of a system of conjugate
diameters.

Since the sides of the parallelogram are parallel respec-
tively to the conjugate diameters 24', 28/, they must be equal
to them, and inclined at the same angle §. Hence the area
of the parallelogram is 44’8’ sin, 6, which, by (204), is equal
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4as. Hence, all parallelograms formed by tangents through
the vertices of a system of conjugate diameters are equal
the rectangle under the axes.

PROP. LXXIV,

(208.) To find the distance of any point in an ellipse or
hyperbola from the focus.

The axes of the
curve being assumed
as axes of co-or-
dinates, the equa-
tion is,

A4%® 4 B2 = A%%
Let p be the distance sought, p? = »* + (# — ¢)%,

o ADE = A% \Q(x—c)9~AQP‘l— B%® -} A%@ — c)?;
2

in which substituting ¢? its value,

and taking the square root of the
result, AD = 4 (a% — c2),

4
b= k(4 — Sa)= +(a—ea),

where ¢ expresses the eccentricity.
For the same value of x, there are, therefore, two equal
values of p, which is what should be expected; 72 was
eliminated, which has two equal roots +v, and the two
values of » correspond to these. The two values of p are
represented in the figures by ¥r and rr'.
If ¢ be taken negatively, the distance o’ will be that of
the point from the focus ¥ on the negative side of the
centre. Hence,

¢
=@ +—a) == (a+e)
In an ellipse » and »' must have the same sign, for ¢ and @

. ¢ .
being both less than 4, —a must be less than it also.
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But in a hyperbola, since ¢ and 2 are both greater than
cx .
A, — must also be greater than A ; *.* irr an hyperbola p and

p' have different signs. By the solution of the equation,
A% + B%2® = A%BY;

and from the consideration that 3% > 0 in the ellipse, and

82 < 0 in the hyperbola, it is obvious that any value of

z > A in the ellipse, and < A in the hyperbola, would

render  impossible.

PROP. LXXV,

(209.) In an ellipse the sum of the distances of any point

Jrom the Sfoci, and in an hyperbola the difference of those

distances, are respectively equal to the tramsverse azis.

For adding the values of  and o' in the last Prop.

D + D' = 2a,
' being positive for the ellipse, and negative for the hy-
perbola.

(210.) Cor. 1. Hence, an ellipse is the locus of the vertex
of a triangle, of which the base and sum of the sides are
given; and an hyperbola is the locus, when the base and
difference of the sides is given.

PROP. LXXVI.

(211.) To describe an ellipse and hyperbola mechanically.

1°. Let the extremities of a cord be fixed to two points, a
pencil looped in the cord, moved so as continually to keep
the cord stretched, will describe an ellipse of which the
points are the foci, and the length of the cord the transverse
axis.

2°. Let one extremity A of a straight ruler be fixed, so
that the ruler can move round it; in the same plane, to
another point B let the extremity of a cord be fixed. The
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~ . ruler being turned so
,"/// Y asto pass through the
P

Y point 3, let the cord
pass through a ring
attached to the ruler
at », and capable of
sliding upon it, and
be fastened to it at any distant point ¢c. The ruler being
moved in the same plane round the point A, a pencil at-
tached to the sliding ring at the point P will describe an

hyperbola.

A B

PROP. LXXVIIL,

(212) To express the polar equation, the focus being the
pole, and the transverse azis the axis from which the
angles are measured.

For the value of » found in (208), let z be substituted,
and z cos. w + ¢ for x; the result after reduction is

. A(l—¢e% B
= TYecos.w
. B2 B2 p
or since (1 — ¢°) = —5 o a(l— )= T: E;
P

= 2(1 +ecos.w)
If the angle @ be measured from any right line making with
the transverse axis an angle ¢,
A(l—e2) 3 »
F= 2{1+tecos. (p—w)} ~ 2{1+ecos. (p—w)}

PROP. LXXVIII.

(213.) The rectangle under the distances of any point, from
the foci is equal to the square of the semidiameter con-
Jjugate to that passing through the point.
For from (208) oo’ = A% — %%, and by (167),

B% = A%—e%2?, o pp! = B
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PROP. LXXIX.

(214.) To find the length of a perpendicular ¥ from the
Jocus on a tangent through any point (y'x').
The equation of a tangent being
Ayly + B2z — A%% =0,
the value of ¥ is found by (50),
A —ca!
But by the equation of the curve, it appears that
A%y + B = p*A%(A* — ¢%'*). Hence,

A—exr'\L
P=w3n =
A e

If ¢ be taken negatively, the length of the perpendicular
' from the ‘other focus on the tangent is,

o= — Ader\L
A—cx)

PROP. LXXX.

pl = — 32

(215.) The rectangle under the perpendiculars from the
Joci on a tangent through any point is equal to the square
of the semiconjugate axis.

For by the last Prop.
PPl = 3%

PROP. LXXXI.

(216.) The perpendiculars from the foci on a tangent through
any point are as the distances of that point from the

Jocus.
For, from (214),

— e T e
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PROP. LXXXIL
(217.) The lines conmecting any point with the jfoci are
equally inclined to the tangent.

For the angles at which p and o' are inclined to the
tangent being 0 and ¢,

"
sin. 0 = *P,— and sin. 0 = ~P—;
D o'
but by last Prop.
! ! it
-;,,—: ]%, % = -?I-)T, .+ sin. 0 = sin. 0,
. p'p!
(218)) Cor.1. Sin*8 = ek but by (215), »'?' = »?,
and pp' = B by (213);
“csin. 0 = -B—,.
B

(219.) Cor. 2. The normal bisects the angle under the
focal distances.

7 (220.) Cor. 8. The
property expressed in the
Prop. points out a geo-
metrical method of draw-
ing a tangent to a point

T ig
on the curve.
For let lines or, p¥,

be drawn from the point to the foci, and if the curve be an

\ . ellipse D¥ produced, the line
/——* D which bisects the angle ¥pf’is a
) \} tangent. If the curve be an
‘ hyperbola, the line which bi-

sects FDF' is the tangent.
(221.) Cor. 4. Ifoneof the
foci be a point from which rays emerge, which obey the
same law of reflection as those of light, and that the curve
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be a reflecting substance, the reflected rays, if the curve be
an ellipse, will converge to the other focus; and if it be an
hyperbola, they will diverge from it. It is from this pro-
perty that the foci have received their name.

PROP. LXXXIII.

(222.) A line being drawn from the focus to the paint of
contact of a tangent, and a line from the centre parallel
to it, to find the length of the latter intercepted between
the centre and the tangent.

Let the line sought be z, and the angle it makes with the
tangent = 0, and the perpendicular from centre on the
tangent = Pp.

P AB :
Hence, z = ot but ¢ = —~ by (203), and by (218),

sin. § = —, *.° % = A.
B’

Hence, the locus of the intersection of this line with the

tangent is the periphery of a circle described on the trans-
verse axis as diameter.

PROP. LXXX1V,

(223.) To find the locus of the intersection of a tangent and
a right line perpendicular to it passing through the

Jocus.

The equation of the tangent is
Ay + 3%z = A8%
The equation of the perpendicular is
A% — 3%y = Acy.
Eliminating 3'#/, observing the condition,
Azy!z + B%'? = A%B%,
and arranging the terms according to the dimensions of v,
we have
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Y4+ (22 —2cx — B*)y2 (2t — 2ca® — 3222+ 2% cx—A%?) =0,
which resolved, gives
o —2% 42w 43%+ (2w +8°—21%)
Yy = 9 b
which gives the two equations,
3/2 + (x - c)z = U
Y+ x? = A%
The first is satisfied only by ¥ = 0, « = ¢, which are the co-
ordinates of the one extremity of the perpendicular; the
latter is the equation of the circle described on the transverse
axis as diameter, which is therefore the locus sought.

PROP. LXXXV.

(224.) In an ellipse or hyperbola the semitransverse awis 18
a mean proportional between the distances of the jfocus and

directriz_from the centre.

. . . . Af
For the distance of the directrix from the centre is vy by

(166.)

(225.) Cor.1. Hence, in an ellipse the vertex lies be-
tween the centre and directrix; but in the hyperbola, the
directrix lies between the centre and the vertex; for

A2
C> A A> —.
C

(226.) Cor.2. 'The perpendicular distance of any point

4’ in the curve from the directrix is
A? A?—ca!

2 = .

C (¢}

PROP. LXXXVI.

(227.) The distance of any point in an ellipse or hyperboln
Jrom the focus has a constant ratio to the perpendicular
distance of the same point from the directriz.

A?—cx
or D = » and by the last Prop., the
For by (208) A d by the last Prop., th
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distance from directrix is

X . .
, the ratio of which ¢ : a,

is independent of the co-ordinates of the point.
This is a ratio of minor inequality for the ellipse, and of
major inequality for the hyperbola.

PROP. LXXXVII.

(228.) A line being drawn from the focus to any point in
the cusve, to _find the locus of the intersection of @ perpen-
dicular to this line drawn through the focus with the
tangent.

The equation of the line drawn from the focus to the
point %'z’ being
(@ — )y —yx 4 yc =0.
The equation of perpendicular to it is
Yy + (@ - )z + c(c — &) = 0.
If 3/ be eliminated by means of this equation, and that of
the tangent through y'z, the result after reduction is
AQ'
Z= .
¢
Hence the locus sought is the directriz.

PROP. LXXXVIIIL.

(229.) The asymptot of the hyperbola is the limit of the
position of the tangent, the distance of the point of contact
Jrom the centre being indefinitely increased.

Let the point of contact be 7/a’: the equation of the
tangent solved for y, and the value of 3 being substituted
in it, gives

B! AB - B

= I ——x e == —x -
g + AT~ 4% A& — A2 AVl-—’i F
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As 2 is indefinitely increased, the value of y approaches
B - _Bx .
- —wasa limit; but y = F - is the equation of the

asymptots.

(230.) Cor. 1. Hence, it appears that the asymptots are
the diagonals of a parallelogram formed by tangents through
the vertices of every system of conjugate diameters.

(231.) Cor. 2. 1If a line be drawn connecting the ex-
tremities of any pair of conjugate diameters, it will be
bisected by one asymptot, and parallel to the other: for
these extremities are the points of bisection of the sides of
the parallelograms, of which the asymptots are the diagonals.

PROP. LXXXIX.

(282.) To find the equation of the asymptots related to any
system of conjugate diameters.

The equation of the tangent related to any system of
conjugate diameters A's' is
Ayly + Bole = Al

. 1 Ak , APy
or AY __.70"—2_}_]”‘_'—;;2'—'

The limit of this when #' is indefinitely increased is the
equation of the asymptots, Ay -+ B'x = 0, which is the same

form as when related to the axes.

PROP, XC.

(288.) The intercept of a tangent to an hyperbola between
the two asymptots is equal to the diameter to which it is
parallel, and is bisected at the point of contact,

The diameter through the point of contact and its con-
jugate being axes of co-ordinates, the equation of the asym-
ptots is

Ay T slr =0,
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If in this # =4, y = F 8/, hence the proposition is
manifest.

PROP. XCI.

(234.) If any right line intersect an hyperbola, and be pro-
duced to meet both asymptots, the two indercepts between
the curve and asymptots are equal.

The diameter parallel to the right line and that to which
it is an ordinate being taken as axes of co-ordinates, the
equation of the hyperbola is

A’ng — B2 = — alple;
the equation of asymptots,

Ay ¥ sl = 0.
From the form of these equations, it is evident that the
axis of @ bisects the part of the line intercepted between the
two asymptots, as the two values of y are equal with opposite
signs. It also bisects the part intercepted within the curve;
and hence it follows that the two intercepts between the curve
and the asymptots are equal.

PROP. XCII,

(285.) A right line being intercepted between the asymptots,
the rectangle under the segments of it made by the curve
is equal to the square of the paraliel semidiameter.

The axes of co-ordinates being as in the last Proposition,
the segments are

i !
B B
—a! — — Va—A",
A Al

B I

B e i

! 12 12
—&' S aP A

A’ A’\/ 9

being the sum and difference of the values of y for the curve
and asymptot, which, when multiplied, give »".
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PROP. XCIIL.

(286.) To find the intercept of a parallel fo an asymptot
between the curve and the directri.

Let the point where the parallel meets the curve be y'2’;
the perpendicular distance of the point from the directrix is

12 W}
by (226), ———

¢

; and the sine of the angle at which the

. s 1 . .. . C
parallel to the asymptot is inclined to the directrix is "

Hence, the intercept of the parallel required is
A% —ca’
A
and therefore the distance of any point in the curve from
the focus (208), is equal to a parallel to the asymptot drawn
from the same point to the directrix.

2

PROP. XCIV,

(237.) The asymptots of an equilateral hyperbola intersect
at right angles.
For their equation isy ¥ « = 0, *." each is inclined to
the transverse axis at half a right angle, and therefore they
make with each other a right angle.

PROP. XCV.

(238.) If from any point in an hyperbola, parallels to each
asymptot be drawn to meet the other, the parallelogram
under these is of a constant magmitude, and equal to a
Jourth part of the parallelogram formed by lines joining
the extremities of the axes.

"The equation of hyperbola related to its asymptots is

-
T = - =
4 B
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The line joining the vertices of the axes is equal to ¢; and
since it is parallel to one asymptot, and bisected by the other,
when y=1c, #=1% of other diagonal of rectangle under axes,

roc c?
. w=21c; hence — =g N Ye =g
lelogram under y2 is equiangular with that whose side is c,
they are equal.

And as the paral-

PROP. XCVI.

(239.) The subtangent of an hyperbola related to its asymp-
tots, as axes of co-ordinaies, is equal to the intercept of
the asymptot beiween the ordinate of the point and the
centre.

Since the point of the tangent intercepted between the
asymptots is bisected at the point of contact, the ordinate
parallel to each asymptot from the point of contact, must
bisect the parts of the other intercepted between the tangent
and the centre.

SECTION XIII.

Of the parabola.

PROP. XCVII.

(240.) 4 parabola is the limit of an ellipse or hyperbola, the
parameter of which being given, the transverse axis is
increased without limit. -

Tor the equation of an ecllipse or hyperbola, the origin

being at the vertex, is (181),

A%P2 + B%® — 2%y = 0;

the parameter being p,
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making this substitution, and dividing by A%, the equation
becomes

Lo —

o —px = 0.

If A be supposed to be increased without limit, p remaining

unvaried, the second term disappears, and the equation be-
comes

¥+

Yy —p,
which is that of a parabola.

PROP, XCVIIIL.

(241.) To find the equations of a tangent and normal of a
parabola.

The equation of the parabola related to a diameter and a

tangent, through its vertex as axes of co-ordinates, is
¥y —px=0,
2 being the parameter of that diameter (162). The equa-
tion of the tangent is, therefore, (133),
%y - o) - ple — a) =03
or since y* — pla’ = 0,
2y — p(e + 2') = 0.

The equation of the normal is therefore
(P'+ 2 cos.yx) (y — o) + (2 + p' cos. yx) (v — ') =0
and if the axis of @ be that of the curve, it becomes

Py -9 + 2% (x —2)=0.
PROP. XCIX.

(242.) To find the subtangent and subnormal of the
parabola.
The subtangent being s, and subnormal s, their values
by the formulae (136), (137), become
s = 2/,
P +%y cos. yx
2/ +p cos. ya'

s =9,
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If the axis of 2 be that of the curve, the value of the sub-
normal becomes

_»
s =5
Hence, in a parabola the subtangent is bisected by the curve,
and the subnormal relative to the axis is constant, and equal

to half the principal parameter.

PROP. C.

(243.) To find the distance of a point in o parabola from
the focus.
Let the sought distance be 2, and %'’ the point. The

co-ordinates of the focus being y = 0, x = %,

#=y b @ =) =)

vz =a + %
PROP. CI.
(244.) To find the polar equation of ¢ parabola, the focus
being the pole.

Let ¢ be the angle which the axis of the parabola makes
with the fixed axis from which the values of w are measured.

If yx be any point on the curve, by (243) z=wx + %; but
(¢ — -%) = % cos. (w — ¢). Hence,

% = 2 cos. (v —fp)-l——g-,

e g (4 .
’ 2{1— cos. (w=9)}’

or, since 4 sin?i(w — @) =2{1—cos. (v~ 9)},
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2= it

dsin’ L(w—g)"
and if the angle w be measured from the axis ¢ = 0, there-
fore the polar equation is
])
4 sin.? tw
If w be measured on the negative side of the focus, these
equations become

8=

N
T T L+ cos. w)
R
4 cos.2 %w‘

(245.) Cor. Hence the equation

S —
“ T 2(1+ecos. w)’
includes all three species of lines of the second degree. It
represents an ellipse if e < 1, a parabola if ¢ = 1, and an
lwyperbole if ¢ > 1.

PROP. CII.

(246.) A right line being drawn through the focus of any
line of the sccond degree, and terminated in the curve, to
Jind the relation between the parts intercepted between the
Jocus and the curve.
By the polar equation the intercepts 2, 2’ are,
N
2(1 ¢ cos. wy’
p — P
2{1+ecos. (v+w)! ™ 2(1—ecos. w)’
Hence follow, by multiplication aiid addition,
Pz____
4.«(1 ¢ cos.* w)’

o =

Z

24y =

1—ecos?w’
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and therefore 4z = p(z + ).
That is, the rectangle under the sum of the segments and the
principal parameter, is equal to four times the rectangle
under the segments.

(2417.) Cor. 1. The rectangle under the segments varies
as the whole intercept.

(248.) Cor. 2. Half the principal parameter is an harmoni-
cal mean between the segments.

PROP. CIII.

(249.) The distance of any point in a parabola from the
Jocus is equal to the perpendicular distance of the same
point from the directriz.

By (166), the perpendicular distance of the directrix from

a tangent through the vertex is —12-, therefore the perpen-
dicular distance of a point in the curve from the directrix is
x4+ ﬂ; but this by (243) is the distance of the same point

from the focus.

PROP, CIV.
(250.) To describe a parabola mechanically.

Let F be the focus,and v ¢
the vertex of the proposed
parabola. Take Bv = ¥v,
and Bc perpendicular to AB
will be the directrix. Let /
a square ABC be applied to 2E =
the right angle under the
axis and the directrix. The : //
extremity of a cord being B VE A
fastened to any distant point on the side Ba of the square,

[
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and being passed round a sliding pin at v, let it be fixed to
the point ¥. If the square thus adjusted be moved in the
direction Bc parallel to itself, the point M will describe a
parabola, since 'm always equals mr.

PROP. CV.

(251)) To find the length of o perpendicular from the focus
on a tangent.
The equation of the tangent being
Wy — pla + ) = 0;
and the co-ordinates of the focus,

y: ,.’E:T,

The perpendicular required is

@+ ap) g, v) 12
- (4.1/"‘2+p9)%“§7*“p(w Ay

P

PROP. CVI.

(252.) The perpendicular on the tangent through any point,
is a mean proportional between the distances of that point
and the wvertex from the focus.

For, by (248), the distance from the focus is # + % and

the distance of the vertex from the focus is %’

by (251), the perpendicular is a mean proportional between
these.

therefore,

PROP. CVII.

(258.) To find the locus of the point of intersection of the
perpendicular from the focus of a parabola, with the tan-
gent.

The equations of the tangent and the perpendicular are,



ALGEBRAIC GEOMETRY. 105

2y — pla' + x) =0,
2y + 'z — py'=0.
Eliminating /2’ by means of these equations, and the equa-
tion of the parabola, the result, after reduction, is
xg 162 + (p —-41x)Z} = 0,
which gives
x == 0,
16y* + (p — 4a)? = 0.

The locus of the first is the axis of y, and the latter can
only be fulfilled by the conditions,
y=0= ‘g‘s

which are the co-ordinates of the focus.

Thus, one of the results gives the co-ordinates of the point
from which the perpendicular is let fall, and the other shows
that the locus of the extremity which meets the tangent, is
the tangent to the curve which passes through the vertex.

PROP. CVIILI.

(254.) The part of the axis of a parabola intercepted between
a tangent and the focus, is equal to the distance of the point
of contact_from the focus.

For, by (243), the dis- o b
tance rp from the focus
is, %
x=a + -p—; § - VT -

and since the subtangent
is bisected by the vertex
(242), the intercept of the axis between the tangent and
vertex is @, and therefore the intercept between the tangent

and focus is # + —Z—, . ' FP = FS,
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PROP. CIX.

(255.) A tangent to any point of a parabola being drawn, o
diameter, and a line through the focus firom the same
point, are equally inclined to the tangent.

For, by the last proposition, the line »F, from the focus,
being equal to the intercept s of the axis between the focus
and tangent, the tangent must be equally inclined to »r and
the axis; but, since all diameters of a parabola are parallel
to the axis (93), the diameter P and r are also equally in-
clined to the tangent.

(256.) Cor. If any rays, which obey the law of equality
of incidence and reflection, move in right lines parallel to
the axis of a reflecting surface, generated by the revolution
of a parabola round its axis, the reflected rays will all con-
verge to the focus; or if they diverge from alucid point placed
at the focus, they will be reflected parallel.

PROP. CX.

{257.) The distance of any point in a parabola from the
Jocus, is equal to a perpendicular to the axis passing
through the same point, intercepted between the axis and
the focal tangent.
In the general equation of a tangent through any point

4/, substitute —{- for 2/, and -—% for 2/, and the equation
becomes
y=2a+ _29_’

that of the focal tangent; but this value of y is the same as
that of % in (243).
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PROP. CXI.

(258.) To find the relation between the principal parameter,
and the parameter of a diameter passing' through any
given point.

The equation of the parabola related to the axis, and a
tangent through the vertex, as axes of co-ordinates, is
Y = pa,

p being the principal parameter. Let the co-ordinates of

the point through which the diameter passes be gz/'#’. The

axes of co-ordinates being removed to this diameter as axis
of z, and a tangent through its vertex as axis of . The
transformed equation, by the formulz (74), becomes

ysinldw - (2 sin. e — pcos. ta)y — pr + y* —pa' = 0.
Since the sin. &'z = 0, and cos. &2 = 1, the new axis of

a being parallel to the former, and expressing by ¢x the

angle under the tangent and diameter, which is the same

with %'« in the formula.
Also, since the point %' is on the curve,

Y —pat =0.
And since tang. tx = —é%, (241), -

' sin. te — p cos. tx = 0.
Hence the transformed equation becomes
Y= (p+ W) = pa,

V4
pt+4a”

Hence the parameter p' of the diameter, through the point
y'a, is equal to four times the distance of the point from the
focus, since the distance from the focus is @ + Zp.

observing that sin.? tr =

(259.) Cor. Sin2tx = —P—, Hence the parameters of
P

diameters of a parabola are inversely as the sines of the

angles at which these diameters are inclined to their or-
dinates.
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SECTION XI1V.

Problems relative to lines of the second degree, illustrative
of the application of the preceding principles.

PROP. CXII.

(260.) Given the base (aB), and vertical angle of a triangle,
to find the locus of a vertex.

v The base (aB) being
assumed as axes of a,
and a perpendicular (ay)
through its extremity (a),
as axis of y, let the co-

AB = b, and AcB =, *.°

‘ =Y tanop=—Z_
“/ tang.A= e tang.B_b_x,

tang. A4-tang. B__ yb
1—tang.atang.3”~ y>4-2% — b’
Hence the equation sought is,

Y+ at—cot.0.b.y — bxr =0, '
which (130) is the equation of a circle, the co-ordinates of

/B % ordinates of ¢ be Yy, let

% tang. ¢ = —

whose centre are,
Yy = Lcot.0.b, = 1b.

Ifo= -%—,
case the centre is at the point of bisection of the base.

Cot. 6 is positive or negative, according as c¢ is acute or
obtuse; °. the centre is above the base in the former case,
and below it in the latter. From these results may be in-
ferred,

1st, That all angles in the same segment of a circle are
equal.

cot. § = 0, *.» y' = 0, which shows that in this
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2d, That the angle contained in a semicircle is right.

2d, That the angle contained in a segment, greater than
a semicircle, is acute.

4th, That the angle contained in a segment, less than a
semicircle, is obtuse.

PROP. CXIIIL
(261.) Given the base (aB) of a triangle, and the ratio of
the sides, to find the locus of the vertex (c).
The axis of co-or- v
dinates being placed as
before, let Ac = a, and

cB = c¢; and let l c
a = ne, .0 a* = n'c%,
but

A B
@@ =y9 + a2, & = _7/2 + (b — x)e.
The equation of the locus sought is, .’
2n? n2h?
y* + a? +“i:—772.bx-—-]—:—w=0,
which is the equation of a circle, the co-ordinates of whose
centre are

2
oo, wotl
The points where the circle intersects the base are found by
supposing v = 0, which gives

nb
X = ?'Z—:—_F'i,

‘which values show that the circle cuts the base internally
and externally in the given ratio, and the part intercepted
between these points is the diameter of the circle.

PROP. CXIV.
(262.) Given the base (AB) of a triangle, and the sum of the

squares of the sides, to find the locus of the vertex.
Let the point of bisection (p) of the base be taken as
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C origin, the base as axis of z, and the
perpendicular through » as axis of
4. Let ap = 0, and let the given
sum of the squares of the sides be s*
act =y + (24 b)%
BC? = 9% 4 (@ — D)2,
o y‘l - 22 :%SQ___ b‘l’
which is the equation of a circle, whose centre is at the

origin, and whose radius is +/Zs* — 0%

PROP. CXV.

(263.) Given the base and wertical angle of a triangle, to

Jind the locus of the intersection of the perpendiculars from
the angles on the opposite sides.

The axis of co-ordinates being
placed as in Prop. cxi1., and the sig-
nifications of the symbols being re-
tained, the co-ordinates of the inter-
section of the perpendiculars are

v (b—2x)x

~_ Yy

) =3

and from these the values of y and 2z being found, and
substituted in the equation for the locus of the vertex found
in (52), the result is,

¥2 4- x* + cot. 0.6y ~ bx = Q.
This is the equation of a circle; and since it differs from the
equation in (260), which gives the locus of the vertex, only
by the sign of cot. 8, the locus sought is a segment of a
circle, containing an angle supplemental to 0.

PROP. CXVT.
(264.) Given the base (an), and vertical angle (g), to_find the
locus of the intersection of the bisectors of the sides.
By (54) the co-ordinates of the intersection of the bi-
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sectors are T ~

_y . _xtd / /\
Y= —3—’ = 3 ’/’/

substituting the values of y and x in ( / x
these equations in that of the locus \ /\ )\
of the vertex in (260), the result is /
Yo + X2 — L cot. dby — bx + 252 = 0, \
which is the equation of a circle, the co-ordinates of whose
centre are
, b cot.d.b

xr = ?, Yy = ————6 )

To find the points where this circle meets the base, let
¥ = 0 in the above equation, and the corresponding values
of @ are,

x = 1b, @ = 3D,
which shows that the circle intersects the base at the points
of trisection.

Let ¢ be the angle contained in the segment of this circle,

whose chord is one-third of the base.
! 1

Tang. ¢ = T = tang. 4.

Hence this segment contains an angle equal to the vertical
angle of the triangle.

PROP. CXVIL.
(265.) Given the base and vertical angle of a triangle to find
the locus of 'the centre of the inscribed circle.
The lines bisecting the base angles intersect at the centre

of the inscribed circle (59), *.* the sum of the angles which

. . m—4 . .
they form with the base is 5! being the vertical angle ;

: e .
and *. the angle formed by the two bisectors 1s —;— This
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being a given angle, the locus sought is the segment of the
circle which contains it.

PROP. CXVIII,
(266.) To express the circle by a polar equation,

The general equation of the circle related to rectangular
co-ordinates, is
(7 — ) + (& — 2y =~
Let the distance of any point in the circle from the pole
be =, and the angle it makes with the axis of « be ¢/, and the
distance of the centre be &/, and the angle it makes with the

axis of x, 9.

By substituting @ sin. ¢, 'sin. ¢, zcos. ¢,
' cos. ¢!, for y, ¥, x, &/, respectively, and observing the con-
ditions,
sin.?¢ + cos.2¢ = 1, cos. ¢ cos. ¢' 4 sin. ¢ sin, ¢' =
Cos. ((P - ‘Pl)a
the equation becomes
2% 4 2 — 2Rl cos. (¢ — ¢) =%
If the pole be on the curve 2'=7, and the equation becomes
g — 2rcos. (p — ¢) =0,
and if, at the same time, the axis from which ¢ is measured
passes through the centre, ¢/ = 0, and the equation is
2 — 2rcos. ¢ = 0.

PROP. CXIX.

(267.) 4 right line being drawn from a given point () fo
a given circle, to find the locus of the point at which it is
divided in a given ratio.

Let the intercept between the given point, and the poing
whose locus is sought, be 2", and let 2" = 2. By this sub-
stitution in the polar equation of the circle, we find

12 !

e R gdli . no__ e
2" 4 prrall . cos. (¢ — ¢') =

ne"
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Hence the locus sought is a circle, whose centre 1s found by
dividing the line connecting the given point with the centre
of the given circle in the given ratio, and whose radius is to
that of the given circle as 1: z.

PROP. CXX.

(268.) To find the locus of a point, from which lines being
drawn to several given points, the sum of their squares
shall be of a given magnitude.

Let the given points be /2, /2", y/"2" . . .. y™a™, and
the point whose locus is sought yx. The squares of the
lines respectively are

(5= Y + (=)
(y — Y + (& — &)
(7/ — ylll)rz + (1. — xlll)fz,
(W = g+ (o — 2,

which being added, and their sum expressed by s%, and the

result divided by n, give

Qy +4- y’l +3/III /'/(n) y— 2x1+mll+xw_ e x™ L

n n

+ y’z_i__m!tz +:I/Hen+ gl g2

which is the equation of a circle, whose centre is the Centre

of Gravity of the figure formed by lines joining the given

points (70).

y" 422 .-

=0,

PROP. CXXTI.

(269.) To find the locus of a point, from which lines being
drawn at given angles to the sides of a given rectilincar
Sigure, the sum of their squares shall have a given mag-
nitude.

The equations of the sides of the figure being respectively
T
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Ay B2 4 ¢ =0,
Aly +Br +c=0,
Aly 4+ Bz 4 "= 0,

° B ° °

Ay 4B g 4™ =0,

Let the angles the lines make with the sides be ¢, ¢/, -

the squares of the lines are respectively,
(ay + Bz + ¢)®
(a2 + B°) sin? ¢’
(A'y + B2 + )®
(3 T 5 g

(A(")y _}_B(n)x_}_cfn))g
(A(”}Q—l— B(M)Q) sin.¢ S5(11)3’

« o 09

which being added together, and their sum equated with a

constant quantity, give a complete equation of the second

degree, which is that of the locus sought.

PROP. CXXII.

(270.) 7o find the locus of a point, from whick two right
lines being drawn at given angles to two given right

lines, the reciangle wnder them shall have a given mag-

nitude.

Let the equations of the two lines be
Ay + B2 + ¢ =0,
aly 48z + ¢ = 0.

The lines making given angles with these from the point

ya, are
AY - Bx - ¢

—— L, 9
A/ A2 - B% s1. @
;

Aly B¢

W/ A2 8% sin, ¢
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These being multiplied, and their product equated with a
constant magnitude, the result is a complete equation of the
second degree, which is that of the locus sought.

PROP. CXXIIIL.

(271.) Given the base of a triangle, and the dijference be-
tween the base angles, to find the locus of the vertex.

-l

The middle point » of the /

base being assumed as origin, p

and the base as axis of x, let 4
the co-ordinates of the vertex /

1 -7
be yz, and Ap = b, and the / /
difference of the angles == 0. , /

B D A

tang. A — tang. B Ly

Tang. § =

1 4 tang. A tang. B;‘yemmg + 6
Hence the equation of the sought locus is
Yy — 2 cot. byz — 2 + b == 0.

This is manifestly the equation of an hyperbola, since
B® — duc = 4(cot.® § - 1) = 4icosec.> § > O; its centre
is the origin. The position of the diameter conjugate
to A may be determined by the equation found in (167),
which becomes in this cas

e

4 = - tang, 9 . @,
- the diameter conjugate to as is inclined to it at an angle
= f.

The axis of i being transformed from its present position
to coincidence with the conjugate diameter through the
point b, by substituting ¥ . sin. 0 for 7, and & ~— gy cos. 0 for
2, which are what the formulee (74) become in this case, the
transformed equation is

Y - 2t = - 0,
which shows that the hyperbola is equilateral, and that its
semiaxis squaved is & sin, 0 (169).

(272.) Cor. 1. Hence it follows, that in an equilateral

12
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hyperbola, if lines be drawn from the vertices of any dia-
meter to any point in the curve, the difference of the angles
which they form with the diameter is equal to the angle
under that diameter and its conjugate.

(278.) Cor. 2. If the difference of the angles be a right

angle, the base is the transverse axis, and vice versd.

PROP. CXXIV,

(274.) Given the base of a triangle, and the product of the
tangents of the base angles, to find the locus of the verte.

The axes of co-ordinates being placed as in the last Pro-

position, let the product of the tangents be m, .-
Y 4 ma® — mb* = 0,

which is the equation of the locus sought. This locus is
therefore an ellipse if m > 0, and an hyperbola of m < 0,
the base being the transverse axis.

PROP. CXXV,

(275.) Given the base of a triangle, and the sum of the
tangenis of the base angles, to find the locus of the vertex.
The axes of co-ordinates being placed as before, let the

given sum be m, *.*

_ %y

T —a?
hence the equation of the locus is

ma® + 2y — mb* = 0.

This equation being put under the form

shows that if the origin be removed to a point in the axis

. ... mb
of y, whose distance from the present origin is ~5 the

equation becomes



ALGEBRAIC GEOMETRY. 117

2 . =

@t == —y.
Hence the locus sought is a parabola, whose axis Is a per-
pendicular through the middle point of the base, and whose

vertex is at a perpendicular distance from the base equal to

mb .. ) 20
—5—» and whose principal parameter is — .

~

PROP. CXXVI.

(276.) Given the base of a triangle, and the difference of
the tangents of the angles at the base, to find the locus of
the vertex.

The axes of co-ordinates being placed as before, let the
given difference be m, *.*
+ 2y

Q°

[/

m =

the equation sought is .-
x + ma® — mb* = 0.

This is the equation of an hyperbola (124), the axis of g
being an asymptote, and the origin at the centre (119) ; the
base of the triangle is therefore a diameter, the equation of
the diameter conjugate to which is

y + mr = 0.
Hence the tangent of the angle (), at which this conjugate
diameter is inclined to the base, is equal to the difference of
the tangents of the angles at the base.

The axis of y being transformed to coincidence with the
conjugate diameter by substituting z sin. § for y, and
x +y cos. b for x, and — tan. 8 for m, thc equation becomes

cos? b .y* — a4 b* = 0.
Hence, the square of the semi-second diameter conjugate to
the base is — 6* sec.” 6.
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PROP, CHXVIL

(2T.) 1o find the locus of o point (), fiom which perpen-
diculars drawn to the sides of a given angle (xAY), shall
contwin a quadriicteral of ¢ given area.

rE

. i'he sides of the given angle
P (%) being assumed as axes of
co-ordinates, and the co-or=

dinates of the point » being yx,

the avea of »214 15

16 A pie
Ly sin. (o 4 g cos. 6),
and that of »ma is
Lasin, 0y -+ @ cos. 0).
Let the magnitude of the quadrilateral be m*, the equation
of the locus sought 1s
y* + 2sec. 0.y + & — 2m® sec. 6 cosec. § = 0.
Since B¢ — 4ac = 4(sec.? § — 1) = 4tan.* § > 0, the
locus is an hyperbola, of which the vertex of the angle is
the centre (119).

PROP. CXXVILL,

(218.) To find the locus of the centre of a circle touching a
given right line, and passing through a given point.

The locus must be a parabola, of which the given point is

the focus, and the given line the directrix, as is evident
from (249).
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PROP. CXXIX.

(2719.) o find the locus of the centre of a circle touching
given right line and a given circle.

Let p be the centre
whose locus is sought,
and c the centre of the
given circle; Pp==pm. ! O\
Let »m be produced, “ \~/>é¢"~i"~\\.
so that mm/ =cp, and

through s/ parallel to

the given line let an- /
other right line be

drawn, “.* pm! = pc; °. the locus is a parabola whose focus
is ¢, and whose directrix is m'o.

PROP, CXX X,

(280.) To find the locus of the centre of a circle which
touches two given circles.

This is equivalent to being given the base and difference
of the sides of a triangle to find the locus of the vertex.
The locus is therefore an hyperbola whose foci are the
centres of the two given circles, and whose transverse axis is
the difference of their radii.

PROP. CXXXI,

(281.) 7o find the locus of the intersection of tangents to a
given parabola which intersect at a given angle.

Let the points of contact be y'z/, y"", the point of in-
tersection ya, the given angle 8, and the equation of the
given parabola 3 == px. The equations of the tangents
through the given points are
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y —px—y2 =0 (1),

Wy —pr—y*=0 (2.
The tangents of the angles which these make with the axis
P
%
W(y'—y)
Pt Ay 3)-
Subtracting (2) from (1), and dividing the result by (y"—y/),
we find 2y — 3/ = 3. Substituting this value in (8), and
multiplying by the denominator,
8tan. § . yly — dpy—itan. § . y* + tan. 0. p* 4 4dpy = 0.

Multiplying (1) by 4tan. §, and subtracting it from this,
the result divided by p is
4tan. b .o + tan. 0. p + 4y — dy = 0;

and hence,

of the parabola being %7 and

tan. § =

Y =y — itan. §.p — tan. § . ,
which substituted in (1) gives
y2— tan.? § . 22 — p(1 + Ltan.2 §) @ — Ltan2 § . p* = 0,
which is the equation of the locus sought. This must be an
hyperbola, since (82 — 4ac) = 4tan.® § > 0.
The co-ordinates of the centre are
y=0, 2 =— Ip (cot.?.0 + 1);
the origin being removed to this point, the equation becomes
2

y? — tan® Qo = — L cosec. 9,

4
which shows that the squares of the semiaxes are

A = %-Q— . %?j—:;—g, B? = — 1p* cosec.? §.

In this investigation the tan.® ¢ includes --tan. § and
—tan. 0, 4. ¢. tan. § and tan. (# — 6), which shows that the
process includes the locus of the intersection of tangents,
which contain an angle supplemental to 8. Of the opposite

branches of the hyperbola, one is the locus of the intersection



ALGEBRAIC GEOMETRY. 121

of tangents containing the angle 6, and the other of tangents
containing its supplement.

If § = —z—, the equation after division by tan.® §, becomes
/
& + % =0,

which is the equation of the directrix of the given parabola,
Hence, if tangents to a parabola intersect at right angles,
the locus of their intersection is the directrix.

PROP. CXXXII.

(282.) To find the locus of the intersection of tangents to an
ellipse or hyperbola, which shall be inclined to the tranms-
verse awis at angles, the product of whose tangents
is given.

Let the equations of two right lines meeting the curve be
y+ar +b6=0 (1),
y+de+0=0 (2);

the equation of the curve being %> 4 B%?% = A%

Eliminating y by this, and each of the equations of the right

lines, and finding the value of x in the resulting equation,

and equating the radical in each with 0, we find
A%t + B — 0 =0,
AZd* 4- 8% — b2 = 0.

The values of b and &' in (1) and (2) being substituted, and

the equations arranged by the dimensions of ¢ and &/,

g o
P . it /A
AZ—2* e
2 g2
a® — 2y ad +2 "4 o
AP AL — g

The values of a and o being the roots of either of these
equations, let ad' = m, *
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B2 —y®
e

Hence, the equation of the locus sought is
Y% — ma® 4 ma* — 3% = 0;
the locus is therefore an ellipse or hyperbola, according as
m < 0 or > 0.
Let the semiaxes of this curve be A/, 8/,
- MA*— B*

;
= — B'? = — ma® 4 B%;
m

hence A : 3% :: 1 : m.

If the curve be an hyperbola, and m < 0, the locus is
. . B* . .
impossible when ma*< 3% or m<— which shows that in
this curve the product eof the tangents of the angles, which
two tangents make with the axis, cannot be less than the

product of the tangents of the angles, which the asymptotes
make with it (176).

PROP, CXXXIII.

(283.) T'o find the locus ¢of the intersection of two tangents
to an ellipse which intersect at a right angle.
In the last Proposition, if m = — 1, the tangents will

intersect perpendicularly, the equation of the locus is
therefore

J/Q‘IL a2 = A° -+ BQ,
which is the equation of a circle concentrical with the ellipse,

and whose radius equals the line joining the extremities of
the axes.

PROP. CXXXIV,

(284.) To find the locus of the intersection of two tangents
to an hyperbola, which intersect at o right angle.

In this case, in (282),m = — 1 and 8* < 0, *.* the equa-
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tion of the locus 13

y‘.’ + 22 = Az — 32,
which is the equation of a circle concentrical with the hyper-
bola, and whose radius equals o/ A% — 82 This equation is
impossible if B > A, which shows that, in an hyperbola of
this kind, two tangents cannot intersect at a right angle.

PROP, CXXXY.

(285.) 1o find the locus of the intersection of two tangents
to an ellipse or hyperbola, which make angles with the
transverse axis, which, measured in the same direction,
are fogether equal to a right angle.

O

In this case, in (282), m=1, ".* the equation of the locus
1s Y2 - == - (A% B%),
which 1s the equation of' an equilateral hyperbola, whose
axis is the distance between the foci of the given ellipse or

hyperbola.

PROP. CXXXVI.

(286.) To find the locus of the intersection of tangents to an
ellipse, which are parallel to conjugate diameters.

In this case, m == —
b

- the equation of the

locus sought is
Ay Bt = 2a%Y,

which is the equation of an ellipse, whose semiaxes are
+/2.4, /2.8, and which is therefore similar to the given
ellipse.

This is obviously equivalent to finding the locus of the
vertices of the angles of parallelograms circumscribed round
systems of conjugate diameters,
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PROP. CXXXVII.

(287.) To find the locus of the intersection of tangents to an
hyperbola, which are parallel to conjugate diameters.

. B2 .
In this case, m = — (170), *.* the equation of the locus
AQ

is A%? — B'2% =0,

which is resolved into Ay + Br =0 and Ay — Bx =0,
which are the equations of the asymptotes, which are the locus
sought.

PROP. CXXXVIII.

(288.) To find the locus of the intersection of tangents to an

ellipse, whichmake angles with the transverse axis, the pro-
. B
duct gf whose tangonts is —.
£

In (282), if m:XB:—, the equation of the locus is
A%? — w2t = 0,
which is resolved, as before, into Ay + B2 =0, ay—Br = 0,
which are the diagonals of the rectangle formed by tangents
through the vertices of the axes, and which are therefore the
locus sought.

PROP, CXXXIX,

(289.) T'o find the locus of the intersection of two tangents to
a parabola, which are inclined to its axis at angles, the
product of whose tangents is constant.

Let the equations of two right lines meeting the para-
bola be
y—ar —b=0 (1),
y—de—-0=0 (2.
By these and the equation of the curve finding values for
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«, and equating the radical in each with 0, we find

4ab = p, 4l =p;
eliminating & and &' by means of these and (1), (2), the
results are

a‘l —a -y + ,Z’__ — 0’
@ 4dx

r_ g JdLP _y..

a a . = +4x 0,

the values ad' being the roots of either of these equations,
and the given product being expressed by m, we have
P
m = + a:t,orémx - p =0,
which is the equation of a right line perpendicular to the
axis, and meeting it at a point whose distance from the

vertex 1s + —2—.

4m
If the tangents intersect at right angles, m = — 1, and
the locus is the directrix.

PROP. CXL,

(290.) Two lines being drawn from the foci of an ellipse to
any point in the curve, to find the locus of the centre of the
circle which touches these and the transverse aais.

1. Let the circle touch the
three lines as in the figure, Let %
the co-ordinates of the point () ; O,

. ol kg
on the ellipse be y'2/, and those /
of the centre (c) yo. The area ——

of the triangle ¥PF' = 7/¢, where ¢ is the distance of the

focus from the centre. Also the area of the same triangle

=y(A +¢), since A + ¢ s the semiperimeter of the triangle;
e =yla +0);

also, since the line wc bisects the angle pr¥,
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sin. pry!

tan. cry = ——
1 +cos. rrr

. Y c—ua!
but sin. pr¥ = T and cos. Pry’ = , and also
!
? 7
tan. crr’ = ———'—q——, hence Y — __.Z.___’
c— c—x Z+c—x

1
Now by (208) z = a4 — %—, which being substituted, the

values of g/ resulting from this and the first equation are

; A+e
Y=y
, AX
X =
c

Substituting these values in the equation A% --5*2" = A%
the result after reduction is
(A 4 ©)'y® 4 B22® = B2

this is the equation of the sought locus, which is therefore
an ellipse whose axes coincide with those of the given ellipse.
Let the semiaxes be A', 5/, .*

Al = ¢,
 meC
Catc

=’

2. Let the circle touch the three
//_%C lines as in this figure. In this

NG case, if #p = =, ¥'P = 2, we have
yle = g/(c + 17— Lz);

Lex!

but by (208), &' — 2 = T hence Ay = (a -+ 2)y; also

Y
tan. cFP = tan, L(# ~— Prr'), ", tan. crp = — —S
g—c+a
1 y 7?
but also tan. cre = g , A —
r—c A L

Eliminating ' by this and the former equation, the result

after reduction is
& A= 0,
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which shows that the locus in this case is the tangent to the

ellipse passing through the vertex.
3. Should the circle touch

the three lines as in this

figure, retaining the same

- \\_ . \
symbols, (]{4 e
rrv=ya—) =y (1). g ~/
Also, since / D
tan. %('# - PFF,) = w/

sin. PFF \ ¢ // \
1—cos pre \_ Fan
Ay \ /
(a—c) (a+2) -
And, since rc bisects the angle below the base,

Y

tan, (% — PFF) = Pt hence,

Yy __ Ay
c—a (a—c) (a+a')
By this and the equation (1) we find

,_Yla=c)

Y =
Y c
: Ax
[

Substituting these in the equation of the ellipse, the result
after reduction is
(o — ¢)%y® + B%® = B,
which is the equation of an ellipse, whose semiaxes 4/, 8/
are

, BC
Al = e, B = —,
A
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PROP. CXLIT.

(291.) Lines being drawn connecting any point in an hy-
perbola with the foci, to find the locus of the centre of a
circle, which shall touch these lines and the axis.

~ N

. o 1. Let the circle
touch, as in this
C figure. 'The same
7 <= symbols being used
\ as in the last Pro-
position,
FPF = y(z + A + ¢) = 3/c,
tang. c¥E = Y_.
g or c—a’

but cry' = L pr¥, ©.

3 ] !
sin, PFF v
tang. crr = ~—-————,=~—~‘/-7——,
1 + cos. PFF ™ z—a'+¢
!
. ca!
Hence, since 2 = — — a,
A
Y Ay

c—a :(C—A) '(A—{— E)
The co-ordinates g/’ being eliminated by this and the first

equation, we find

& — A =0,
which is the equation of the tangent through the vertex of
the hyperbola, and which is therefore the locus of the centre
in this case.

N 2. If the circle

/e touch, as in this figure,
L =g =y

oy T The tang. cr¥' having

a similar value as
above, a similar equa-
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tion follows, which gives

,=M, o =22
c

Making these substitutions in the equation
A2 ‘yla — B2 = — A%BY,
the result after reduction is
(¢ + a)%y? — p2a® = — B%?,
which is the equation of an hyperbola, whose semiaxes are co-
incident with those of the given hyperbola, and whose values
are

BC J—
A+ec v =L

3. Let the'circle touch, as
in this figure,

Al=e¢ 8 =

FPF =y(2+a—c)=ylc.

Also,

s x:tang.%(ﬂ'-—PFF'),

but

!

sin, PFF' Y
— cos. PFY g +a'—c

tang. J (v—PFr) =7
Eliminating = by 2 = cg’_ a,and the values of 7/, &' being
eliminated as before, we find
x+4=0,
which shows that the locus is the tangent through the vertex
of the opposite hyperbola.

PROP. CXLII.

{292.) T find the locus of the vertex of a parabola, having
a given point as focus, and touching a given right line.
Let ¥ be the given focus, and 11/ the given right line,

K
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e v the vertex, and FP a perpen-
L dicular from the focus on the right

T line = a.
e By Prop. (cvi), ¥L x FVv=2a’
Let vv= 2 and the angle

) PEV = w, °.’

/1 2 == G COS. W,
// If re and p1! be taken as axes
of co-ordinates,

=2
s
hence the equation of the locus sought is
Y 42— ar =0,
which is the equation of a circle passing through the points
r and p, and whose diameter is rr.

and cos, w=

PROP. CXLIII

(298.) To find the locus of the jfocus of a parabola, which
has a given vertex, and which touches a given right line.

Let v be the vertex, v the focus, ar the
given line, and va a perpendicular to it.

(Y

o AN This perpendicular being taken as axes of
L\\ > x, and a parallel to a» through v as axis of
A | ¥, let the co-ordinates of ¥ be yz. By

VL (252), rv . FP = FB%, but Fv* = g4 a7
FB == @ + @, AV being expressed by a, and

FV . .
Fp = ¥8 . —, Hence the equation of the locus of r is,
x

after reduction,

y* - ax = 0,
The locus is therefore a parabola, whose vertex is the point
v, whose axis coincides with Av, and whose parameter is Av.
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PROP. CXLIV,

(294.) Given a diameter of a parabola, the point where the
curve intersects it, and its parameter, to find the locus of
the focus.

The distance of the vertex of any diameter of a parabola
from the focus is a fourth part of the parameter of that dia-
meter. 'This being given, the locus sought is a circle, of
which the point, where the curve meets its diameter, is the
centre, and a fourth part of the parameter the radius.

PROP. CXLV.

(295.) Given the point where a parabola intersects a given
diameter, and also the parameter of that diameter, fo find
the locus of the vertex of the curove.

Let the given diameter and a perpendicular through its
vertex be assumed as axes of co-ordinates. The equation
of the parabola related to a diameter, and a tangent through
its vertex as axes of co-ordinates being y* — px = 0, if the
angle under the tangent and diameter be 0, and the axis of
y changed to a perpendicular to the diameter, the equation
becomes

¥ 4 ipsin. 0.y —sin2 b . pr = 0.
The co-ordinates 32" of the vertex are
Y =—Ip sin. 26, 2" = — 1p cos.? f.
Eliminating from these equations the angle 8, we find
Y+ 4ot 4 pa = 0,
which is the equation of an ellipse, whose transverse axis co-

incides with the given diameter, and is equal to —12)—, and

. . )
whose conjugate axis equals 2—

w2
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PROP. CXLVL

(296.) Given the diameter of a parabola, and a tangent
through its wvertex, to find the locus of the wertex.

The axes of co-ordinates being placed as before, let p be
eliminated by the values of the co-ordinates of the vertex.
The result

Yy —2tang.§.x =0,
shows that the locus is a right line.

PROP. CXLVII.

(297.) On the same conditions to find the locus of the focus.
The axes of co-ordinates remaining thevsame, the co-
ordinates y'#' of the focus are
4y =— ipsin. 20, &' = — Ip cos. 20,
Eliminating p from these, the result is
y —tang. 20 . 2' = 0,
which shows that the locus sought is a right line.

PROP. CXLVIII,

(298.) A right line of a given length is terminated in the
sides of a given angle, to find the locus of a point which
divides it in a given ratio.

B Let the sides of the given angle
P BAC = § be taken as axes of co-
ordinates, and the co-ordinates of

BP m
being yx, and —=—
A [§ o g YT, and o=
(m+n)y
B = ———,
n
(m+n)a

AC = .
m
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But AB* 4 Ac? — 2a3. ac.cos.§ = Bc?.. Hence, after
reduction
moy? — 2mn cos. § . yx + n'x® = mn?,

which is the equation of an ellipse, since

B* — dac = 4m*n*(cos.2 0 — 1) = — 4m*n’sin2 0 < 0.

If§ = %—, the equation becomes

miy® + n%® = m'n’,

which is the equation of an ellipse, whose axes are equal to
the segments of the given line, and coincide with the sides of
the given angle.

If m = n the locus is a circle in this case.

PROP. CXLIX.

(299.) 4 right line passes through a given point, and is
terminated in the sides of a given angle, to find the locus
of the point which divides it in a given ratio.

Let the sides of the given angle sl

BAac be taken as axes of co-or- D

dinates, and let the co-ordinates P

of the given point » be 72/, those

of the point ¢ be yw, the equa- A c

tion of Bc is

Ay —2) +3(x - 2)=0.
In this, if y and 2 be successively supposed = 0, we find
_ Ay + Bx" AB_Ay’ + Ba!

Aac B A
Let the ratio of the segments sp, pc be m : n,
Y n x m
AB m4n A mtn

Dividing the first by the second, and substituting for

AC, A
— 1ts value —,
B B



134 ALGEBRAIC GLEOMETRY.

Ay n A nx
Bz m’ " B my’

hence the equation of the locus sought is
(m + n)zy — maly — nylx = 0.
This is the equation of an hyperbola, the axes of co-ordinates
being parallel to the asymptotes (123).
The co-ordinates of the centre being
ma! ny'
=m +n’ y= m+n
show that if the co-ordinates of the given point be divided

each in the given ratio, parallels to the sides of the given
angle drawn through the points where they are divided
thus, are the asymptotes.

PROP. CL.

(800.) Given in position a right line (AB), and a point (p)
outside it, a right line (em) is drawn intersecting the given
right line; from the extremity m of which, a perpendicular
to the given right line intercepts co of a given magnitude
(@), to find the locus of the point M.

B By the conditions of the
question, if pA be perpen-
M dicular to as,
MD  PA
Al ¢/ n o ac
ED

Now, if » be the origin of rect-

iy angular co-ordinates, parallel
and perpendicular to s, this
condition is expressed by

y—b b

@ a—a

where & = pa. Hence the equation of the locus is

yx — ay — ba = 0.
"The curve is thercfore an equilateral hyperbola.
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To find the centre, substitute in the formulee (94) the
values of the terms in this case, and we find
Y'=20b 2"=a.
Hence if AE = a, E is the centre, and £B and EB' are the
asymptotes.

PLROP. CLI.

(801.) From a given point s a right line A¥ is drawn, in-
tersecting two right lines B¢ and cp given in position, and
a part A is assumed on this line from the given point A,
always equal to the part EY intercepted between the gioen
right lines Bc and c, it is required to find the locus of
the poini .
Let the origin of

co-ordinates be as- [x¥ *

sumed at a, and lines } . /
parallel and perpen- i

dicular to ¢p be as- ! , /IG //
sumed as axes of co- L /i /
ordinates. Let ac =4/, N v

and the equation of Bc D 7 r/ L K

A,
and AF¥ be respectively 7~ /] (T e
Ay+3Br+4c=0, (1), ) /f/ -
Ay + B = 0, (2). =

Eliminating vy from these equations, we find the value of #
for the point &,
ca'

AH =5 e ]“;'X;———']'}'—;,

and therefore
He = & -+ —,—Cﬁ'-—,—- 5
Ba — v/

but by the conditions of the question, if yx be the co-or-
dinates of P, = 16 ; hence
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ca!

.Z‘:.%"-{——'—“——,‘.
BA' — B'A

. B oo :
By this and (2) " being eliminated, the equation of the

locus sought is
Ayx + Ba® — Axly — (B2 + ¢)x = 0,
or since Ay =— (B2’ + c), where y' = cc,
Ayx + B2’ -— Adly + Ay = 0;

. B .
and since — = cot. ¢, where ¢ is the angle Bcp,

Yyx — cot. ¢ . x* —aly + yx = 0.

The locus sought is therefore an hyperbola.

The co-ordinates of the centre are

z=2a,y=2cot. ¢.2 —y.
The origin of co-ordinates being removed to this point, the
equation becomes
yx — cot. ¢ . &* — &(cot. ¢ . &' — y) = 0.
Hence (121) the line ce is an asymptote, and the other
asymptote is a right line, related (105) to the latter system of
co-ordinates by the equation
Yy =cot. ¢ .2

Hence if Ag = ac, and g1 be drawn parallel to sc, and
GK = 1C, the point x is the centre of the hyperbola, and a
line through x parallel to Bc is one asymptote, and ce the
other.

PROP. CLII.

(302.) If through the wertices of two similar lines of the
second degree, whose axes coincide, two right lines be
drawn intersecting them, they will be cut proportionally
by those curves.

Let the equations of the two curves be



ALGEBRAIC GEOMETLRY. 137

Y= px + ga%
'yz ::p’x + qxz.
. : B -
Since ¢ = — = —~, these curves are similar. Let the
A2 AR
equation of a right line intersecting them be y = ax, which,
being substituted in each of the equations, gives
p
a*—q’
P
at—q’
and dividing the one by the other,
r _p
7=
Hence the intercepts of the intersecting right line between
the origin and the points where it meets the curves are pro-
portional to the principal parameters, and therefore the ratio
is independent of the inclination of the secant to the axis.
Cor. This question applied to the circle will furnish
solutions for the following problems:

r =

:c':

1% To describe a circle passing through two given points
and touching a given circle.

20, To desciibe a circle passing through a given point and
touching two given circles.

8. 7o describe a circle touching three given circles. See
Puissant Propositions de Geometrie, pp. 119, 120.—Re-
creations Mathematiques of Ozanam, tom. i p. 377.~—
No. 6, Correspondence sur I’ Ecole Polytechnique.
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PROP. CLIIIL.

(808.) Let two similar ellipses or hyperbolas have a common
centre and coincident axes, and through the vertex of the
smaller let o tangent be drawn intersecting the other;
any two chords of the greater passing througk the point
where this tangent meets it, and equally inclined to this
tangent, are together equal to two chords of the smaller
ellipse parallel to them, and passing through the vertex.

Let the equation of the smaller be
A%° 4 B — 28%ax = 0,
the origin being at the vertex; this changed into a polar
equation, gives
(A%sin.? w + B? cos.® w)r — 2B%A cos. w = 0;
or if ¢ be the eccentricity,
(1 — e?cos.? w)yr—=pcos.w = 03
and hence
P cos. w

o= — .
1—e?cos2 w

Let the equation of the greater curve, the origin being at
the centre, be
Alaye + B2 — AfQB!Q.
If the origin be removed to the point where the tangent
intersects it, and whose co-ordinates are therefore

x=—a,and y = 7,\/59— A%,

the equation will be

A%y + B2a? + 248 AR — A%y — 28"z = 0.
Since the ellipses are similar, their eccentricities are equal,

and therefore this equation becomes, by dividing by a’%, and
. BV‘L
observing that i = 1 — ¢2 and (1 — ¢2)a = p,

P2 (1= e 421 ~ ¢® va® — 2%y~ pa=0.
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This changed into a polar equation, and solved for 7/,
gives

_ peos.w—2yI—¢ vAR—x?sin. w

- 1—¢* cos.tw ’

The two values of 7/, which make equal angles with the axis
of g, differ only in the sign of sin. w, and therefore repre-
senting them by #' and #”,

P =

hence 7' - 2" = 2r.

Cor. This proposition will apply also to two parabolas
if they be equal.

"This proposition is given by Clairaut in his Theoric de
la Terre, and is the principle by which he proceeds in his
investigation of the figure of the planets, when they are

,rY

2p cos. w
1—e2 costw’

supposed to be homogeneous.

PROP. CLIV.

(804.) Three unequal circles being given, if to every two of
them common tangents be drawn, the three points of in-
tersection of the tangents to each pair of circles will lie in
the same straight line.

Let ¢, ¢, c", be the centres of the circles, », ?', ¢ the
three points of intersection of the tangents, », #/, ', the
three radii, and let the lines »'»" and P'c be taken as axes
of co-ordinates. Let p'c” = g, and let the co-ordinates of
the centre ¢/ be y/a!. The ratio 3’ : %' may be considered
as compounded of %' : ¥'c, or 7" : 7, and of Plc : 3/, or
7 ¢ 7!, therefore o/ 1 g =2 #" : #'5 but ¢"p = ¢/ :: 22 7L
Hence » is on the axis of 2.



140 ALGEBRAIC GEOMETRY.
PROP. CLV.

(805.) Two circles being given in magnitude and position,
let a tangent to one of them intersect the other, to find the
locus of the intersection of tangents to the second passing
through the points where the tangent to the first meets it.
Let the centres be ¢, ¢!, the radii r, ®/, p the point of

contact of the tangent to the first, and » the point whose

locus 1s sought. Let cc' be the axis of @, and a perpen-
dicular to it through c, the axis of % : let the co-ordinates of

p be /2" and ¢'p = 7, cd'=2", and the angle rc'x = w.
Since the equation of the tangent through p is

R

and c'p is perpendicular to the tangent, therefore the portion

of ¢'p between ¢ and the tangent, (0), is

PRI
— ——;
R/
but r = 5 and &' = R cos. w, therefore
R/

= r—a' cos. @’
This is the polar equation of a line of the second degree, the
pole being the focus, and the values of w measured from
the axis. The parameter and eccentricity are given by the

equations,
QR!Q
p="7
2
€= —
R
The locus is therefore a parabola, ellipse, or hyperbola, ac-
cording as 2 = R, 2" < R, or 2" > R.

If the locus be an ellipse or hyperbola, the axes are

determined by the equations,
B? R/

= P

A R
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A2—p? 22

A2 nre
Hence it follows that
. RM«
B® = RZ— gl12°
RR’Q
T ORe— a2’

the ratio of the axes are therefore 4/ r? — 2 : R2,

The locus will be a circle if 2" = 0, scil. if the two circles
are concentrical.

If the centre of the second circle be within the first, the
locus is the ellipse; if it be on its circumference, it is the
parabola; and if it be outside it, it is the Zyperbola.

PROP. CLVI.
(306.) To find the equation of & line of the second degree,
touching the three sides of a given triangle.

Let the sides of the given triangle be represented by the
equations

ady + bz +d =0
dy+ bz + ¢ =0
Let y be eliminated by each of these equations and the

ay + bx + ¢ =0
L

general equation of the second degree, and the results ar-

ranged by the dimensions of z, are

(ad? —3ab +ca®)a®+4-(24bc — Buc —pab + Ea?)x ]
+ Act—pac+rFa*=0

(a0 —3Bd'l + ca?)z® + (2a0'¢ — Bd'c — pd' 0 + Ed?) 2 \r (x).
+-Ac%—pdd +ra?=0

(402 —3a"0" 4 ca'®)a? + (248"c" — Ba'c" — a4 Ea"?)2
+acd?—pd'c"+ v =0 )

That the three sides of the triangle may be tangents,

the roots of each of these equations must be real and equal,
which furnishes the conditions:
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(32—4ac)? 4 (D% — 4aT)0% 4 (B® — 4CT)a? —

2(sp — 2aE)be —2(3E—2cn)ac — 2pE—~28T)adb =0,
(32— 4acC)c® + (D% — 4AF)b2 4 (B — 4cF)a’? —

2(3p — 2AE)bc' - 2(BE—2cD)a'c'—2(DE — 28F)db' =0,
(82 —4ac)c + (0" —4AT)D" + (B2—4cF) a*—

2(3p—24E)}"c"—R(BE—2cD)a¢'—2(pE—2BF)a"d" =0.

(©

These three equations are sufficient to eliminate three of the
coefficients of the general equation, and the remaining ones
continue indeterminate,

If the two sides of the triangle represented by the second
and third equations in (a) be taken as axes of co-ordinates,
these equations must become respectively y = 0 and 2 = 0,
and therefore & = 0, ¢ = 0, ¢ = 0, ¢’ = 0, and hence the
conditions (c) become in this case

(82 — 4dac)c® — 2(sp — 2ar)bc — 2(BE — 2cD)ac
~ 2(pE — 2BF)ab = 0,
®? — 4cr = 0,
p? — 4aF = 0.
The co-ordinates of the points where the curve touches
the axes of co-ordinates, are in this case
B

__ D oand o =
Y==4, anda=—s

PROP. CLVII,

(807.) To find the equation of the locus of the centre of a
line of the second degree, which touches the sides of a
given angle in two given points.

Let the sides of the given angle be assumed as axes of
co-ordinates, and let the distances of the points of contact
from the origin be respectively 3/ and '.  If the equation of
the curve be

Ay* 4 Bxy + ca® + Dy + Ex f T =
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The conditions of the question give the equations,
p? — 4ar =0,
E2 — 4cF = 0,
. D
Yy=—23p
E
- o
The co-ordinates of the centre are

2l =

BD—2AE

pf—dac’

BE—2cD

B2—diac”

The quantities c, p, E, ¥, being eliminated from these by
means of the former equations, the results ave

X = —

y=-

Ray™
y= Say + 52"
Ay
The equation therefore of the locus sought is found by
eliminating B and & from these, which is done by dividing
the one by the other, and gives
yx' — xy = 0.
The locus is therefore a right line passing through the
vertex of the given angle, and bisecting the line joining the
points of contact. Since
B? — 4ac = %yf . (———————'y’—“izg—'yg,
the curve is an ellipse or hyperbola, according as 3/ < 2y,
or > 2/, and it is a parabola if the centre be at an infinite
distance. The species of the curve therefore depends on
the side of the line joining the points of contact at which the
centre is assumed ; if it be at the same side with the vertex
of the given angle it is an hyperbola, and if at a different
side an ellipse.
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If y = !, the locus is the bisector of the given angle,
which is the common axis of all the curves.

PROP. CLVIII.

(808.) To inscribe an ellipse or hyperbola in a triangle so as
to touch its base at the point of bisection, and also to touch
one of 'the sides in a given point.

By the last Proposition, the centre must be upon the line
through the point of bisection of the base, and the vertex of
the opposite angle. And the line joining the points of con-
tact of the other two sides must be parallel to the base;
hence may be found the point of contact with the other side,
and the solution of the problem is evident; if the given
point of contact with the side be in the production of the
side, the curve is an hyperbola, if otherwise, an ellipse.

PROP. CLIX.

(309.) To find the locus of the centre of ellipses or Iyper-
bolas which touch the three sides of a triangle, and touch
one in a given point.

Let two sides ¢, ¢, of the triangle be assumed as axes of
co-ordinates, and the equation of the third side (¢") is
dy + cx —cc = 0.
The condition of contact with the axes of co-ordinates and
this line are
B2 — 4cF = 0,
D2 — 4er = 0;

) QBD—-QAE BE — 2¢D ) DE — 2BF
e —2———c—2—F——C —gF—7— =
¢ B2—4Ac B* —4Ac 25t — 4ac

Let the distance of the point of contact with the axis of &

0]

T
from the origin be 2/, *. 2'= oo
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The co-ordinates of the centre being

BE—ZCD
Y= TR e

BD~=2ATL
XN == T—

7B —dac
We find, after climination, the equation of the locus sought,
2Ad — Yy + %ex — cd = 0,
which proves the locus sought to be a right line,
¢ . ! ¢ .

Iy =0, = g9 and if » == Y =g Henceit ap-
pears, that if a right line be drawn connecting the given
point of contact with the vertex of the opposite angle, the
right line which is the locus sought bisects this line, and the
side of the triangle on which the given point of contact lies.

PROY., CLX,

(810.) 7o find ihe locus of the wertex of a iriangle con-
structed on a given base, one of whose base angles is
double the other.

The extremity of the base being taken as origin, and the
base as axis of x, let one base angle be 4, and the other 2a,
and the co-ordinates of the vertex yx. By trigonometry,

2tan. a

tan, QA == cee———e
1—tan? a

g g :
but tan. A = 4’1, and tan, 24 = ;—,‘—/—-}, where &' is the base.
x J
Hence, after reduction, the equation of the curve sought is
y* — 82* + e = 0,
which is the equation of an hyperbola, whose transverse axis
is two-thirds of the base.

5
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PROP. CLXI,

(811.) Given in magnitude and position the vertical angle
of a triangle, whose area is also given, to find the locus
of a. point which divides the opposite side in o given ratio.
Let the sides of the given angle be assumed as axes of

co-ordinates. The co-ordinates of the point, whose locus is

sought, being y, the equation furnished by the conditions
of the question, after the requisite reduction, is
2a m.n
yx = s g (m Ay

where ¢ = the given angle, A the given avea, and m : n the

given ratio.

The locus 1s therefore an hyperbola, whose asymptotes are
the sides of the given angle.

PROP. CLXIL

(812.) o find the locus of the extremily of a portion, as-
sumed upon the sine of an arc, equal to the sum or dif-
ference gf its chord and versed sine.

By the conditions expressed, the equation of the sought
locus is

where » is the radius; which, when disengaged from the
radical, becomes
Yy T Qw4 a® — e =0,
which is the equation of a parabola.
It is evident that the axis of the parabola is inclined at an
angle of 45° to the diameter of the circle.
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PROP. CLXTIT,

(813.) T'he ordinate to the axis of o line of the second de-
gree being produced to unitil the part produced equals the
distonce of the point where it meets the curve from the
Jocus,to find the locus of the extremity of the produced part.

j x
1)/
M
n%;‘/\
4
X
1% _’,//
A G T ¢ P b.N

Let the ordinate vy be produced until mm equals #u, ¥
being the focus of the proposed curve: the object is to find
the locus of the point .

The polar equation of a line of the second degree is

14

/Ao
(1 —e cos, wy
which vepresents an cllipse, hyperbola, or parabola, ac-
cordingas e < I, > 1, or = 1.
Tet ¥ be drawn. By the conditions of the question
Tm = 2 cos. mEM = 2 sin, mre.
If ya be the rectangular co-ordinates of the point m, related
to Fy and ¥x, as axes of co-ordinates,
o= Y+ 87
Y
'\’/3/?' + Al
and sinee mrp == 90° — QmwEwm,

sin, mrp =

19
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,\/lyg —l" X% = 0 3 p . .sfj__..s
(1 — ¢ sin. mFP cos. mFP) VR

which reduced becomes
g = leyx + a* — py =0,

which is the equation of an ellipse, hyperbola, or parabola,
according as ¢ <1, > 1, or = 1. The locus sought is
therefore a line of the second degree of the same species as
the proposed.

The solution of the equation for x shows that the curve
touches the axis of « at r.

If the equation be solved for y, the roots are

y=ev +ip + V(e — D)™ + pex + 1p
To find the values of y, which touch the curve, let the values
of x, which render the radical = 0, be found, and the cor-
responding values of y are those sought. These values of
& are
x = d

T 1 + ey

TETAT )

and the corresponding values of y are equal to these re-
spectively. 'These being the distances of the vertices of the
proposed curve from the focus, indicate the following cir-
cumstances with respect to the position of the proposed
locus.

If a perpendicular to ax, the transverse axis of the pro-
posed curve, be drawn through its vertex a, and AB = AF,
the locus sought touches ay and ax at » and F.

If 8F be drawn, and bisected at E, a right line passing
through 4 and E is the axis of the locus. 'The line Bu, the
focal tangent of the proposed curve, is a diameter of the
locus whose ordinates are parallel to av.

The axes of the locus are inclined at an angle of 45° to
those of the proposed curve.
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If the proposed curve be a parabola, £ will be the focus,
and BF the parameter of the locus.

If cp be drawn through the centre of the proposed curve
perpendicular to Ax, and intersecting AT in p, » is the centre
of the locus.

If the proposed curve be a parabola, whose parameter is
P> the parameter of the locus = L

If the proposed curve be an ellipse or hyperbola, let its

semiaxes be @ and b, "o ap = a +/2. And since the tan-

gents ar and AB are at right angles, Ap = @+ 0", ' and
& being the semiaxes of the locus; also ap . pE = %, and
=~ (a+c¢) o
DE = G . /2 = ——. Hence it tollows that
V2
— -+ c
@Y — = a?,

Ve
ale + ¢) = a?,
a(a—c) = b5
It will appear by Sect. XVIIL that the areas of the two
curves are equal.

PROP. CLXIV.

(814.) To find the locus of the point of bisection of the nor-
mal to a line of the second degree.

Let the equation of the line related to its axis und vertical

tangent as axes of co-ordinates be
A%+ B2 — 2p%a2’ = 0.
Let the co-ordinates of the point of bisection of the normal
be yx. By the conditions of the question
¥y =2y

B2(a —a')

22
since the subnormalis equal to — E—-@z;‘l)

AR [(," =

The co-ordinates 32’ being eliminated by means of these
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equations, and the result arranged according to the dimen-
sions of g and x, we find

(3% — 242)%% 4 B2 — 2% % — 18%(8? — 44%) =0,
the equation of the locus, which is therefore a line of the
second degree, of the same kind as the given one.

If the given curve be a parabola, the equation of the
locus (since 4 is infinite), becomes 16y* — 4pr 4 p? = 0,
which is the equation of a parabola, whose vertex passes
through the focus of the given one, and whose parameter is
equal to a fourth of the parameter of the given parabola.

If the given curve be an ellipse or hyperbola, let the
origin of co-ordinates be removed to the centre, and the
equation of the locus becomes

(242 — B9)%% 4 A% = Lp%(2a2 - B?)%
Hence the semiaxes 4!, 8 of the locus are

Al

il
.
{
|

B = In.

PROP, CLXV.

(815.) 4 right line (8m) being reluted by its equation to
rectangular co-ordinates, if o right line be drawn fiom the
origin (a), meeting the ordinate of the proposed right line
at (@), so that na = pM, tofind the locus of the point (Q).
Let aq ==y, and

QAP = w; let the
equation of the
right line be
y—ax — b= 0.
. 2
Smc,:e by hypo- A
thesis 7 = g, and - e
& = 7 ¢os. w, the e A
equation of the
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b
= (i—:—;z cos. w)’
The locus is therefore a line of the second degree, whose
parameter is 2b, and eccentricity = a. It is obvious also
that the right line By is the focal tangent.

PROP, CLXVI,

(316.) If from the centre (¢) of an ellipse a line (cQ) be in-
Slected on the ordinate (pxr) to the awis, so that cQ = ru,
to find the locus of the point .

Let the equation of the given ellipse be

APy 4 BRalt = AR,
and let the co-ordinates of
the point @ be yx. By
the conditions of the ques-
tion, the equation of the
locus 1s

le

B
Yt = —X,E(A’Q — a?),

which reduced becomes

2.,

;\J‘y‘z + (Ala _+' B’Q)[C” - Ar%B/g.
Hence the locus is an ellipse, whose axes coincide with those
of the given one.  Let the semiaxes of the locus be 4, s,
Alg!
A S ———,
VA2 + B
B = ¥
Hence, if the angle sca be bisected by cv, and pr be drawn
perpendicular to ca, ¢t = a.
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SECTION XV.

Of the application of the differential and integral calculus
to curves.

Of tangents, normals, &c.

(817.) The differeniial and integral calculus is peculiarly
adapted to the analytical investigation of the properties of
curves; and the application of that science to this purpose
cannot but be considered as one of the most interesting and
useful parts of Algedraic Geometry. We shall therefore in the
present section proceed to apply the calculus to the discovery
of those properties to which it is particularly adapted, and
in which the principles of common algebra, used in the pre-
ceding sections, are either inadequate or incommodious.

PROP. CLXVII,

(818.) Yo determine the position of « langent passing
through a given poini (ya'y on @ curce, whose equation
is ¥(yx) = 0.

Let the equation of

the tangent sought be ) /
(y—y) —a(z—a’)=0, L
' ) » /P
sin. lo . g
where @ = ———o, Let 2y,
sin. Jy P

P be the given point, and

p = = Aw, /

then bY Taylor’g theo.- / " A
rein,
dy sa dy  sa® Py sdP
U T - I AN Q-
PP T g T2 @ 17285
: ~—dy ool ‘1’/ Ag
Ifu= T = + o T
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d* A&t di Axd
PP =T T g S
In this series such a value way be assigned to Az as will
vender the first term greater than the remainder of the series,
and the same term will be greater than the remainder of the
series for all values of Ax between that and zero. Hence
if Aw = rp render the first term greater than the remainder,
d*
pfp” = pp' - pp" will have the same sign with “Zi;z" since

Ax® is positive whatever be the sign of A, and the same
will be true for all points between » and p.  Hence it fol-
fows, that at each side of the point ¢ the curve lies at the
same side of the right line, and that it lies above or below it

‘n

according as 29 qnd y have the same or different signs. The

dz?

d*y © g ) A . .
case in which —= = 0 shall be considered heveatter. The
dx

0
(A
curve is ' conwver towards the axis of @, if s has the

same sign with 7, and concave it they have different signs.
Any other right line passing through the point » must inter-
sect the curve; for let its equation be

(g =) e d@ )

o pp'! = (Z' . 4_\1,5

Ax A2 N 3
P! = (’/ r) [ + ‘L av ey er .
£ dx der " T2 ded” 1,278

In this series such a value may be assigned to Az as wil
vender the first term equal to the remainder of the series, and
therefore if the sign of Az be in that case different from that
of the remainder of the series, the value of plp" will vanish,
and the vight line will meet the curve at that point, and for
every point between that and v the vight lue will lic within

the curve,
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Hence the equation of the tangent through the point

Y is
(y—9) — e = ) =0
Y=Y =g 4 ‘

(819.) Cor. 1. A point can be found on a curve, through
which a tangent shall be parallel to a right line given in po-
sition.  Let the equation of the right line be

Ay + Br ¢ =0,

The co-ordinates of the point of contact may be found by

the equations
dy B

da' A
v{y'a') =0,

the latter being the equation of the curve.

b

o dy .
(820.) Cor.2. If 7{—, = 0, the tangent is parallel to the

axis of @, and wvice versd.

821) Cor. 8. If g’i = o, the tangent is parallel to
the axis of y, and vice versd.

(822.) Cor. 4. The equation of a tangent to a given point
on a line of the second degree, may be found by differen-
tiating the equation

AY? & Bay 2 vy f B4k =0,
which gives

dy Qx4+ By + E

de 7 QE/_—}— Bx + D’
and therefore the equation of the tangent is
24y + 2"+ ) (y—1) + (2o’ + By +x) (@—a') = 0,
which 1s the same with the result of (183).
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PROP. CLXVIIL
(823.) To find the subtangent to a given point on a curve.
In the equation of the tangent let y = 0, and the value

of the subtangent s is &' — 2, *.°

o . d
i 9

- 7
and, in like manner, the value of the subtangent measured
on the axis of y, is
,_aldy
§ =,
da!
(524.) Cor. If the length of the tangent be 1,
YAdY'* + da” + 2dy'da’ cos. yx)
dy"*

2 =

2

. w
which, when yo = 5 becomes

e

P 2 (1 + ..i)

A dy™”
PROP. CLXIX.

(825.) 70 find the equation of the normal and the sub-
normal.

The equation of a line perpendicular to the tangent is,

by (39),

ay . dyf
(0590 +2) (Y = ¥ + (g €05 g+ 1) (@ — &) = 0,
which, when yx = %—, becomes

da! .
(y - 9)+ E (v — a'y= 0.

The subnormal, taken velatively to each axis of co-or-
dinates, may be found by supposing y and @ successively
= 0 in these cquations, which gives
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, dJ -+ cos. yr .da' Lda
s=—1.

7 dal + cos. yx . dy’

da'+ cos.yx . dy

- Ll Al
5= dJ + cos.yx . dx”

which, when ya = —-, become
«~
ydy
T A
, a'dax!
§h= — =
dy

PROP. CLXX,

(3206.) To transform any cxpression involving the co-or-
dinates Yx of any point, aund their differentials, into one
involving the polar co-ordinates z, w, end their dif-

Jerentials.

The angle ya may in this case be taken as a right angle,
to avoid the complexity of the expressions which would re-
sult from any other supposition. Any formula related to
oblique angled co-ordinates may be transformed first to rect-
angular, and then to polar co-ordinates.

The angle ya being a right angle, the point /@' the pole,
and the angle w being measured from a line which makes
with the axis of # an angle «/,

y = zsin. (w + o),
& =3 cos. (w + o),
dy =z cos. (w 4 o)dw - sin. (w 4+ w')dz,
dre = cos. (w + &)dz — zsin. (w + o)dw,
Cdy  xdw+ tan.(w + o)dz
de~ dz— tan. (w + o)zde’

dry=sin (w+ w')d*z 42 cos. (w+ w')dzdw—z sin. (w-4')dw?,

dw=cos.(w + w)d*% — 2 sin. (w4 o')dzdw — 2 cos. (w4-w)dw?.

By these formulae any expression involving ya and their
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first and second differentials, can be converted into an ex-
pression involving zw, and their first and second differentials ;
and in like manner, by continuing the process, the substitu-
tion necessary for the differentials of higher orders may be
found.

PROP. CLXXI.

(327.) To express the angle under the radius wvector of a
curve, whose equation is z = ¥(w), and @ tangent through
any point zw.

Let the angle under the radius vector and fixed axis be
za, and that under the tangent and the same #z, and the
angle under the tangent and radius vector 2. Now,

tan. tv —- tan. 7@

tan. fz=
71 + tan. to . tan. 72’
but
1 d
tan. zw= i, tan, o = & 5
@’ dx
hence
dx — 2d
tan. {3 = — Y Y

Substituting in this expression for y, @, dy, dx, the values
found in (326), the result is

z‘ldw{ sing (w + o) + cos.? (v + @) 2
tan, fz =

zdz{ sine (w + ') 4 cos? (w + @) }"

can. ¢ zdw
ot tan, i =——
dz

hence also
2dw

(s2du® + )

s, 7z =
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PROP. CLXXI.

(328.) Given the polar equation z = ¥(w) of a curve, to
express the polar subtangent,
Let the polar subtangent be p, . p = 2 tan. #z,
2*dw

P =

OF rectification and quadrature.

PROY. CLXXI1I.

(829.) The cquation of a curve being given, to find the length
of any arc of it
1. If the equation be related to fixed axes of co-ordinates
ya, let A be the arc, and it is plain that

da = (dy* - da* -+ 2dy dx cos. ym)%,

s A =f(dy* + da® + 2dy de cos. ya)* + ¢,
in which the value of the constant ¢ is determined by the
co-ordinates of the extremities of the arc sought.

If yr = Tg’

A= fdy® + davz)% -+
2. If the curve be expressed by a polar equation 7 =r(w),
let the values of dy and dz (326) be substituted in the pre-
ceding equation, and the vesult is

A = j(2?dw?® + dzg)}f + ¢,
where ¢ is determined by the values of z and w for the ex-
tremities of the proposed arc.
The determination of the length of an arc is usually called
the rectification of the curve.
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PROP. CLXXIII.

(830.) To find the area included by two walues of ¥, the
curve and the axis of X, or by two radii vectores, if the
curve be expressed by o polar equation.

1. Let the equation be ¥(yx) = 0, and A’ the sought
area,
da' = ydz . sin. ya,
oAl = fyde . sin.yx + o
and if the co-ordinates be rectangular,
A= fydr + ¢;

where ¢ is determined by the values of 7, which include the

area.

2. 1If the curve be expressed by a polar equation,
dal == Isin. &3 . zda,

I

where da = (x*dw® + dz%)* (329), and

., 2w

sin, §3 = ———————

(2*do" -+ dz=2)
dal = 12w,

Al =1 /2%dw 4 ¢,
where ¢, as before, is determined by the values of z, which
include the proposed area.

. e
5 e

The determination of the area is usuaily called the qua-
drature of the curve.

Of osculating circles and evolutes.

(831.) The principles on which the investigation of a line
touching a curve is founded being generalised, produce some
results of considerable importance in the analysis of curves.
The object sought in that case, was a right line meeting the
curve in such manner, that no other right line passing
through the same point could pass between it and the curve,
but must pass at the same side of both. Now a circle may
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be sought fulfilling similar conditions, scil. so meeting the
curve, that no other circle through the same point can pass
between it and the curve. Let the equation of the curve
and that of the sought circle be
Fya) =0 (1),
(y=y»r+(@—-ap-r=0 (2,
where ¢/2’ are the co-ordinates of the centre of the circle, and
R is the radius. In order to limit the circle to touch the
curve at the point 7, it is necessary that the first differential
coefficient in the two equations be equal to each other, for,
in that case, the same right line shall touch them both at the
point p. By differentiating the equation of the circle, the
result is
(y —YPdy + (x — d)da =0 (3).
dy Tos T,
The value of T resulting from equation (1) being sub-

(]

stituted in this, and z/a’ being supposed variable, and ya
constant, it is the equation of the locus of the centre of a
circle touching the curve at the point, and shows that the
centres of all suchi circles are on the normal (39). The
question then is, among those circles to determine that
between which and the curve none of the others pass. For
this purpose, if the equation (3) be differentiated,
(y = Y&y + (¢ = )P - dy? + da* =0 (4);

this and (3) will determine the centre of the sought circle.

Let the values of @, (_Ziy d{g’ &e. for the equation
dx’ da® da®
F(yx) = 0 of the curve pp be 4, ", 4", &ec., and their
values for the circle (pp/) determined by (2), (3), (4), be
8, 8", 8", &c.; and the values for any other circle »p" be
d, "y o) &e.

Let vel = Az, ¥p = ay, oy = ay, vp' = ay'; then
by Taylor’s theorem,
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/

AL Ax'°'
—a 2% " o
Ay=4", l + a'y5 + A 1 199’ &e.
Az A N
Ay’: 8. *—1-&; + B ']—f;“ + B"’m.—s—, &c.
N BT uA Az
ay'=c. 4 {—L12+0123,&c.

Now, since o' = B' = d, and a" = 3", by the conditions
alveady laid down, -.*

2
A_y —A.y" = (A" — C”)% + (ANI__ C

&e.

! I I I Ax? /1 I
AY - AY =(B——C)-—1—2-+(B c) 23,

The value of A« may be taken so small, that the first term
of each of these series shall surpass the value of the sum of
the remaining terms, and therefore the sign of the whole
series will be that of the first term in each; but since
A= 3"+ 4" — "= 8" — ¢', hence the signs of ay— Ay,
and Ay — ay' are the same, and therefore the point p"
cannot lie between the points p and 2/, that is to say, the
part of the circle pp" flowing immediately from the point r,
must lie at the same side of the curve »p and the circle pp'.

(332.) D¢f. The circle thus determined, is called #he
osculating circle to the point ».
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PROP. CLXX1V.

(333.) To express the co-ordinates of the centre and the
radius of the osculating circle.

Let the values of /2’ and R be determined by the equa-
tions (2), (3), (4); whence,
(dy*+ da®)dx
Y 'y+d{ydx—d9a, dy
(dy* +da®)dy
dx dy— d¥y da’

Ay +da)t

* A2y dw—d?x dy

The value of R being a square root, is susceptible of two
signs: which we should employ is conventional. If the con-
cavity of the curve be turned towards the axis of x, the
radius of the circle which passes through the point of contact
will also be in that direction. If the radius thus situate
be considered positive, the value of ® given above must in
that case be taken with a negative sign, because d*y will in
that case be negative (818), y being supposed positive. We
shall therefore consider the value of R to have the negative
sign prefixed.

(834.) In the preceding investigation we have considered
both dy and dx as variable, for the sake of generality, and
also because it preserves more symmetry in the expressions.
If dz, however, be considered constant, d%z = 0, and the
expressions therefore become

dy _/9+dx~

J-—9+ y >

(dy* + da®)dy
dyde ’
@y +a)?
dyde
(835.) The osculating circle is known by the name of the

=

R =

2= -
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circle of curvature, and its radius is called the radius of
curvature. It received this name probably from the sup-
position that it has the same curvature with the curve at the
point of contact; but this is not strictly the case, as there
are an infinite number of other curves which may pass
between it and the given curve, and whose curvatures there-
fore approach nearer to that of the curve than the curvature
of the osculating circle, as will be shown hereafter. The
curvature of this circle, however, approaches nearer to
that of the curve than the curvature of any other circle, and
in this sense the name of the circle of curvature may not be
‘inapplicable.

PROP. CLXXV,

(836.) A curve being expressed by a polar equation,
z = ¥(w), to find the radius of the osculating circle.
In the value of ® in the equation
3

_ (dy +dx)T

Ay doe—d*x dy’
let the values of dy, dz, d%, d*x, be substituted, and the
result is

R =

(2*dws + dzsz)%
T (FPdw 27 —zdz)dw’
(887.) Def. The osculating circle varying its position
and magnitude for the different points of the curve, the

R =

locus of its centre is a line whose nature and properties
depend on, and are derivable from, those of the given curve,
This locus is called the evolute of the curve, and the curve
is its snwvolute.
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PROP, CLXXV,
(838.) The equation of a curve ¥(yx) = 0 being given,
to find that of its evolute.

By the equations

. _ (dy®+da®)dx
Y=Y= yde_

@ dy

RN C e S0 R

T dre dy—dy dx’

united with that of the curve and its first and second dif-
ferentials, the quantities y, , dy, dz, d’y, and d%z, may be
eliminated, and an equation will be thence found expressing
the relation between g2/, the co-ordinates of the centre of
the osculating circle, and the constants of the equation
F(yx) = O of the curve. 'This relation is independent of
the values of 7 and « since they were eliminated, and there-
fore expresses a relation between 3 and 2’ common to all
the points of the curve, and is therefore the equation of the
locus of the centre of curvature,

(839.) The principle here used is one of the most ex-
tensive power and utility in analytical and geometrical
investigations. The elimination of several variables by
several equations always gives an equation or equations
which express the relation between those which remain, and
which, being independent of any particular values of those
which have been eliminated, is common to all values of
them. We cannot advance a step in analytical investiga-
tions without being sensible of the power with which this
invests us.
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PROP. CLXXVII.

(340.) To find the equation of a tangent to the evolute
drawn from a point (yx) on the curve.

By (318) the equation is

!
3/’ —Yy= %’%,(w’—x);
Lo dy' ;
the object is therefore to express T2 function of ya.
Let the equation
(¥ =Ny + (¢ — a)dw = 0
be differentiated, 32’ being considered variable; the re-
sult is

(y—9y + (2 —a")d% + dy* + dx*—dy dy' — dx dx' =0,

which being subtracted from
(y — NPy + (x — &Pz + dy* + d2* = O,
gives
dy dy' + dz da'= 0,
dy dx
or (7;' :—‘: e @.
Hence the equation of the tangent sought is
(¥ — y)dx + (&' — 2)dy = 0.

(341.) Cor. Hence (325) the tangent to the evolute drawn
from any point in the curve coincides with the normal of
the curve through the same point, and therefore (337), the
centre of the osculating circle is the point of contact; and
the length of the tangent, from the point on the curve to
the point of contact, is the radius of the osculating circle.

PROP. CLXXVIIIL.

(342.) To find the length of an arc of the evolute to a given
curve.
If the equation
(y =4y 4 (v = &) = &
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be differentiated, considering 3'2' and r as variables, the
result is

(y — ¢) dy — dY) + (xz — ') (dz — da') = rdR;
but since (y — ¥)dy + (# — &')dx = 0, "

—(y — ¥)dy' — (x — 2/)d2' = RdR,

by this and the equations

(¥ — y) + (v — 2)* = r?,

(y —y)da' — (z — 2)dy =0,
the quantities (y — /) and (# — 2') being eliminated, we
find

(dr)? = dy* 4 da®,

dr = (dy* + o)

the latter member of this equation being the differential of
the arc of the evolute, it follows that this arc and the radius
of curvature increase by equal differences. Let vv' be the
evolute of the curve mm/, and v the centre of the osculating
circle corresponding to the point »; the line mv therefore
touches the evolute at the point v. In like manner, let
'V be the radius of the osculating circle at the point M’
touching the evolute at v'. By what has been proved, the
arc vv' of the evolute is equal to the difference between the
lines mv and m'v. Hence it follows, that if mv be supposed
a flexible string wrapped upon the curve vv' as it unwinds
itself from off vv' its extremity m will trace out the curve
um'.

(848.) The analogy between this manner of conceiving
the involute to be described, and the description of a circle
is manifest. The evolute may be conceived to act as centre,
and the radius, instead of being a constant length, to be
variable.

(844.) Cor. 1Tt follows also, that if the involute be an
algebraic curve, the evolute is rectifiable. For any arc of it
is equal to the difference between the radii of the osculating
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circles at the points of the involute corresponding to the ex-
tremities of the arc of the evolute.

Of asymptotes.

(345.) Two lines are said to be asymptotes to each other
when extending indefinitely they continually approach each
other, and approximate closer than any assignable distance,
and yet never intersect or touch. Thus, if two curves be
represented by the equations ¥(yz) = 0 and ¥'(y'2) = 0,
and for the same value of # the value of (y — ¢) di-
minishes without limit as @ increases, but that condition
y — %' =0 can only be fulfilled by supposing # infinite,
the curves are said to be asymptotes to each other.

PROP. CLXXIX,

(846.) To find a right line which is an asymptote to a curve,
whose equation is ¥(yx) = 0.

This problem may be solved by considering the limit of
the position of a tangent when the point of contact is re-
moved to an infinite distance. The equation of a tangent
through a point y'a’' is

d
(y—y)= -i%(x - 7).

If in this equation y = 0, the corresponding value of
will be

_ ddy—y'dx
==
and if @ = 0, the corresponding value of y will be
! — !
AC = y——-——dm —x-i-y
dx

If when 2'is increased without limit, these quantities have
limits, the curve has asymptotes, and they will be determined
by these limiting values of as and ac.
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If AB have a limit, but Ac none, the asymptote is parallel
to ax ; and if aB have a limit, but Ac none, the asymptote is
parallel to AY.

If neither have a limit, the curve has no asymptote; or it
may be conceived to have asymptotes infinitely removed.

If the limits be impossible, the curve has no asymptotes.

If the limit of AB=0, the axis of y is an asymptote ; and
if the limit of Ac = 0, the axis of @ is an asymptote. If
both limits = 0, the asymptotes pass through the origin,
and their direction may be found by the limiting value of
dy

Zas wis indefinitely increased.
dx

SECTION XVI.

Of the general principles of contact and osculation.

(347.) 'The principles which have been already explained
relative to the contact of right lines and circles with curves,
and also those on which the osculation of the circle with a
curve has been founded, may be considerably generalised
by the powers which the differential and integral calculus
gives us.

Let three curves

‘ [

Za (o, M, mm'")

m having a common point
M, be represented by the
equations,

F( 3/.2;') =0,

¥(7/a) = 0,

TP F(y/a") = 0.
Letep = um = aw,
and w'm= ay,m'm = Ay,

and ' = Ay’ Hence by Taylor’s theorem,
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_dy Aaz+d‘21/ Ax® +d3y Ax® +d‘y Azt
T 1 "dxr 1.27d¢ 1.2.37da* 1.2.3.4
&e. (1),
dy! Ax &% Axt d3y Ags  dYy  Aat
TV Tetas 128t T.2.5.4
&e. (2),
d.y" Ax dey!! ) N dsyll ) Ax® d?;yﬂ . Axt
W TYEs 1.2 @ Testar 12384
&e. (3).

If in (1) and (2) y dy, these two curves mm and mud

will have a common 1ect1hnear tangent at M and any other
curve Mz not fulfilling the same condition, must lie at the
same side of the two curves Mm, M7/, so touching at M, and
cannot pass between them.  This has been already esta-
blished (318).

If in (1), (2), and (3),

the three curves téuch at »; but 1f' also the condition

d y
7 dx”"
the curve Mm' must pass between mm and mm'.
For by subtracting (3) from (1) and (0),

S da dz y!! A, xtz duy 3 yVI Axd

V,__ 7

Ay — Ay—ldx da™ o~ n$T.2.3
dy &y yax Sy Yy sw
Ay —ay'= %E“W}LQ Zzﬁ“dw}l.m’

Such a value Pp may be assigned to Az as will render the
first terms of these series greater than the sum of the re-
maining terms, and the same condition will hold good for
all values of Az between »p and zero; therefore the sign of
the entire series will be 1n each case that of the coefficient of

Az?
i s in the first term, which coefficients being equal by the
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Ty_&y
de?™ da'?

have the same sign. Hence the arc mm', intercepted be-

the terms Ay — Ay" and Ay — Ay" will

tween pum and pm', must lie at the same side of the curves
mm and mm/, and therefore the contact of these two must be
more intimate than that of Mm/ with either of them.

(348.) From what has been said, it appears that curves
may have with each other different degrees of contact, and
the principles on which the theory of contacts, in its most ge-
neral form is founded, are embraced in the following theorem.

PROP. CLXXX.

(849.) Let three curves (Mm, mm', Mm",) having a common
point (M), be represented by the equations v(yx) = 0,
F(y'x) = 0, ¥'(y"x") = 0, and let the successive differential
coefficients of these equations, from the 1st to the pthy be
equal each to cach ; and also let the successive differential
cogfficients of the first two equations, from the pth to the
nth, be equal each to each. Under these conditions the
part of the curve Mmm" next the point M, must lie at the
same side of the two curves Mm and M.

For, by hypothesis, the terms of the three series (1), (2),
(8), as far as the pth term, are equal each to each ; therefore,
if (3) be subtracted from (1) and (2), the result is

dp+1y dp+1yll - A.Z‘p'H

4y = do i dgv 1 S T, 2un(p 1)
+ dp+2y dp+2‘yll} AxPt2

dor¥ " da 2 51,2, (p+2)

f ap-i-ﬁ (Z1>+37 ] l AxPte
T U~ G $ 1. 2., (p+9y

&e.
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= $ETY Ay A
Ay —oy'= da"™ " dx1 3 1. 2. (p+1)
dp+2yl _ dp+2y" 2 AxpPt?
A @ 81,2, (p+R)
dp+3yl_dp+?iyll 2 Agpts &c
A da S T 2. (p+3)y
By hypothesis, the sum of the first (n — p) terms of these
series are equal: let this sum be (s), therefore

dn-{-ly dn+1y” Aw"l'*‘l

I'— —_— g

Ay—Ay —s+ldx"+‘ dan+1 | 12“(n+1)
dn+2y dn+2y'l Axnt?

dz" 2" da"+2 51, 2...(n+2)
dn+3 dn+3 v A;v"'“’

+ gdx"l*y‘”'_dx”"‘f?' 1.2..(n48) &e.
g d"'“y' dnﬂf‘/"? At
L da 1 §T. 2. (n+1)
% dn-&—z:,j,f dn+2'7/!! ? Aaht2

daite " da 2 51 2.(n+2)

drt+3syl  drtsyll Agnts

dm'“ﬁ_dx"’ﬁ“ 1.2 43y

The succeeding terms of the series being supposed to be
finite, such a value (MM') can be assigned to Az as will ren-
der (s) greater than the sum of the remaining terms of either
of these series, and therefore Ay — Ay" and Ay’ — Ay will
both have the sign of (s), and Ay and Ay will be both greater
or both less than Ay, for this and every value of Az be-
tween M’ and zero. Hence all the corresponding points of
the curve mm lie above both mm and »/, or below both, ac-
cording as (s) is negative or positive, and therefore the curve
Mm' can in no case lie between mm and M.

(850.) Cor. 1. Hence, in general, if any two curves have
a common point (), and the co-ordinates of that point being
substituted for 7@ in the successive differential coeflicients,

Ayr_Ay"___S +
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beginning from the first, render them respectively equal
cach to each, no curve in which the same equality takes
place for a less number of differential coefficients can pass
between them at the point (M), and every curve in which
the same equality takes place for a greater number of dif-
ferential coeflicients, must pass between them at that point.
(851.) Cor. 2. The greater the number of differential co-
efficients of the equations of two curves are equal the more
intimate the contact.
(852.) Def. The contact involved in the conditions
—y Y_dy
Y=Y = do
is called contact of the first order. 'That involved in the
conditions
c dy_dy &y _diy
VY= Qo™ da Ao da®
is called contact of the second order. And in general the
contact involved in the conditions
_ o, dy _dy dy  dy dvy _dvy
V=0 W™ dd dw™ dx® T de da®

is called contact of the nth order.

PROP. CLXXXI.

(858.) To find that curve of a given species ¥(y'x') = 0,
which has the highest order of contact with a given curve
r(xy) = 0.

Let the number of constants in the equation ¥(y'2') = 0
ben. The equations being differentiated »~— 1 times, and the
values of the constants of the equation rl(¥'2') = 0 found
from the equations

J Ay dy dy dy dmtily  dr=iy

Y= g™ de? dut™da® " d o d—
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being substituted in that equation, will give the equation of
the curve sought. For the number of constants being by
hypothesis », will be sufficient to fulfil these conditions,
and therefore the contact may be of the (m — 1)th order;
but it cannot be of a higher order, as » constants could not
fulfil more than » equations.

(354.) Def. Of all curves of a given species, touching a
given curve at a given point, that whose contact is of the
highest order, is called the osculating curve of that species,
and the contact is distinguished from the contact of other
curves of the same kind by the name osculation. If the
number of constants in the equation of the osculating curve
be 7, the osculation is said to be of the (r — 1)th order.

(855.) When we speak of different degrees of contact and
osculation, it should not be understood that the curve, which
is said to touch another in a greater or less degree, is more
or less coincident with the curve it is said to touch. The
fact is, there is only one point of actual coincidence, namely,
the point fulfilling the conditions @ = &/, y = 4. But the
portions of the curve flowing from this common point may
be more or less distant from each other. Thus, as has been
proved, a curve of a given species, meeting another in a
given point, may be so situate that no curve of the same
species can pass between them ; but by this it is not at all
to be imagined that any coincidence takes place between any
arc of the one curve, and any arc of the other, how small
soever these arcs may be supposed. Nay, so far from any
such coincidence taking place, it follows from what has been
already proved, that how high soever the order of contact of
two curves may be, another curve can be found, whose con-
tact, being of a higher order, will pass between them.

(856.) It appears also that the higher the degree of the
equation of a curve is, the higher the order of its oscula-
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tion, since it contains a greater number of constants; and
that since the number of points necessary to determine a
curve is always equal to the number of constantsin its equa-
tion, as will appear by Sect. XX1I., the order of its oscula-
tion is always one less than the number of points necessary
to determine it.

(857.) The osculation of curves is sometimes explained by
supposing the osculating curve first to intersect the given
curve in 7 points, and then supposing these points to be
united in one. But as the principles can be more clearly
explained without this supposition, and as it is only calcu-
lated to mislead the student, and produce wrong ideas of
what are called contact and osculation, we have rejected it.

(858.) From what has been said, it appears that the con-
tact of a right line with a curve is both contact and osculation
of the first order. For the equation of a right line

y—ax — b=0,
involves but two constants, and therefore the highest order
of contact of which it is susceptible is the first, and the equa-~
tion of the osculating right line is, as has been already
found,
W = )dx — (x — &)dy = 0,
y'z' being the point common to it and the curve.
(859.) The equation of the circle
(v — ¥ + (@ — &) = x5
involves three constants, the co-ordinates of the centre, and
the radius. The highest order of contact of which this is
susceptible is the second, and therefore the osculation of a
circle is of the second order.
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SECTION XVII.

Of the singular points of curves.

(860.) Def. Those points of a curve which possess any
remarkable properties, which the adjacent points do mnot
possess, are called singular points. 'The differential calculus
enables us to discover these points, and in general to dis-
cover the figure of any curve whose equation is given.

(861.) The position of the tangent being determined by
the equation

d
i)=Y ==,

. . d
if the co-ordinates of P satisfy the equation Z'Z =0, the

tangent at the point » must be parallel to the axis of @, for
the equation of the tangent becomes in that case

y—y =0.
. oy i
(862.) In like manner, if e L, the equation of the

tangent becomes
x—a =0,
and is therefore parallel to the axis of y.

de
363.) If =2 = 0, the series in (318) gives
dx g

gy Ty A dy A
PP=PP=F s 1.2.8 do* 1.2.5.4
5, Ax’
?Q ad &e.

A’ '1.2.5.4.%
A value pp of Az being taken so small that the first term
shall surpass the remainder of the series, the sign of
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pp" — ppl, resulting from + Ax, will be different from that
which results from — Ax; and the same being true for all
values of Az between pp and zero, it follows that the parts
of the curve on either side of » lie at different sides of the
tangent, and consequently that as the curve passes the point
P, it changes the direction of its curvature. Such a point is
called a point of contrary flexure, or a point of inflexion.
(364.) The principle is however more general. Ifseveral
successive differential coefficients after the first vanish, when
the co-ordinates of the point » are substituted for the variables

in their expressions, let the first differential coefficient, which
. d n,
does not vanish, be Zx%

1. If » be an even number,

d/zy Ax"
I o) — — .
pp e der 1.2.3..n

i dn-l—ly . Axn-i—l _ dn+2‘y ) Axn+2
Tt T1.2.8. (D) devt 1.2..(n49)
As the sign of Az does not affect that of Ax", such a value
pp may be assigned to Ax as will give pp' — pp' the sign of

, &e,

dny, .
—-'i, both for 4 Ax and — Az, and the same is true for
dan ’

every value between pp and zero. Hence the concavity is

. . dy .
turned towards or from the axis of #, according as (—[T—{; is
< 0or > 0.

2. If n be an odd number,
dn y Ax?
e ) = T2 Y _2Y
PPE—PP =T gm 1.2,
d7z+1‘y Agntl dn+2y Axt?

Tdatt 1.2, (n + 1)+d.7¢'”+2 "1.2...(n+ 2 &e.
By reasoning similar to that used before, it may be shown
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that the parts of the curve at either side of the point » lie at
different sides of the tangent, and that therefore the point
P is a point of inflexion.

(865.) In these cases the curve touches the tangent with
a contact of the (n — 1)th order; for the first differential
coefficients of the equations of the curve and tangent are
equal; and the succeeding differential coefficients of the
equation of the tangent being respectively equal to zero,
must be equal to the corresponding differential coeflicients of
the equation of the curve for the point », as far as the
(n — 1)th differential coeflicient, therefore the contact must
be of the (n — 1)th order.

, d'y

(866.) 1t should be observed, that when = 0, the ra-
dius of the osculating circle becomes infinite (833), which
shows that at such a point no circle can be described between
which and the curve another may not pass.

(367.) If, at the same time that the conditions

%:0%:0%:0%’:0
are fulfilled, the condition % is also fulfilled, in addition
to the circumstances already proved, the tangent through
the point » will be parallel to the axis of @, and if glji =0, it
da

will be parallel to the axis of y.
(368.) It may happen that the co-ordinates of the

. dy
point P may be such that Zp May have two or more
unequal values. This happens whenever the vatue of x, for
the point », causes a radical to vanish in the value of y, and
.
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... dy
yet does not cause the same radical to vanish in i When-

ever this takes place, there are always as many tangents to
the same point of the curve as there ave different values of

dy . .
jﬁ, and therefore as many branches of the curve must inter-
sect at that point.
d dx
(869.) If the values of d_é' be equal, and E@—é have two or

more unequal values, the curve will consist of as many dif-
ferent branches, which have a common tangent at that point.

(870.) Points wheve several branches of a curve meet are
called multiple points. If two branches meet, they are
called double points; if three, triple, &c.

(871.) The direction of the curvature of the different
branches may be found, as was showu before, from the sign
of the second differential coefficient.

(872.) If two branches have, at the same point, a common
tangent, that point is called a cusp. It is said to be a cusp
of the first kind if they lie at different sides of the tangent,
and a cusp of the second kind if they lie at the same side.

(878.) The principle just laid down may be expressed
more generally. 1If, for the values of yx corresponding to
the point P, the xth differential coeflicient have two or more
values, the preceding coefficients having each but one, then
two branches of the curve touch at the point v with the
{n=1)th order of contact, and the species of cusp is the

0

. dyy . .
first, since —% 13 the same for both branches.

da

{874) If the value of any differential coefficient be .-
possible for the co-ordinates of the point e, that point can
neither be preceded nor followed immediately by another,
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and is an insulated point not continuously connected with
the curve itself. Such are called conjugate points. They
being thus detached from the curve, can only be con-
sidered algebraically to belong to it, because their co-or-
dinates fulfil its equation. But considered geometrically,
they do not belong to the curve.

SECTION XVIIL

Of the rectification, quadrature, and curvature of lines of
the second degree.

PROP. CLXXXII.
(8715.) Of the rectification of the circle.

First method.

If # be any arc of a circle whose radius is unity, by ex-
pressing @ in a series of powers of sin. # by M¢Claurin’s
theorem,
sin, 2 sinda S2sinda 3.5%sind g

1 v 128 t 12345 T 1234567

325572 sind 2
t 1239

X =
+, &e.

Ifr=800 = 'Z_;', o sin, & =

Cof1 1 11 8
*=0.03+%5 123150 12545
1 2
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This series was used by Newton for the calculation of the
circumference of the eircle, but does mot converge with
sufficient rapidity.

Second method.

By expressing  in a series of the powers of tan. 2 by the
same theorem, we find

tan.x tanlax tanS a2  tan @

= — —

1 3 5 T

w
Ifx= o tan & = 1, -

=41 =3+ L—=141 &e!
This series will also give the value of =, but is inconvenient
for calculation, owing to its want of sufficiently rapid con-
vergence.
This may be remedied thus:

2 tan. a
let tan. @ = %, *.* tan. 2o = ————— = -3, and therefore
1—tanta
2 tan. 20
tan, 4a = {—tan=% = 122, Hence,

tan. (da — -Z—) = 7

35

Hence we find

T 1 _ i i 1

4 — 230 3.2%0¢ T 5280y T 7 (299)

but since tan. ¢ = %,

4a —

&e. s

5 g5t e Ts TN

therefore,
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1 1 1 1
W5~ 35T 5m v T &)
me=d 1 1 1
(7239~ 3,239y T 542897
"This series converges with sufficient rapidity to afford great

-, &c.)

facility in calculating the value of .
Let 7 be the radius of a circle whose circumference is c.
since the circumferences of circles are as their radii,
r:1l::¢c:2n;
hence ¢ = 2r7; -.* the circumference of a circle is equal o
the diameter multiplied by the value of # found by the
means above stated.

PROP. CLXXXIII.
(876.) Of the quadrature of the circle.

By the general formula for the quadrature of curves in
(380), the area is
}.‘).d‘u
9 H
but 7* is in this case constant and integrating between the
limits w = 0 and w = 2w, the whole area of the circle is

7.‘27;,0

(87.) Cor. Since the semicircumference of the circle is
7w, the area of the circle is equal to the rectangle under the
radius and semicircumference.

PROP. CLXXXIV.

(8718.) To find the area of an elhipse.

The equation of the ellipse related to its axes being solved
for y, gives
B

Y = ——‘,\/A‘z—-.z‘r".,
y= o VE—
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I a arcle aca’ be described
on the axis aA' as diameter,
any ordinate 4/ to the diameter
of this circle is expressed by

/\/AZ _— 42’2, .

B !
Yy =—1y'; hence
A

B
- o
ydx = . Yde,

; B
JSyde = - JSydx ;
but the value of fiy'dx is the area of the circle; no constant
is necessary, as yde and y'de begin together. Hence, if A/
be the area of the ellipse,

' 8 P
A= — . A% = BAw.
A

Hence the area of an ellipse is equal to that of a circle de-
scribed with a radius, which is a mean proportional between
its semiaxes.

(379.) Cor.1. The circle described on the transverse
axis as diameter, the ellipse and the circle described on the
conjugate diameter, are in geometrical progression.

(880.) Cor. 2. The areas of ellipses are as the rectangles
under their axes.

(881.) Cor. 3. Iftwo ellipses have one axis common, the
areas cut off by a common ordinate mr?' are as the other
y'dx
A
dalec B, *.* since the corresponding increments of the areas are
in the ratio of the axes, the sum of any number of these will
be in the same ratio.

(382.) Cor. 4. If any point ¥ be taken on the transverse
axis, the area rrA is to the area ¥r'a, (¢ being on the cir-
cumscribed circle), as the conjugate to the transverse axis.

axes; for da' :—;—jg’/dx and being the same for both
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PROP., CLXXXYV,

(583.) To jind the area intercepted beiween iiwo ordinates to
the asymptote of an lyperbola.

The equation of an hyperbola related to its asymptotes
being
A* + B

4:( b

AZ g2 dx
ydx sin, yr = —3 . S, yas

yu =

(A d.)c A‘ B*
oAl = ——— gLy singyr  (log.w —log.a')
If the area be supposed to begm when @ == 1, the ex-
pression is simplified, and becomes
A*4-82 | .
Al = — sy log. .

The coeflicient (o* + %) is the square of the line joining the
extremities of the axis. Ifhalf thisline be taken as the linear
unit, the expression is still farther simplified, and becomes
Al = sin. yx . log. x;
and if instead of the neperian logarithm, a logarithm whose
modulus is the cosee. ya be used, the expression is
Al == log. a.

Hence, if a series of values of a be measured from the
centre in geometrical progression, the areas intercepted by
ordinates through their extremities will be equal, since the
areas measured from » = 1 must be in arithmetical pro-
gression,

(884.) Cor. 1. TIf the values of x be taken to represent
a series of numbers related to £/ A%~} 8% as unity, the cor-
responding areas measured from the ordinate of the vertex
of the curve will represent a system of logarithms of these
numbers whose modulus is cosee. ya.



184 ALGEBRAIC GEOMETRY.
(885.) Cor. 2. 1t the hyperbola be equilateral,
»
Y = 'k ‘. cosec. yx = 1;
therefore, the logarithms will be in this case neperian loga-

rithms. It is for this reason that the neperian are sometimes
called hyperbolic logarithms.

PROP. CLXXXVI.

(886.) Yo find the area included by an arc of a parabola,
a diameter through one extremity, and an ordinate to
that diameter through the other.

The diameter being axis of #, and a tangent through its

vertex axis of 7, the equation is
y* = pa,
o y e prt,;
sin. ya . yde = pw . dx sin. ya,
— . : - 3. .

A= /pfve . desinyx = Z/p . 2% sin, yx = Y sin, ya.
No constant is added, because the area and y are at the

same time equal to zero.
Hence, the area sought is two-thirds of the parallelogram

formed by y and 2.

PROP, CLXXXVII,

(887.) To find the radius of curvature to any given point
'@ in an ellipse or hyperbola.
The equation related to the axes being twice differentiated,
gives

dy B2
de ™ a%yl
Ay B

dwr = Ay
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Making these substitutions in the formula for the radius of
curvature found in (883), we find, after reduction,
(Aﬁl‘y'z + Bﬁlm'g)%
A4-B~l‘
but a%y* + B> = 42B%(A% — *2?), and A? — ¢a? = B

(167); hence

>

(888.) Cor. 1. Since the curvature is a maximum when
the radius of curvature is a minimum, and vice versa, the
curvature of an ellipse is least at the extremities of the
conjugate axis, and greatest at the extremities of the
transverse axis. That of an hyperbola is greatest at the
extremity of the transverse axis, and diminishes without
limit. These follow obviously from the above expression
for the radius of curvature.

(389.) Cor. 2. The maximum and minimum values of

A® B2
and —.
A

the radius of curvature are

PROP. CLXXXVIIL.
(890.) 7o find the radius of curvature to a given point in
a parabola.
The equation of the parabola being twice differentiated,
gives v
dy _p
de — 2
dy_ P
de®™ Ay
By substituting these values in (833), we find
}7'%
op* A
where p' = the parameter of the point, and p= the principal
parameter.

R =

(891.) Cor. Hence the pomt of greatest curvature in a
parabola is the vertex.
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PROP. CLXXXIX.
(892.) To find the chord (c) of the osculating circle which
coincides with the diameter through the point of contact
in any line of the second degree.
Let the angle under the diameter and tangent be 0,
¢ =2r sin. §;

. . E - 3 [\B
but in the cllipse and hyperbola sin. § = N
22
=T
L
1in ¢ la sin. § = L -+
and in the parabola sin. § = =—, -
pl?
¢ =yp.

Hence the chord of the osculating cirele which coincides
with the diameter of a line of the second degree passing
through the point of contact, is equal to the parameter of
that diameter.

PROP. CXC.

(898.) To find the equation of the cvolute of an ellipse or

hyperbola.
{ 2 . .
"The values of[—fj— and ‘ ‘2/0 derived from the equation of
dx dax?

the curve being substituted in the general formulas found
in (833), give
V(A YS 4 pEa
oy yatyR A wtat)
.y y - A4 s
¢ A%2 402
.Y +542?)
reE = AtB* ?
and, since by the equation of the curve,
Bt = ATBY - A%YS,

At L nde? e ao(pt o o Fy
Ayt ot = at(B b )
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also, since a’y? = A*B® — B2&%, .

Aly? o+ Blat = BY(A* — c'2?).
These substitutions being made in the above equations, the
results, after reduction solved for y and w, give

Substituting these values in the equation of the curve, and

2p2

‘o A%B ,
dividing the result by ——, we find
o3
CRCT 1 E:
Bsyh + AT2T =4 (3,

where -+ 1s taken for the ellipse, and — for the hyperbola.
In this equation for the
ellipse, all values of & be-

V2

tween & = - e and

o2

Y- 1; , give real va-

Iues of y; and all values

beyond these give impos- B

sible values of y. In like manner, all values of y between
Cﬁ 2

and y = —
B Y B

y=-+ give real values of , and all

beyond these impos-
sible values of x;

N
hence the evolute \\ ya
. oy .

is confined within / T PR P
these limits. Also, / \ \
it appears from the e -

form of the equa- ~
gion, that the parts of the evolute included between the
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four angles formed by the co-ordinates are similar and equal.
The figure of the evolute is represented above. It is ob-
vious, since the axes of an ellipse must be both tangents to
the evolute at the points where it meets them, that the
points ada!y b, are cusps of the first kind. The transverse
axis of the hyperbola must be a tangent at the points ad/,
which are cusps of the first kind.

(894.) Cor.1. The arcabof the evolute of the ellipse is equal

A2 BEZ N
to 8'6—aa (342); but b= - A= o therefore,
£

AS 3
ab = "
B
(895.) Cor. 2. If A' = ca, 8' = cb,
c? c? c? c*
- o . —
A= — 1= SfA=— B = —
A’ B’ al’ 8"

if the substitutions be made in the cquation of the evolute,

the result is

... Al%g
and the result multiplied by s
c¥
oz 2z z 0z
AlTyT £ BT =448,
which bears an obvious analogy to the equation of the

curve itself.
YROP. CXCI.

{896.) To find the cquation of the evolute of a parabola.

da®
the curve being substituted, as before, in the general
formulas (333), give
YUy +p?) _ydetp)
y —y =
ST P

dy d¥,
The values of (—y, =9 derived from the equation of
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X - a = — 4'.2;‘;—p0
Hence we find
y=- PQ,Z , =4 — %P)-
3

Making these substitutions in the equation y* = px, and
transforming the origin of co-ordinates to the point y = 0,
x = 1p, the equation becomes, after reduction,
Py* = 35 @

Hence g is only real for
the values of 2! which
have the same sign as p, /
and therefore the curve is
extended indefinitely in \
the same direction as the
parabola itself, touching
the axis of the parabola at a point whose distance from the
vertex is half the principal parameter. This point of the
evolute is a cusp of the first kind. The form of the
evolute is represented in the figure.

This curve is called the semicubical parabola.

SECTION XIX.

Of the properties of the Logarithmic, Choncoid, Cissoid, and
other curuves, both algebraic and transcendental.
Of the logarithmic.

(397.) De¢fs  The logarithmic is a curve expressed by
the equation y == a" related to rectangular co-ordinates.
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PROP, CXCIL
(898.) Perpendiculars intercepting equal parts on the axis
of @ are in geometricol progression.

Tor in this case @ varies in arithmetical progression, and
therefore @ or ¥ must vary in geometrical progression,

(399.) Cor. Hence, if any series of numbers be repre-
sented by the values of x, the values of y will represent their
logarithms related to the base @. The curve has received
its name from this property.

PROP. CXCIIT.

{(400.) The axis of x is an asymptote.

opmo= a,

1% If o > 1, the
values of y increase without limit for the increasing positive
values of #, and decrease without limit for the increasing

o z When =0,y =1,
.
% Y Therefore if am’ e
f yd assumed to represent
‘f e the linear umit, the
[ :
o i curve 1ntersects AY
R
7 — 7
& _\,% i v at ml Let ap=am/,
i

negative values of #. Hence on the negative side of A the
curve is continually approaching ax/, and approaches it with-
out limit, and on the positive side of 4 it is continually ve-
ceding from ax, and recedes from it without limit.

2. If @ < 1, the value of y decreases without limit for
the Increasing positive values of , and increases without
limit for the increasing negative values. Hence it con-
tinually recedes from the line xx' on the negative side of 4,
and continually approaches it, and approaches it without
limit on the positive side of a.

Hence in both cases the line xx' 1s an asympiote,
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PROP, CXCIV.
401y To find the equation of the tangent to a given point
in the logarithmic,
By taking the logarithms of the equation y = a*, we have
ly = x.la, which being differentiated is

la
dy .= Y- de,
m being the modulus. If a be the base /o = 1, and the
equation 1is
mdy — ydx = 0.
Hence the equation of a tangent through a point 2/a’ i«
My — y) =y (x = &) = 0.

PROP. CXCV.

{402.) To find the subtangeni.
o onod yda ; .
By (323) s = ”327 = m. Hence the subtangent {or =il

points on the same curve is the same, being the modulus of
the logarithms, whose base is a.

PROP, CXCVI,

(408.) To find the centre and radius of the osculating circle.
The equation y = " being differentiated twice, gives
dy y &y _y
de ™ m’ da® m¥

These values being substituted in (333) give

. (m* 4+ y‘l):S
TomEr

Qy2-t-m? i y*
—, &= - m -
v m

R

vy =
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PROP., CXCVII.

(404.) To find the point of greatest curvature.
The point of greatest curvature is that at which the radius
of curvature is a minimum. To find this, let the value of g,
found in the last proposition, be differentiated, and equated

with zero. The result, divided by Lm(m® + yz)%, 1s
Byd(y? + m?) — 2Ay* + m*)dy =0,

which gives

m

Ve

Hence the point sought is that whose ordinate is equal to

the side of a square, whose diagonal is the subtangent.

2t =m?, oy =

PROP. CXCVIIL.

(405.) Of'the quadrature of the logarithmic.
By (823), a = fydx, but ydx = mdy, *.*

A =my - c.
To find c, suppose the area to commence from ' = v,
— — e e !
swheny =7, a4 =0, ¢c=-—my. Hence

A =m(y—1y),
that is, the area included
between any two ordi-
/ nates, M and ?'M, 1is
2 equal to the rectangle
Moz under the subtangent,
// and the difference be-
< g tween the ordinates. The
area PMMP = the rect-

P

angle cr,
(406.) Cor. 1. The arca included by the curve rr, ex-
tending indefinitely, and approaching the asymptote, the
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asymptot and the ordinate pm is equal to the rectangle pm
under the subtangent and the ordinate: for in this case
Y =0, a=my.
(407.) Cor. 2. The area extending from DB indefinitely,
is equal to the space BMF.

On the conchoid of Nicomedes.

(408.) Def. A right B
line xx' being given in - M
g8 - —
position, another right ;—« X %
line passing through a /'[/
given point P revolves
P

in the plane passing
through the given right line and the given point. Let Bm
and m be assumed of a constant magnitude, and the loci of
the points M, M' is called a conckoid. 'The locus of m is
called the superior, and that of M’ the inferior conchoid.

The line xx' is called the rule of the conchoid.

The line 8™ is called the modulus of the conchoid.

The point ® is called the pole of the conchoid.

PROP. CXCIX.

(409.) To find the equation of the conchoid.

Let pM = 2, BM = m, PA = b, APM = w. Hence
PB = (2 + m), " (¢ F m)cos.w = b, (1),
which is the polar equation of the curve. The upper sign
applies to the superior, and the lower to the inferior con-
choid.
The equation related to rectangular co-ordinates, of which
xx' is axis of # and A the origin, may be found ; for

22 = (y + b)* 4+ 2% and cos. w = ‘i’,——_z—}——é, and by these sub-

stitutions we find
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&
o+ (y° — m?) (y + 0)* = 0.
This equation includes both superior and inferior conchoids,
since both +m and —m are involved in m?
The conchoid is therefore a curve of the fourth degree.

PROP, CC.

(410.) To find the equation of a tangent to the conchoid.

Let the point on the curve through which the tangent
passes be y'a/, and the equation being differentiated gives
1
dy' . ‘y!z(m(z _yy'e) 2
da Y3 +mb

Hence the equation of the tangent is

(y — %) (4° + mDB) + (& — &) (m2 — y%)¥y> = 0.

PROP. CCI.

(411.) To investigate the figure of the conchoid.
To, Letm > 0. Ify = *=m, 2 = 0, and for all values
of y beyond these « is impossible. ~Therefore, if Ap = +m,

AD' = — m, and through the points p, D' parallels to xx/ be
drawn, the entire curve will be included between these pa-
rallels. Also, if y = — b, « = 0, *.* the curve meets the

axis of y at » the pole.
Since, for y = + m, Z—Z = 0, the parallels through o, p'

to the axis of  are tangents to the curve at the points o, D",
And since ¥y = 0 renders « infinite, the axis of 2 is an
asymptote to both inferior and superior conchoids.

/ b
Ify =—b, Qy— =+ —; therefore the pole is a
dx (mg__bg)é

double point, and the values of % for that point evidently

show the geometrical method of determining them.
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On op' as dia-
meter, let a circle - ~

. T

be described, and >
through the pole » ~_ A S~
( =

W b 4 — v
let cc .be drawn | ‘\\>\ty< ‘
perpendicular  to c ! <
pp/, and let the B’

lines ac and ac' be drawn. Lines drawn from the point » to
the points of bisection of the lines ac and Ac' are tangents at

. b AP
the point 2. For ——=== = — = tan. Acp = tan. TPC:
vVt — b EC

therefore »r is a tangent, and for the same reason p1' is also
a tangent. The figure of the conchoids is therefore in this
case represented as in the preceding figure.
"2 If m = b, as be- D

fore, the curve is in- —/I_\_
cluded between the pa- A

rallels to the asymptote N/A
through » and ». If

P

d
y =+ m, B—a% = 0, *.* the parallel through » is a tangent to

. . dy . . ..
the superior conchoid. Ify = — m, C{ﬁ is infinite, there-

fore the tangent through the point » is the line pp. This
forms as it were the union of the two tangents, in the last
case the oval pp' being supposed to vanish, by its diameter
m — b becoming equal to zero. The point » is in this case
a cusp of the first kind. The figure of the conchoids in this

case is represented in the preceding figure.
3. If m < b. The co-ordinates of the pole r satisfy the

. dy . .

equation of the curve, but they render j; impossible ; hence
02

“~
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D the point » is a conju-

——/\\_ gate point. The points

. d;
po'both give Y 0,

dx
the tangents through
i these points are parallel
to the asymptote. The figure of the conchoids is in this
case represented in the preceding figure.
If b = 0, the conchoid becomes a circle.
If m = 0, it becomes a right line.

Of the cissoid of Diocles.

(412.) Def: A ciicle being described
upon a given diameter (aB), and any
chord (am) being drawn from the point
(4), and the ordinate mp being drawn,
let a?' = Bp, and the perpendicular »'m’
being drawn to meet the chord, the locus
of the point ' is called the cissoid.

PROP. CCII.
(413.) To find the equation of the cissoid.

Let A = 2r, MmAP = w. By the conditions of the de-

finition
AM = 2r cos. w,
AM' = BP sec. w = PM tan, w sec. w.
But pM = am sin.w, . AM = AM tan.® w: hence the equation

sought is
2 = 2r tan. w sin. w, (1.)
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If it be related to rectangular co-ordinates, we find, by

the usual substitutions,
Y —x) — 2 =0, (2)

PROP. CCIIIL.

(414.) To find the equation of the tamgent to a given point
on the cissoid.

By differentiating the equation (2),

d_y_ 87 ——-x)x%

dz (2r — @) 3

therefore the equation of the tangent is

H

(y—9) @r — x’)% — (¢ — a) (Br — )= = 0.

(415.) Cor.1. The diameter AB is a tangent to the curve
at the point a, and since the curve extends above and below
the diameter, the point A is a cusp of the first kind.

(416.) Cor. 2. As x approaches to equality with 2r,
d ‘ ' dy . . ..
2% approaches to infinity ; and when @ = 2r, Zl% is infinite;
but at the same time y is infinite, and therefore a perpen-
dicular aB through B is an asymptote.

PROP. CCIV.

(417.) To investigate the figure of the cissoid.

Since for each value of « there are two equal values of y,
with different signs, the branches of the curve on each side
of aB, the diameter of the generating circle, are equal and
similar. Since for every negative value of x, and for all
positive values greater than as, the value of y is impossible,
the curve must be included between the parallels, which are
perpendicular to AB through the points A and 5.

Since, by differentiating twice, we find
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dy 3o 3y
2 5 1
de (%r— z)*a®
this having always the sign of y shows that the curve is con-
vex towards the axis az.

as

Of the lemniscata.

(418.) D¢f. The curve, which is the locus of the inter-
section of a tangent to an equilateral hyperbola with a per-
pendicular from the centre upon it, is called the lemniscata.

PROP. CCV.

(419.) To find the equation of the lemniscata.
The equation of the equilateral hyperbola, referred to its
axes, is
‘y!Q — % = — @2,
"The equations of the tangent, and the perpendicular to it
from the centre, are
Yy — dx = —a?,
2y + ye = 0.
By these equations y'2' being eliminated, the result is
(22 — e + (3 + ) = 0, (1),
which is the equation sought, and the locus is therefore a
curve of the fourth order.
The polar equation may be found by making the neces-
sary substitutions in the above equation, and is
2* — @*(cos.2 w — sin2w) = 0,
or since €0s.2 w — sin?w = cos. 2w,
2% — a*cos. 2w = 0, (2.)

PROP. CCVI.

(420.) To investigate the figure of the lemmniscata.

By the polar equation (2), when z = 0, w = -/ir—, cr?f, or
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"
%Ir, or % These values of
w show that the asymptotes
of the equilateral hyperbola
are tangents to the curve at
the centre through which
the curve must pass. = Also,

since z is impossible for

. 3n
every value of w, except those included between e and

5w w
e and between + T and 0, the curve must be included
between the tangents passing through the centre, as repre-
sented in the foregoing figure.

By differentiating the polar equation, we find

dz
_% = — % tan. 2w,

Hence by the formula in (327),

tan. ¢z = cot. 2w, *." iz + Qw =

w|a

by
Hence when w =0, {2z = 5 therefore the tangent to the

hyperbola through the vertex is also a tangent to the lem-
niscata.

. b

If the tangent be parallel to the axis iz = w, " w = 5
if from the centre ¢, ca be drawn, making acv one third of a
right angle, the tangent to the curve at 4 is parallel to cv,
and it is clear that the curve is included within the rectangle

B8, one side of which equals the transverse axis (2a),
a . .
and the other —A—/—g-, or the side of a square, of which the

transverse axis is the diagonal.
1t is obvious also that the centre is a double point.
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PROP. CCVIIL.

(421.) To find the area of the lemniscata.
By (330),

22dw
A= f~2~.
But 2%dw = — tarzlfizQw’ and since cos, 2w = —z‘;—, therefore
.
tan, 2w = (a4;224)2.
Hence we find
T )

Qat — 24)%
This integral being extended to the entire curve, gives
A = a?,
Hence the entire area is equal to the square of the semiaxis.

Of the sinusoid, &e.
(422.) Def: A curve, represented by the equation y =sin.x,
related to rectangular co-ordinates, is called the curve of
sines, or the sinusoid,

PROP, CCVIII.

(428.) To find the equation of a tangent to a given point.
By differentiating the equation, we find

7 being the radius of the arc 2. Hence the equation of the
tangent is

cos, 2
(@ — @),

y—y =
If # = 2nrw where n is any integer number, cos. # = 1,
At these points the tangent makes with the axis of # an angle

r
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= 45° and if & = (2n 4+ 1)rm, the tangent is inclined at the
angle 135° to the axis of 2, these angles being measured in
the positive direction.

PROP. CCIX,
(424.) To investigate the figure of the sinusoid.
By differentiating the equation a second time, we find

d%y sin, @ y

dz® 72 7o’
Hence the curve is always concave towards the axis of a.
If e =nre,y=0, - .

v
thereforeif aa’=rr, /—T\ % m
AAT=2ym, AB AN AT X

AA"=3rm, Ke. v
the curve intersects the axis of « at the points a, a!, A", A",
&e.

For all values of @, from 2 = 0 to @ = rr, y is positive ;
for all values from x = r= to # = 2w, y is negative, and
so on alternately ; therefore between a and A’ the curve lies
above the axis of @, from a' to A" below it, from A" to ™

above it, &c.
The maximum positive and negative values of sin. x are
+ 7 and — 7, of which + 7 corresponds to

rw bre 9rw 3w yed
8T gt =g ,and—rtox———,x_g,

Hence if aa', A'a", A"a", be respectively bisected at 5, 8/, 5",
&e., and perpendiculars Bv, Bv/, V", &ec. erected equal to
7, and a parallel v, v to aa" drawn, this parallel touches the

&e.

X =

curve at the points vv/, &c.; the same is true of a parallel
through v/, and the curveis included between these parallels.

d® .
If v = orm, j;% = 0, hence the points a, 4/, A", &c. are
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points of inflection, the tangent through these points inter-
secting the axis of x, as has been already shown, at an
angle of 45° degrees.

PROP. CCX,

(425.) To find the area of the sinusoid.
By the usual formula,
= e = VY
A _fydx "://: A/;-—Z__—yls
which being integrated gives

A = — 7(r* ,_yQ)”:' + c.
When o = 0,y = 0, . ¢ = 7%, hence
A= 7(r — /1% — ).
If © = AB, y = 7, *.* A = 7°, hence the whole area ava' is
equal to twice the square of the radius of the arc 2.
(426.) Other trigonometrical curves may be imagined,
with equations analogous to that which we have just de-
scribed.  The curve y = cos. z is of the same species, since

it may be expressed y = sin. (%— — ).

PROP. CCXI.

(421.) To investigate the figure of a curve whose equation
is y = tan. X,

] If # =nre, y =0,
.+ the curve must
meet the axis of « at
the points 4, 4!, A",
&c., where « =0,

A B X |5 r=rm, a= 2w,

&e.

By differentiating
the equation twice,
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dy
de  costa’
d% tan.x

de® cos? &’

d
If £ = nre, cos2x = 72, °° dz =1, and tan.x =0, .

a° . . .
Elj"% = 0. Hence the points 4, A', A", &c. are points of in-

flection, the tangents through them intersecting the axis of
x at an angle of 45°,
2+ e dy  1*
Ity =£—2)—, dz—— —,andy = oo. Henceifthe
intercepts a4, A'a”, A"A", be bisected at B, B/, B", perpen-
diculars through these points are asymptotes.

. & . .
Since d_;;Z has always the same sign as y, the curve is

convex towards the axis of x.

The figure of this curve is therefore as represented in the
preceding figure.

PROP. CCXIIL.

(428.) T'o find the area of the curve of tangents.
By the general formula
A = ftan.x.dw.

7sin. &

By substituting for tan. « its value y

0S. &

re. dcos x
=nf
cos. &

Hence by integrating

A=—72,1.cos 2.
No constant is added, because when A =0, 2 =0, .

cos.z = 1, " log. cos, # = 0. Hence the area, included
between the curve and its asymptote, is infinite.
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PROP. CCXIIIL

(429.) To investigate the figure of the curve, whose equation
is y = sec.X.
By differentiating the equation twice,
dy 7r.sinx
dz~ cosiax’
dy _ r(r* + sin )
dz*~  cos’x

= 7(r* + sin.? x) sec.’ z.

d? . .
Since d_:;cz has always the same sign with sec. & or y, the

curve is every where convex towards the axis of 2.

Sec. x is a minimum
when x = nrw, which
corresponds to y= +7,
i AN =mr, AN =2m7,
, AA"=3mr,and through
A B A B the points a, 4/, &Ke.
¥ the perpendiculars
av =7, AV = — 7,
AV = 4 7, &c. be
drawn parallels to aa'
through the points v
and v' are tangents to the curve at those points, and the
curve extends indefinitely above the one and below the other.

4+ Ve L %
= (—_—Z ) , ¥ 1is infinite, and also ‘—é
Hence, if the intercepts between aa’, a’a”, A”A", be bisected
at 8, B, B', &c., perpendiculars through these points are
asymptotes to the curve. The figure of this curve is there-

fore as represented in the preceding figure.

‘When »
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Of spirals.
Of the logarithmic spiral.

(430.) Def. The curve, whose polar equation is 2 = av,
is called the logarithmic spiral.

PROP. CCXIV.

(481.) Radii vectores which make, with the axis_from which
the values of w are measured, angles in arithmetical pro-
gression, are themselves in geometrical progression.

For let the angle under any two contiguous radii vectores
be ¢, then
2= aw, 8 = au+ ¥, 2" = qu+28, &ec.
or
2 = aw, ¥ = avad, &' = ava¥, &c.
which are in geometrical progression, af being the common
multiplier. ‘
(482.) Cor. If a be the base of a system of logarithms,
and z represent any number, w will represent its logarithm,
a property from which the spiral has derived its name.

PROP. CCXV.

(483.) To find the tangent to a given point on the curve.

The equation z = a* differentiated gives
mdz = zdw,
m representing the modulus of the logarithm, whose base is
a. Hence by the formula (327)
tan. &z = m.
Therefore in the logarithmic spiral the radius vector is in-
clined to the tangent at a constant angle. Hence this curve
is sometimes called the equiangular spiral.
(434.) Cor. The polar subtangent = mz.
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(485.) Def. Similar logarithmic spirals are those in which
the radius vector is equally inclined to the tangent.

PROP. CCXVI.

(486) To find the locus of the extremity of the polar
subtangent.

Let the polar subtangent = z'. Hence the equation of
the locus sought is
Z = ma¥ = tan. fav,
the axis from which «' is measured being perpendicular to
that from which w is measured.
Hence the locus is a logarithmic spiral, and since
mdy = 2!dw, it is similar to the given spiral.

PROP. CCXVII.

487 To find the length of an arc of the logarithmic
spiral.

By eliminating dw from the equations
mdz = zdw,

da = (d=* + z‘*’dw'z)%,
the result is

do = (1 + mg)%dz,

va=(l1 -i-'me)_;z + c.
Let the value of 2, corresponding to the extremity from
which the value of @ is supposed to commence, be z/, and
supplying thus the constant, we find

a = (2 — 2') sec. d.
Hence, if from one extremity (a) of the arc AB a tangent
be drawn, and a radius vector (cB) from the other, and with
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the centre ¢, and the radius
¢s, the circle 2o be described,
and from the point p a tan-
gent to the circle be drawn to
meet the curve at ©, the arc
BA is equal to the right line
AE.

Hence, if the pole (c) of a
logarithmic spiral Az be the

centre of a circle intersecting the spiral at any point, B, and
a right line be drawn from the centre, intersecting the
spiral and circle in A and », and through these points tan-
gents be drawn meeting at E, the tangent AT is equal to the
arc AB of the spiral intercepted between ca and the circle.

If &' = 0, the value of @ will be the length of the arc of
the spiral continued to the pole. In this case,

a = 3 sec, 0.

Hence the intercept of the tangent between the point of con-
tact and the polar subtangent, is equal to the arc of the
spiral continued to the pole.

PROP. CCXVIII,

(488.) To find the area included between two radii vectores of
the spiral.
By eliminating dw from the equations,
da = Lz%dw,

mdz = zdw,
we find
da = imz dz,
mge
A= ) + c.

If 2’ be the value of z when a4 = O,
_omfz® —2%)  tan. §. (2% — 2%
- 4 - 4
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Let c3 = 2!, cA = 3. 'With c as centre, and the radius
cB, let a circle be described meeting ca in p, o', The area
BcA is equal to half the area of the triangle p'Ea. For
DA = & — 2, °» DE = tan. §(z — 2'), and p'A =2 + 2.

If & = 0, the corresponding area will be

tan.f . 2°

= - .

In this case p and ' coincide with ¢, and the area is half the
triangle formed by the radius vector and polar subtangent,
T 2 e o2
e tan. § = ],'.‘A:z 42 .
Hence, if a tangent be drawn from A to the circle, the area
is equal to the square of half the tangent.

(440.) Cor. 2. 1In the same case the area, when %' = 0,
is equal to the square of half the radius vector, at which the

(489.) Cor. 1. If6 =

area begins.

PROP. CCXIX,

(441.) To find the radius of curvature.

Differentiating the equation of the spiral twice, we find

mdz = zdw,
med*z = zduw’.
By means of these equations, that of the curve and the ge-
neral equation for the radius of curvature, the quantities
dz, dw, and w, may be eliminated, and the result is
R = 2. cosec. 0.

(442.) Cor. 1. 'The chord of the osculating circle, which
passes through the centre, is equal to twice the radius vec-
tor. For ¢ = 2rsin. § = 2z,

(448.) Cor. 2. The curvature of the spiral is continually
increasing as it approaches the pole.
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PROP. CCXX.

(444.) To find the involute and evolute of the spiral.

Since the pole is the point of bisection of the chord of the
osculating circle, which passes through it, 2 line 2 from it to
the centre of curvature is perpendicular to z, and *.*

2= R.cos.§ = zcot. §;
hence the equation of the evolute (the values of w being
measured from a line perpendicular to that from which they
are measured in the original curve), is
% = cot. § . aw,
Hence the involute of the logarithmic spiral is a similar

one, whose equation is
2! = tan, § av,

the axis from which ® is measured being perpendicular to
that from which it is measured in the original curve.

Of the spiral of  Archimedes, &e.

(445.) Def. A spiral, whose equation is 2 = aw, is called
the spiral of Archimedes.
(446.) Cor. a is the value of z, corresponding to w = 1.

PROP. CCX XTI,

(447.) If any number of values of 7 be drawn, dividing the
space round the pole of the spiral into equal angles, those
values will be in arithmetical progression.

For, since @ is constant, & ¢ », and therefore if w varies
arithmetically, z will also vary arithmetically.
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PROP. CCXXII.
(448.) To determine the position of the tangent.
By differentiating the equation,

dz = adw.
Hence, by the general formuta (327),

b4
tan, g = — = w.
a

Hence the angle ¢ is continually increasing as w increases.

(449.) Cor. 1. If 2’ = the polar subtangent,

2l = ztan. 2 = 2w = aw’.

(450.) Cor. 2. The locus of the extremity of the polar

subtangent is a spiral, whose equation is
2 = aw?

w being measured from an axis, perpendicular to that from
which it is measured in the given spiral.

PROP. CCXXIII.

(451.) To find the area of the spiral.

By the general formula

—fzd/__z Lo

Let s = 2/, when A = 0,*
3 — z’S
A= T6a
and if the area begin from the pole 2’ = 0,
23
A= 6a
(452.) The spiral of Archimedes belongs to a class of
spirals included in the general equation z = aw", n being
any positive number. The quadrature of this class of spirals
can be effected ; for, by the general formula,
2w oPwdw

2 T e

°



ALGEBRAIC GROMETRY. 211

Hence, by integration
a2w2n+1

A = m -+ c.
Substituting in this for  its value, derived from the equa-
tion of the curve, and introducing the value of ¢, by &/ being
the value of z, where & =0,

2n+1 '2.’z+1
2 n —& n

A == F
2n+1)a

(453.) By (450) it appears that the locus of the ex-
tremity of the polar subtangent of the spiral of Archimedes
is one of this class, scil. » = aw" where n = 2. Again, the
locus of the extremity of the polar subtangent of this last
spiral is % = law’®; and, in general, the locus of the ex-
tremity of the polar subtangent of z = aw"; i3

o

Z" = — . wn—{—l_
?

For by differentiating
dz = nawduw.
Hence, by the general formula,
w

tan, Rf = —
7

If therefore the polar subtangent be ¢, 2" = z, tan. ¢, *.*
-E L wtt 1,

which is the equation of the locus of its extremity, the
values of w being measured from an axis at right angles to
that from which it is measured in the equation z = aw".

In this class of spirals, the angle 2¢ is continually ap-
proximating to 90° as the curve recedes from its pole, but
never becomes actually equal to §0°

Of the hyperbolic spiral, &c.

(454.) Def. The spiral, whose equation is zw = a, is

called the hyperbolic spiral.

Q

r e
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(455.) Cor. Since
2w is the are of a cir-
cle, whose radius is
2, subtending the an-
gle w, it follows that

this spiral may be
conceived to {be ge-

" nerated by, taking
any portion(am)from
the pole, andj with

the radius aM describing a circular arc P always’ equal

to a, the point p will be always in the spiral.

PROP. CCXXIV,

(456.) If through the pole of the spiral Az = a be drawn
perpendicular to the fixed axis, a, parallel to am through
B, &5 an asymptote to the spiral.

Let »m be a perpendicular from a point of the spiral on
the fixed axis. ®m = zsin. w. Hence
sin. w

rm=a. .
w

; s . .. .. pSiDw o,
Now, as w is diminished without limit, the limit of - s

unity, therefore the limit of »m is @, scil. aB. Hence the
curve is continually approaching the parallel through s, but
never meets it.

PROP. CCXXV.

(457.) To find the tangent to any point in the hyperbolic
spiral.
By differentiating the equation
2*dw

dg = — .

[
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Hence, by the general formula
a
tan. ¥t = —.
2

(458.) Cor. 1. Hence follows a geometrical method of
drawing a tangent to this curve.

From the point 8 on the asymptote take sxy = ap, and
draw aN; then »r, making the angle apr equal to ans, and
rr will be a tangent,

(459.) Cor. 2. Hence, as the spiral approaches the pole
A, the angle z¢ approaches 90°,

PROP. CCXXVI,

(460.) To find the polar subtangent of the hyperbolic spiral.

Let 2 be the polar subtangent,

¥ = ztan.zt = a.
Hence the subtangent in this spiral is constant.

(461.) Cor.1. The locus of the extremity of the polar
subtangent in this spiral is a circle, whose radius is @, and
whose centre is the pole.

(462.) Cor. 2. If the polar subtangent of a spiral be
constant, it must be the hyperbolic spiral ; for, let &' be the
polar subtangent,

2*dw
dz

% = ztan. g = —

Hence we find
Zz2ds = = dw,
and by integrating
— gl = —w,
& = zw,

which is the hyperbolic spiral.

PROP. CCXXVIL

(463.) To find the area included by two walues of .
By (457),

Ldw = — adz.
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Hence by the general formula (830), we find, after in-
tegration,

az
A—m—-—%‘—}-c,

Let z= 2 when a =0
2

(# — 2)a

A=,

~

If the area be measured from the centre, z = 0,

Hence, if s~ = av, and sx' = a?/, app = ann/, and the
area continued from p to the centre, is équal to the triangle
ABN,

(464.) The hyperbolic spiral is one of a class of spirals
included in the equation % = aw™. One of the most re-
markable of this class is the Zifuus, whose equation is

S 2 2
z = QwTz, OF X'w = a".

PROP. CCXXVIIT.

(465.) If; with any value of z in the lituus as radius, a cir-
cular sector be described, whose angle is w, the area of
this sector is inoariable.

Tor, zw being the arc of the sector, its area is rz%w,
which is, by the equation of the lituus, equal to Za2.

PROP. CCXXIX,

(466.) The axis from which the values of w are measured
is an asymptote.

For, by the last

proposition, the

N a?
arc PM =gw=-—s
J which continually
AN diminishes as z
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increases and as w diminishes, and the condition w = 0 gives
% = 00, and rm = 0.

PROP, CCXXX.

(467.) T find the position of a tangent to the litwus.

By differentiating the equation,
ii R
dw — 2’
Hence by the general formula,
2

2a
tan, 2 = —5 = Quw.

<

Hence in this spiral 2¢ continually approaches 90° as the
curve approaches its pole.

(468.) Cor. 1. Hence the polar subtangent z' may be
found,

B
2

2 = ztan. 2t = 2aw?,

(469.) Cor. 2. 'The locus of the extremity of the polar

subtangent is a spiral, whose equation is
2 = 4a’w,

which is called the parabolic spiral, and is one of the class
wmentioned in (450).

(470.) Cor. 3. 'The triangle contained by the polar sub-
tangent and 2 is equal to @2, and is therefore constant.

Of Cycloids.

(471.) Def. The curve, traced out by a point (») in the
plane of a circle, which rolls in a given plane upon a right
line given in position, is called a cycloid.
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If the gencrating point be within the circle, the curve
is called the prolate cycloid: if without it, the curtate
cycloid ; and if on it, the common cycloid.

i
N
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PROP, CCXXXI.
472,y To find the equation of a cycloid.

Let A's' be the right line on which the generating circle
is supposed to roll. Let a be the generating point when the
radius cAA’, passing through it, is perpendicular to the right
line a's!, and through a let a parallel aB to A'B' be drawn.
Let p be the position of the generating peint after the circle
has rolled over any portion a'D/, and let ce be produced to
meet the circle at ». By the definition a'v' = o'p!, .-
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ap = o'¢.  Let the distance of the generating point from
the centre ¢ be 7, and let the circle with this radius be de-
seribed.  Let the angle pcp, related to the radius unity, be
A, and the radius of the generating circle mr,
o Plo) = mra = Ap, up = rsin. A, If AB and Ac be taken
as axes of co-ordinates, the preceding conclusions are ex-
pressed in the equations

x = r{ma — sin. A), (1),

y =7l — cos, a), (2).
Eliminating A from these equations, we find

Y -+ 7 cos. p «/27—“1]:——3/—‘ — 7 =0, (8).

mr

If m > 1, this is the equation of the prolate cycloid ; of the
curtate, if m < 1; and of the common cycloid, if m = 1.
(473.) Cor. 1. 'Tofind the point where the cycloid meets
X

the axis of @ (aB), let y == 0, *.* cos. = 1, « =0,

2 = Qwmr, & = dwmr, &e.; and since 2wmr is equal to the
circumference of the generating circle, it is evident that the
curve meets the line A after every revolution of that circle,
and the intercept AB between two points, where it meets it,
is called the base of the cycloid, and is equal to the circum-
ference of the generating circle.

(474.) Cor. 2. The ordinate to the middle point of the
base may be found by making a = = in (2), which gives
9 = 2. 'This ordinate is called the axis of the cycloid, and,
as is manifest from the same equation, is the greatest or-
dinate.

(475.) Cor. 3. If the origin be removed to the middle
point of the base by substituting & 4 #ms for « in the equa-
tion (1), and the angle A measured from the vertex v by
substituting = 4- A for A in (1) and (2), the results are

2 = r(ma + sin. A), (4),
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from which A being eliminated,

r— Uy — 4
Y = Teos ——— =y = 0, 6).

(476.) Cor. 4. 1If the origin be removed to the vertex v,
by substituting y -4 2 for 7 in the last equation, we find

2— =20y —y*
Y — 7 C0s.———0n +r=0, (7).
PROP. CCXXXIL

(477.) A circle (vpo) being described on the axis as dia-
meter, and a perpendicular jfrom any point (a) of the
axis being drawn to meet the cycloid at », and the circle

at p, then pp = m . pv.
v The origin being assumed at
the centre of the base, the equa-
[22 . .
P 2 tion (6) gives
cos,™ ! ._y-— sz YRy —y .
7 mr
But by (5)
y—1r v
cos.“‘J—~— =—£,
r r
And
o) ,
VY j == sin. w
mr
Hence,
PA—PG& PP
=TT =y
Pp = m.Vp.

In the common cycloid therefore pp = vp.

(478.) Cor. Hence, if the ordinate to the diameter of a
circle be produced, until the produced part bear a given
ratio to the arc intercepted between the ordinate and the
extremity of the diameter, the locus of the extremity of the
produced part is a prolate cycloid, if the ratio be of major
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inequality ; a curtate, if of minor inequality ; and a common
cycloid if it be a ratio of equality.

PROP. CCXXXIIT,

(479.) To find the equation of « tangent to a given point on
a cycloid.

By differentiating the equation (3) of the curve, we find
&y _ @ry—y)
de ™ mr—r+y
Hence the equation of the tangent sought is

(=) (mr = 7 + ) ~ (& = ') 2y — 5= 0.
For the common cycloid this equation becomes

(Y=Y ~ (¢ =) (@ — 9)* =0,

since in this case my — 7 = 0.

PROP. CCXXXIV.

(480.) To investigate the figure of the cycloid.
By differentiating the equation a second time,
dy  v(mr —r —my)
dae = (mr —7r 4+ y)®*
1. If the curve be the prolate cycloid,

@ . .
At the vertex v, y=2r, " d‘y‘z < 0, "+ at this point the
curve 1s concave towards the base.
m =1

d%y . . .
The value of 7re continues negative, until y =

7y

2

. d .
for which value 21_5:% = 0; the point therefore whose or-

. . m . . . . .
dinate is . 7, 1s a point of inflection. After passing

Aoy .
through this v alue becomes positive, and then the curve is
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convex towards the base. When y= O d =0, *. the base

touches the curve. Hence the figure of the prolate cycloid
is as represented in the first figure of page 216.

2. If the curve be the curtate cycloid.

In this case, as before, at the vertex, the curve is concave

d*y . .
towards the base, and the value of d—" continues negative
from this until it becomes infinite, which it does when
y = (1 — m), that is, at the point where y is equal to the
distance of the generating point from the circumference of
the generating circle. The same value of y also renders

dy . . . . .
dz infinite, and therefore at this point the tangent is perpen-

dicular to the base.

dy
Ify = - 0, s T = = 0, therefore the base touches the curve.

Hence the figure of the curtate cycloid is as represented
in the second figure of page 216.
8. If the curve be the common cycloid.

d*y .
The value of ——;, is always negative, except for y = 0,

which renders it infinite. Hence the curve is always con-
cave towards the base and at the points, where it meets the
base, has cusps of the first kind.

The figure of this curve is represented in the third figure
of page 216.

PROP. CCXXXV.
(481.) 7o draw geometrically a tangent to a given point in
a cycloid.
1. If the curve be the prolate cycloid.

Let as be the base, pv the axis, and p'v' the diameter of
the generating circle.
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Let pr be a tangent at the point ». By (479),

@ry = 9°)”

tan. TPe = .
mr— 74y

Now pa = (2ry — yg)%, ap' = mr — r 4 y, therefore if po'

be drawn, tea = pv'a; therefore if p’p be produced to

meet the generating circle at p", and p"v/ be drawn, p'v' is

parallel to pr: hence the manner of drawing »r is obvious.
2. If the curve be the curtate cycloid,

As before, pa = (2ry — y9)*, ad = mr — .+ y,
pola = e, *. p'v!is parallel to .
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3. If the curve be the common cycloid.

In this case p and p' coincide, .+ the tangent is parallel
to pv.

(482.) Cor.1. In the prolate cycloid, if a tangent be
drawn from v’ to the circle, described upon vp, and from
the point of contact & a parallel to the base be drawn,
meeting the cycloid in 1, the points I are the points of in-
flection,

(483.) Cor. 2. In the curtate cycloid, if a parallel to the
base be drawn through the point p', meeting the cycloid at
1, the points 1 are those at which the tangent is perpen-
dicular to the base.

(484.) Cor.8. The normal of the cycloid for the point
P, is equal to that part of pn/, intercepted between p and
the base of the cycloid in all the cycloids. In the common
cycloid the normal is equal to p.

(485.) Cor. 4. 1If tangents be drawn at any two points
», P/, of a cycloid, and the parallels »p, ¥'p/, to the base be
drawn, the angle pr?’ under the tangents is equal to the
angle in the segment of the generating circle, intercepted
between the line p'p and v'p!, (produced if necessary.) In
the common cycloid, this angle is the angle contained in the
segment pvp'.

(486.) Cor. 5. If, in the common cycloid, a parallel ¢e’
to the base be drawn through the vertex, the part of it in-

tercepted between the tangents e, ¢'t, is equal to the arc
!

ovp-

PROP. CCXXXVI.

(487.) To find the arca of the cycloid.
By differentiating (1) in (472), and multiplying the result
by (2),
ydx = 12} mda—(L+m)d . sin. A} cos. d.smn.a !,

which being integrated, and the integral taken between the
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limits A = 0 and A = 2, and observing that
Jcos. adsin, A =7,
~Syde = (2m + Dr'w.
Hence the area of the cycloid is (2m + 1) times the area of
the circle described upon the axis.
"The area of the common cycloid is three times that of the
generating circle.

PROP. CCXXXVII.

(488.) To find the length of an arc of the common cycloid.
By the general formula for the rectification of curves,
a=[vdy* + dx* 4 c.

ydy?
2 —y

In the common cycloid da® = , therefore

b= g
2 —_— ————— 2
dy* + dw =% -y y°.
Hence, by integrating,

e —

6= f—————dy =2 /(2 —y),
Ve —y

the arc being measured from the vertex, no constant need be
added ; for when @ =0, 2r — gy = 0.

Since vb =2r, and va =2 —y, . v0 . va = (2 —y),
but vo . va = pve, «. pa = pv.

(489.) Cor. Hence vs = 2vp, '~ avB = 4wvp, that is,
the circumference of the common cycloid is equal to four
times the diameter of the generating circle.

PROP. CCXXXVIiII.

(490.) Tofind the evolute of the common cycloid.

The values of the first and second differentials, found in
(4'79), (480), being substituted in the general formule for
the co-ordinates of the centre of the osculating circle (334),
give
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Y=y =2,
& -2 = — 2./ 8ry — y
Hence we find
y=—y,x=2a —2v—- Uy — ",
which being substituted in the equation of the cycloid, give

! —_——
& = = 2y — g2
- J _—
Yy — rcos. - +r=0,

which is the equation of a cycloid,

) . whose generating circle is equal to

== that of the given one, and whose
/ vertex coincides with the extremity
) of the base, lying, however, below
* the base.

(491.) Cor. Theinvolute of a cycloid is an equal cycloid,
the extremity of whose base coincides with the vertex of the

given one.

PROP. CCXXXIX.

(492) To find the radius of curvature for any point in o
common cycloid.

The values of the differentials, already found, being sub-
stituted in the general expression for the radius of curvature,
found in (335), give

B? = 4oy,
Hence the radius of curvature is equal to double the chord
pD, or to twice the normal.

(493.) Cor. 1. Hence, at the extremities of the base the
radius of curvature vanishes, and therefore the curvature at
these points is greater than that of any circle.

(494.) Cor. 2. At the vertex the radius of curvature is
equal to twice the axis.

(495.) Cor. 8. The base is the locus of the point of
bisection of the tangents to the evolute from points in the

curve.
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PROP. CCXL.

(496.) 4 parallel to the base of the common cycloid being
drawn, intersecting it, and the circle described upon the
axis in pp, to find the locus of ', the point of intersection
of ‘tangents to the curve and circle at these points.

Since, by (481), vp is
parallel to te, vpr=p1P,
and vpa = TPp, but
vpa = vpr,

TP = pr o= pv.
Hence the locus of the

point T is the involute of the generating circle described
upon the axis.

Of the companion of the cycloid.

(497) D¢f. If an
ordinate (ap) to the
diameter of a circle

be produced, until it
is equal to the arc

(pv) of the circle in-
tercepted between 1t and the extremity v of the diameter,
the locus of its extremity » is called the companion of" the
cycloid.

PROP. CCXLIL

(498.) To find the equation of the companion of the cycloid.
Let the radius cv of the generating circle be 7, the angle
vep = A, vp = 7a.  If p be taken as origin, oM = , and
PM =, "'
y =71 + cos. 4), (1),
& =ra, (2)
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Eliminating A from these equations, we find

X
Yy=reos.—— =7 =0, (3),

which is the equation sought.

(499.) Cor. 1. The base of the curve is equal to the
circumference of the generating circle.

(500.) Cor. 2. Ifa common cycloid be described on the

same axis, it will have also the same base, and ap being pro-
duced to meet it, ap == »r.

(501.) Cor. 8. If the origin be at the vertex, the equa-

.. &
tion1s y + # cos.T—9~=O.

PROP. CCXLIIL

(502.) 7o find the equation of a tangent to the curve.
By differentiating the equation, we find
dy _ _ Ry-y)*

dx 7
Hence the equation sought is

Wy = 9) + @y =y @ =) = 0,

PROP. CCXLIIL

(503.) To investigate the figure of the curve.
Let the equation be differentiated a second time, and the
result is
dy r—y
de® 7%’
which being negative for all values of y between y = 27 and
y = 7, shows that, if through the centre ¢t be drawn parallel
to the base, the curve from v to 1is concave towards the

d*y

base. If y = », T = 0. Hence the point 1 is a point of
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. . d*y . .
inflection, and from 1 to B the value of 2,—3‘0% Is positive ;
therefore the curve is convex towards the base, and for

d.
y=0, -C-Zi—/ = 0, which shows that the curve touches the

base at o and . Hence the figure of the curve is as re-
presented in the preceding figure.

PROP. CCXLIV,

(604.) %o find the area of the curve.

The equation (2) being differentiated, and the result mul-

tiplied by (1), we find

ydo == r*(da + cos. Ada),
which by integration, gives

Syde = r*(a + sin. A),
no constant being added, as the area is supposed to begin
when A = 0. Now 7’4 1s equal to twice the area of the
sector pcv, and 72 sin. A is twice the area of the triangle
pcv; therefore the area vemp is equal to twice the sum o.
the sector and triangle.

If a tangent be drawn through v meeting mp produced in
o, the area vi'ub is equal to 2r%a *.* VP =2% — 7% sin, 4,
- the avea vi'e equals twice the difference between the
sector vep and the trlangle vep, which is twice the seg-
ment vp.

The whole area of the curve is equal to twice that of the
generating circle.

It is plain that the semicircle vpo bisects the area pves,
and also that the semicycloidal area pve's is trisected by the
semicircle and the curve ves.

If right lines be drawn connecting the vertex with the
extremities of the base, the arca of the curve is equal to
that of the triangle Avs; and hence the segments of the

Q2
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curve cut off by these lines are equal. It is also plain from
the last proposition, that these lines intersect the curve at
the points of inflection.

From what has been said, it may also be proved that if
ca = cd, the area P'vp is equal to the rectangle under pa
and the axis.

(505.) All the eycloidal curves which have been treated
of are embraced in the general equation
x+n «/@é

Y -+ 7 cos.
Y mr

—r =0,

If n = m = 1, the curve is the common cycloid.

If n = 1 and m > 1, the curve is the prolate cycloid.

If # = 1 and m < 1, the curve is the curtate cycloid.

If » = 0 and m = 1, the curve is the companion of the
cycloid.

As the other cycloidal curves do not possess any particular
interest, it is sufficient merely to have stated their equations.

Of epitrochoids, epicycloids, &c.

(506.) De¢f. The curve traced by a point in the plane of
a circle, which is supposed to roll upon the periphery of a
given circle, and in the same plane with it, is called an
epitrochoid. If the generating point be upon the periphery
of the generating circle, the curve is called an epicycloid.

If the generating circle be supposed to roll upon the
concave part of the given circle, it is called an hypotrochoid.

If in this case the generating point be upon the circum-
ference, the curve is called an Zypocycloid.

PROP. CCXLYV.

(507.) To find the equation gf an epitrochoid.
Let A be the centre and as the radius of the base, ¢
the centre and cn the radius of the generating circle, and
let Bpc be the position of the generating circle when the line
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connecting the centres 4, ¢, passes through the generating
point at v. Let ¢’ be the centre of the generating circle
in any other position, and P the generating point; let
as and ax perpendicular to it be assumed as axes of co-
ordinates. Let cac’ = ¢ and »c¢' be produced to E.

By the manner in which the curve is generated 83’ = B'E.
If aB =7, 8¢ =7, v = d, 38’ = r¢ = B'E; but

B = —= — = rc'r,  Let c'e be parallel and pm per-
7 7
. 7 721
pendicular to ax, *. rcle = 5~ 9

] )
ek r4r
e = d . sin, ——T—,~fp, and p¢ = d cos. —i %

oM = (v -+ ') cos. ¢, AM = (r + 7') sin. @.
Hence the equations of the epitrochoid are,

4
y = (r + 1)cos, ¢ + ¢ cos.— @
r
r+7' -
@ = (r - ') sin. ¢ 4 cosin i P
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If the curve be the hypotrochoid, 7' is negative, and these
equations become

WA
77

7”¢‘

o

o

4 = (r — ') cos. ¢ -+ dcos.

=

L ().
o eyl
x = (¢ —#)sin. ¢ — d sin. o

iy

If the curve be the epicycloid, ¢ = ', and the equations
are

. . r
Y == (1 4= 97) cos. @ -2 cos. -

. . 3 e
x = (r 4 ') sin. @ 4 7 s, —

If the curve be the hypocycloid, the equations are

Yy = (r — »)cos. ¢ 4 7 cos. ):—,za ?

-~

@ = (r-— 1) sin, ¢ — ¢ sin, — o
P

(508.) Cor.1. If with the centre a and the radius ap a
circle be described, and m, @ be the points where\the
epitrochoid meets the circumference. Mo find the angle
DAH, let the equations (1) be squared and added, and since
for the points wand ', y* + @2 = AD® = (r + ¢/ — d)2, -

(r + ¢y 4+ d* + 2d(r + ') (cos. o cos, T——F,—Tlcp
,
N o
+ sin. ¢ sin.z——j;—gzs) = (r + #' — d)~
But by trigonometry,

v 7 . S A r
¢ - s, ¢ s -+—’
-

1
¢ = Cos. g

COS. ¢ COS.
¢ oy

. r
hence after reduction, cos. —¢ = — 1,
7

rr

e
T =T, N Qo= e,
o ¢ > TP pn

The same result applies to the hypotrochoid.
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(509.) Cor. 2. 1If in the equations (4) we substitute

7.:_"2'_9 for +' we find

Pomg 7-t-e y—e
Y= ——E-cos.¢ +— 9 Cos. m(p;
7 —e 7‘+e . Tee
=3 A
o . . r—e
and if in the same equations we substitute 5 for »' and
: +66 = 0, the result is
o r=c , , THe . r—e
Y = 3 cos. @'+ 9~ Sin. T_*_ng).
_r=c . . r4+e . 7r—e ,
@ = —=sin.g g s el
These equations being the same as the preceding, show
—e r+e
that the generating circles, whose radii are —2—- and — —5

give the same hypocycloids.

PROP. CCXLVI.

(510.) To find the equation of a tangent to an epitrochoid.
The equations (1) being differentiated, the result after

division is

(r + ’)

dy 7lsin. ¢ + dsin.
de — J
o 9-’c0s.¢+dcos.r +7

?

The equation of the tangent to the epitrochoid is there-
fore
!

{(y = 3') (@' cos. ¢ -4 d cos. T-;,—rgb)

. !
+ (e =—2a') (' sin. ¢ 4 d sin. : j;rcp) =0,
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which for the hypotrochoid is
p—p

(y — %) (#'cos. ¢ ~ d cos. —r,—T ?)
ey
+ (&= &) (¢ sin. ¢ + d sin. 772@ = 0.

The equations of the tangent to the epicycloid and hy-
pocycloid may be found from these by making ¢ = #' and
observing that

P
sin, ¢ -+ sin. [
- 7! . + Q!
- = I tan. RGH
7 lt 7! tlay 9y ¢

cos. ¢ + cos. "“,,T"‘p

Hence the equation of the tangent to the epicycloid is
7 Gl

(y — &) + tan. Z--—é?i Lo —a)y =0,
and that of the hypocyclaid is
P
(y = gy — tan. i—é—y—-—¢(x —a)y=0.
(511.) Cor. 1.  Hence for the epicycloid the angle
-2 . .
PTM = % == 7“"’;@”77"“@ and for the hypocycloid the corre-
. : 7eme 2!
sponding angle == g

(512.) Cor. 2. In the epitrochoid and hypotrochoid if
¢ = 0, the equation of the tangent becomes (y — g) = 0,
therefore at the point v, where the curve meets ay, the
tangent is perpendicular to av. In the epicycloid and

+ 2

hypocycloid, in this case tan. 2—57— ¢ =0,
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PROP. CCXLVIIL.

(518.) To find the length of an arc of an epicycloid.

By differentiating the equations (3),
o

7!

dy = — (r 4+ ¢') (sin. ¢ + sin.

)de,

o Lol
dr = (r + ') (cos. ¢ + cos. 7—;;—77:¢)d¢;

but by trigonometry

. 4 s 79! 9 s 72 7
sin. sin, ~——0 = 2 sin. ———& COS, =
e 7 ° 2 2! P
gl 7 42 r
cos. ¢ -+ cos. ——¢ = 2cos. ~——— @ c0os. =—O.
? ¢ o7 ¢ 2’

After making these substitutions, squaring and adding the
above equations, we find

VYt + da® = 2(r + 7) cos. %;'—,(b . do.
Hence by integration,
S VAy*+ dz® =

No constant is necessary, the arc being supposed to begin
from the point where ¢ = 0.

lr+ry . 7
— s, 5 e
: 9,

For the hypocycloid the expression becomes
. e A=) .
Jvdy2+d ‘= "'*-—r-——*— sin. ?5—@.

(514.) Cor. If%? = rc'p = B,

4 (r+o7) .
(T’“ ) sin. 1.
If 8 = m, the generating point coincides with 1, and we
find
do'(r +47)

r

VPRI =
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PROP. CCXLVIII.

(615.) To find the evoluie of an epicycloid.

By twice differentiating the equations we find

dy +2

de =T R o9

&y g 42!

de® 90 7 :

7~
! Neos
4‘7‘(7‘"‘}‘7‘)\,0::. g @ Cos. 27”?)

Substituting these in the general formulee for the co-or-
dinates y'a’ for the centre of the osculating circle,

742y 7
49'(r +19") cos. m-{z—gi‘.cos.ﬁ@
D g — -
y=Yy 74 94! ’
. or+2
. 49’ (r +77) sin. —;‘—7‘,—7:55005. 21,-@
=2 — e .
But by trigonometry,
2 ! 7 7!
2 cos. 55~ + g § 08 5@ = COS. — =@ + cos. ¢,
%7"’ 74

.+
2 s1n. o @.cos.g,

And by the equations of the curve itself,

¢ = sin, ¢ + sin, —— 7 @

y = (r + 7') cos. ¢ + 7' cos. T—j}-gﬁ,

, r+7!
2 = (r 4 7)sin. ¢ + #' sin. — ¢
By these substitutions, the equations of the evolute are

r(r+7') 7! r+9
———2C08. ¢ — cos.
L -+ 2y 9! >

| =

7+ 2r
\ ,’( 77 ) R 9,.7.! . r + ,r/
panral P s, — ¢

which arc the equations of an epicycloid, the radius of



ALGEBRAIC GEOMETRY. 235

2

whose base is -, and the radius of whose generating

- %y

. .oy . . . ,

circle is ———, and since these are in the ratio of 7 to ¢/,
¥ - %r

the evolute is similar to the epicycloid. It is obvious also,
that the centre of the base of the epicycloid is also the
centre of the base of its evolute.

To construct the base of the evolute geometrically, let the
circle whose radius equals 7 + 27/ meet the epicycloid at v,
and draw av: from v let a tangent to the base be drawn,
and from the point of contact let xr. be drawn perpendicular

to Av, the circle described with the radius ac is the base of
72 Lyl
the evolute for aL = —-. Also LB=AB—AL= ——
r+ 2 r +r
therefore 1z is the diameter of the generating circle of the
evolute, which is represented in the preceding figure.

For the hypocycloid the result is by the same process,

. (# =) ] L r~7~_’
Y = ——r’—%" cos. @ + o CoS. i @,
vl == = sin. ¢ + M, T
T =y CO T g S T

Hence the evolute of an hypocycloid is an hypocycloid, the
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. .o .
radius of whose base is o and the radius of whose ge-

. . .o . . .
nerating circle is o and since these are in the ratio of

7 to 7', the evolute is similar to the hypocycloid. It is ob-
vious also that their bases are concentrical.

L
Let av = » — 2/, and
v the point where a circle
- with the radius » — 2

meets the hypeeycloid ; let
vk be drawn perpendicular

\ to av, and XL touching
X the base at x, AL is the
/ radius of the base of the

evolute, and since

"/
2 2ry! . .
BL = AL — AB = ——— — 7 = —>—, BL is the diameter
7 —r! 7 —2

of the generating circle of the evolute, which is represented

in the figure.

OF the cardioide.

(516.) The ¢picycloid, the radii of whose base and gene-
rating circle are equal, is called the cardioide.

(517.) Cor. The hypocycloid corresponding to the car-
dioide is the base itself.

PROP. CCXLIX.

(518.) To find the equation of the cardioide.
For this curve the equations (8), after changing « into y
and 7 into , become
x =7 (2cos. ¢ + cos. 20);
y = (2sin. ¢ + sin, 2p),
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e
e

from which by eliminating ¢, we find
(7% + 2° = 1r2)? — dr(y* + (¢ 4 7)) = 0.
If the origin be removed to the point where the curve meets
the base, the equation becomes
(¢ + 2" — Q) — 4™ (y* + 2%) = 0.
The polar equation is therefore
z = 2r(1 4+ cos, w).

The point » being the

-
P

pole, and px the axis from (/ o
N

~

AY

/D' pid

which w 1s measured ; the
curve being placed as in
the annexed figure.

PROP. CCL,

(519.) If a line (pw) be drawn from the pole to the curve,
the part wi'v intercepted between the curve and circle is
equal to the diameter. of the circle.

/,f\

A 1/ / i
L) CNE B V/
\—// /
. ,Jl
2 r4

—
For ey’ = 2r cos. w3 but by the polar equation,
BM - PM! == 2,
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PROP. CCLI.

(520.) To find the equation of & tangent to the cardioide.

The polar equation being differentiated, gives
dz = — 27 sin. w. dw.
Hence by the general formula,
%
tan. 4% = 2r ssin. @
(521.) Cor. 1. Hence follows a geometrical construction
for drawing a tangent, 3M’' = 2 sin. w, therefore

tan. {z = —,
BM

Let mc’ be assumed on the radius vector equal to 3y, and a
perpendicular ¢'t drawn equal to P, Tar will be the tangent
to the point .

(522.) Cor. 2. The tangent at x is perpendicular to Px.

(528.) Cor. 8. Ppx is a tangent to the curve at », and »
is therefore a cusp of the first kind.

(524.) Cor. 4. If a perpendicular to px be drawn
through P meeting the curve in », the tangent at o is

inclined to rp at 45°.
PROP. CCLII.

(525.) To find the area of the cardioide.

By squaring both sides of the polar equation,
2% = 4¢* (1 -} cos. w)?,
and multiplying both sides by dw, and integrating

23w . . R ..
‘/ = 2riw + 47* sin. w + 2r? cos. wd sin. w.

)
Taking this integral between the limits « = 0 and w = 2w,
we find the entire area a, *.*
A = 492 4 27’/ cos. wd sin. w;
but the last term is manifestly twice the avea of the circle,
oA = brew
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that is, the area of the curve is six times the area of the
generating circle,

PROP. CCLIIL

(526.) To find the length of the arc of a cardioide.

By substituting in the general formula for rectification
the particular values of the terms, in this case
I ¥
S&de® + d?)* = 2 J'{ (1 +cos. w)? + sind w}?dw;
but by trigonometry,
(L + cos. w)® + sin® w=2(1 + cos. w),
1 - cos. w = 2 cos.® Lw.
Hence we find,
JS(#dw? + dx?)® = 49/ cos. rwdw.
which by integration is
I
S (&dw? + dz¥)* = 8rsin. Lw.
And if this be assumed between the limits w = 0 and

w = =, we find the length of half the curve to be 8, and
therefore that of the entire curve 167,

PROP. CCLIV,

(527.) To find the evolute of the cardioide.
By (515) the radius of the base of the evolute is

= which is also the radius of its generating circle. Hence

if ¢ = Zcs, the cardioide, whose base is the circle with the
radius cE, 1s the evolute scught.

528, Cor. 'The involute of a cardioide is a cardioide
the radius of whose base is three times that of the base of
the given curve,

Of the quadratria of Dinostratus.

Def. A right line being supposed to revolve with an
uniform angular motion round a fixed point, and an in-
definite right line at the same moving uniformly parallel tc
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itself meets the former, the locus of their intersection 1s
called the Quadratrix of Dinostratus.

PROP. CCLV,

(5629.) To find the equation of the gquadratriz, and de-
termine its _figure.

9. \

Y
E
’ B
U0 ,
A A
T D |C N AR

Let ¢ be the fixed centre round which the revolving
radius turns. Let ca and Ay be the positions of it, and the
parallel where they intersect at right angles, and let these be
the axes of co-ordinates. Let cP and ay be their position
after the revolving line has described the angle pca. Let

CA = 7. Aa = z,ap = y. By the conditions of the question,
7
X7 11 PCA I .
2

The angle pca being expressed in relation to the radius



ALGEBRAIC GEOMETRY. 241

unity ; the equation of the curve is therefore
na
y = (r — @) tan. o

If = 0, y = 0, -." the curve passes through a.

As x increases from 0 to 7, y continually increases, and
as x passes from 7 to 2r, y continually diminishes, and when
e=2.y=0.

The value of y corresponding to # = r, assumes the form

U . . _
o it real value will be found by differentiating both nu-

. . PR r
merator and denominator ; by this we find it to be o

z

In passing through 0, » changes its sign and becomes
negative, and continues so as x passes from 27 to 3r, since
in that case the factors of y have different signs; and when
x = 8r, 7 is infinite. Hence a perpendicular to the axis of
x at this point is an asymptote.

Similar observations apply to the negative values of
intercepted between 0 and —r, and therefore a perpen-
dicular to the axis of x intersecting it at distance = r
on the negative side of the origin is another asymptote.
The values of « between @ = 37 and @ = 4 give positive
values for y, for this case the factors of y have like signs.
For @ = 47, y = 0,and at this point the curve intersects
the axis of #; and from 2 = 4o to @ == 5r the values of ¥
are negative; and for a = 5r the value of y is infinite,
which points out another asymptote. By continuing this
reasoning, it appears that there exists on either side of the
origin an infinite series of asymptotes, and that the figure
of the curve is as represented in the figure.
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PROP. CCLVI.

(580.) If with the centre ¢ and the radius ca a circle be
described, and the line cp produced until it meets this circle
at ', then av':aa:: Lr: 1.

e e
! — ——— e e . o Igpe
For ap'=7. 5= " A ;A :: im: 1.

PROP, CCLVIL.
(581.) The ordinate cB:ca::1:im
For, by (529), c3 = Y RTE R

Y3 2

2

(5682.) Cor.1. Hence cB is a third proportional to the
quadrant AP’ and sac. For cp:r:: 7= cr'sl.

(588.) Cor.2. cB:2cA = aa'::the diameter of a circle :
its circumference.

(534.) Cor.8. The area of the circle on aa':4s2::
Ir:cB. Hence, if this curve could be described geometri-
cally, the quadrature of the circle would be effected, and
from this property the curve has derived its name.

PROP., CCLVIII.

(585.) If; with c as centre, and cB as radius, a circle be
described, the arc pp = Aa.

L 78
Forpp = ¢B % 50 CB= o pp = .

(536.) Cor. The quadrant pps = Ac.

PROP. CCLIX.

(687.) To find the equation of a tangent to a given point in
the quadratrizx.

By differentiating the equation of the curve, the result is
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dy T W x T
Y = sec. 5= " o (1 — —) — tan. —.
de 2 2 7 2r

Hence the equation of a tangent through the point yal is
wr!  w &' !
— oy = e 2 D18y bl —
y—y { sec.? 5 - 5 1 r) tan. Qr}(x Z').
If o' = 0. The equation of the tangent is

L3
y=5;

and if &' = 2,1t is
Yy =——g——(x — 2.)

Hence, if cE be assumed equal to the quadrant, A8/, AE, and
A'E, are tangents at the points a, o', which may be effected
by drawing 3's, and drawing »'E perpendicular to it. For

7

[e1 o . . . —_
Beicaicm:: 1o
~

Also if & = 2n7. 'The equation of the tangent is
Y= —g—(l — 2m) (x — 2nr).

At the point ¥ the tangent of the inclination of the tangent
. .. 97
to the axis of @ is — o
And in like manner the tangent of the inclination at ¥ is
3r

+-§'-

The position of the tangents at these points is determined
by drawing B'r, B'r’, perpendiculars to which are the tan-
gents at these points.

The successive hyperbolic branches of the curve therefore
intersect the axis Ax at angles continually approaching to a
right angle, and the angles at which branches equidistant
from c on each side intersect it, are supplemental angles.

The subtangents, corresponding to the successive points
r 2
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where the curve intersects Ax, and measured upon Ay, are
obviously the quadrant a3 multiplied by 1, 8, 5, 7, &e.

PROP. CCLX.

(588.) To divide an angle in any number of equal parts by
the quadratriz.

Let pca’ be the angle, let A'a be divided into the required

number of equal parts, and lines drawn from ¢ to the cor-

responding points of the curve divide the angle into the re-

quired parts.

Of the quadratriz of Tschirnhausen.

(539.) D¢f. Suppose a right line Ay, touching a given
circle at a, to move uniformly parallel to- itself, until it coin-
cides with c¢B; at the same time, suppose the line a4l to
move parallel to itself, so that its intersection with the circle
moves uniformly from A to B, while the former line moves
from A to c. The point P of intersection of these two lines
traces a curve, called the quadratriz of Tschirnhausen.

; B B”

%\\ e

[

AMM C Al e [A A

PROP. CCLXI.

(540). To find the equation of this quadratriz.
Let oy and ax be the axes of co-ordinates. Let ac = 7.
By the definition, AD : AB :: AM : Ac, Or
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A T nr
D:i— 1 &:7 " AD= —
2 2
Hence the equation of the curve is
nx

Yy = rsi. é‘;.

PROP. CCLXII,

(541.) To find the equation of a tangent through a given

point.

By differentiating the equation
dy = T WA — y?
=2 T o

The equation of the tangent is therefore
'

vn'
y-—y’:—g cos.%.(x-—w’),

or

2 — 9)l2
y=y= WTQT—% (@ — ).

PROP. CCLXIII.

(542.) To investigate the figure of this quadratria.

If x = 2nr, y = 0. The curve therefore meets the axis
of x at intervals, equal to the diameter of the circle, and
continues so to intersect it ad infinitum.

The equations of the tangents to the points « = 0,
& = 47, x = 8r, &c. &c. are

7 y
y= _2—(‘” - &),
and those to the points # = 2r, = 6r, = 10r, &c. are
7
y=— 5z — ).

Hence the subtangent cx = the quadrant as. If
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d 0
2 = (2n+ r, d% = 0, therefore at the points B, ¥/, 5", &c.

the tangents are parallel to a4,
By differentiating a second time,
d?y w . nx
d—.;é - '47 sin, -27
This is = 0, if 2 = 2nr, hence 4, 4/, A", &ec. are points of
inflection; and since L% has always the sign oppg\site to

that of y, the curve is always concave towards the axis of .

PROP. CCLXIV.

(548.) To find the area of the quadratriz.
By the formula for quadrature

. T
A = fydx = 7/’sin, o . dx,

which integrated gives

Ur° nE
A =—"—c08. —— + C.
w oy +
. x
To determine ¢, when A = 0, 2 = 0, *.* cos. o = 1;
r
P
hence ¢ = —, .
™
° T
A =—(1= cos. =)
.4 ( r )
The area Acs is found by assuming « = 7, and is .
2r?
A=
7r

Hence the square of the radius is a mean proportional be-
tween the area ArBc and that of the semicircle,
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PROP, CCLXV.

(544.) To divide an angle into any required number of
equal parts by the quadratriz.

Let the angle be ace, and from the point »' the perpen-
dicular ™' being drawn to aa, let anm’ be divided into the
required number of equal parts, and the corresponding or-
dinates being drawn, parallels toa’ through their extremities,
divide the arc of the circle into the required parts, as is
evident from the genesis of the curve.

Of the catenary.
(545.) Def. A curve such that the are, intercepted be-

tween two tan-
gents, one of

which  passes ) /T -
through  the A

vertex, is pro- B2
. ' 7
portional to the /¥
A
tangent of ?he & i
angle at which
they are inclin- 5

ed, is called the

catenary.

Thus if

AT = §, and APT = @, § & tan, @.

PROP. CCLXVI,
(546). To find the equation of the catenary.
By the definition
du ¢
2=—, (1),

de
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§' being a constant magnitude, and 1s called the parameter.
Hence it follows, that
dy? + do* 8 s
dot s
But since dy* + da® = ds®,
sds
Vs
which by integration gives
o= JFER—4, 9,
which is the equation of the curve expressed by « and s as
variables.
By equation (1) it follows in like manner that
dy4-dx®  $%4-s?
dj/g = §'? 5

dr =

whence we find

which by integrating, gives

s /50t 5%
-

y = . 3).

By solving equation (3) for s, we find

v ¥
3 iy

s=18 e —e (4),
which is the equation of the curve between the variables
s and y.
By eliminating s by (2) and (8), the result is
x4+ + «/m'

y=s.l. 7 ,

which solved for @ gives

EA A
r = %s’{e"’—ke s } - 3§ (5),
in which e is the base of the hyperbolic logarithms, and

which is the equation of the curve between the variable co-
ordinates zy.
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PROP. CCLXVII,

(541.) To draw a tangent to the catenary.

Let the point of contact be 3'2'; by (1) the equation of the
tangent is

!
y -—-y,: —i‘:—(x —"E’)

and by (2),
s =,/a* + 2'x;
hence the equation sought is
'
—y = — (2 ~ 2.
y=J Va?4-2sa )

This equation points out the geometrical construction for
drawing a tangent. Let ac = &, and with ¢ as centre'and
ac as radius, describe a circle, and draw Mp touching this
circle, Mp = 4/ 2% F 24a; therefore the tangent TP is
parallel to mp.

Hence as T recedes from a, the tangent continually ap-
proaches to parallelism with the axis.

PROP. CCLXVIIIL.

(548.) To find the length of an arc of the catenary
measured, from the vertex.

By equation (),

s =4/ + 2Bx;
hence the arc At = Mb.

(549.) Cor. 1. If with ¢ as centre and ca as semiaxis an
equilateral hyperbola be described, its ordinate M1’ is equal
to the corresponding arc AT of the catenary.

(550.) Cor. 2. 11" = AT — TM.
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PROP. CCLXIX.

(551.) To find the radius of curvature to the catenary.

By substituting for s its value as a function of x and o,
and differentiating equation (1), we find
oy §( +a)
dot — $ 7
and by making the proper substitutions in the general
formula for the radius of curvature, we find
_ oy
=—0
(652.) Cor. 1. Hence a parabola and catenary having
‘a common vertex and common vertical tangent, will have at
that point the same osculating circle when they have equal
parameters. Hence the catenary near its vertex is nearly
coincident with a parabola.

PROP. CCLXX,

(558.) To find the evolute of the catenary.

Let g2’ be the centre of the osculating circle, and g the
corresponding point on the curve by (334),

dy® +dx?
—y = — L
y y d?:y 2
dy*+da* dy
—_ = a4
x—u By i
Now by what has been already established,
dy* + dae = (S'Jr‘”)g dae,
doy = sr(s's + x) da,

6"
(ly = Tdfl’o
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By these substitutions,
s(s' + )
s/

y-y =

2
= a' = .
By these and the equations
§¢ = a® + 2us/,
s+ NZENEPS .
D
eliminating s, @, and ¥, the result solved for ¢/ is
o = 5 S ol + V(s'+m')9—48'2 (Sl_i_x!)“/(éj +—xT)g_48/g
¥ =t 2s! 2s' ’
the equation of the evolute sought.

Yy =gl

"This equation will assume a more simple form by changing
the origin to the point ¢. In this case §' + 2’ becomes 2/,
and the equation of the evolute is

o — s 2+ vt —4st ol —4s
4= 2s' 2

PROP. CCLXXI.
(654.) To find the area of the catenary.

By the general formula for quadratures, /rdy = the area
atM. By equation (5), prop. ccrxvi.
z v

Sady = sﬁf{%es'dy + e dy — dy }

which by integration is

Y ¥
Sody =56 =) =y}
which by equation (4) is
Sedy = 56s — )
No constant is added, because the area vanishes with y
and s
The area aru' is therefore equal to the rectangle under
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~

the parameter, and the difference between the arc and the

ordinate,

The area atM 1s y(s' + ) — s's. Hence, if through T
and ¢ parallels to cm and ap be drawn, and from M the
tangent Mp' be drawn to the circle, and through »' a
parallel to cm be drawn, the rectangle BT is equal to the
space ATM.

Of the involute of the circle.

PROP. CCLXXII.

(555.) To find the equation of the involute.

An arc of the circle ar' being supposed to be always
measured from the fixed point 4, and through its extremity
' a tangent P'p drawn equal to the arc a7, the locus of the

point r is the involute.
Let cp=7, caA=a, rca=w,

a
** ?'cp = cos.'—. Hence
p

a
rP = aw + @ cos.™ —; and
-,

therefore the equation of the
curve 1s

A 1—a? a
w = ————— — cos.”t—,
‘ a r
(556.) Cor. It is obvious that the area of the triangle

cP'? is equal to that of the sector acP.

PROP. CCLXXIII.

(551.) To apply a tangent to the involute.

Let pr be the tangent, and cpr = §;
rdw

tan. § = — -d-;—.
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By differentiating the equation of the curve, we find

dr ra
o7 ;
dw NTr—a?
and therefore,
,\/7‘2 —_ aQ
tan, § = — ——— .
a

Hence the angle Tec is supplemental to P'cp, and therefore
the tangent is parallel to the radius ce'.
(5658.) Cor. The radius ca touches the curve at a.

PROP. CCLXXIV.

(559.) Of the quadrature of the involute.

By the general formula for the quadrature of curves, if A
be the area of the sector rca,

A= /rggw ,

which, if the value for dw already found be substituted first,

becomes
fr Vri—a* dr
A= [ A"
2a ’

which by integration is

(7.7. — ag\,%
A = —
6a

which is the area of the sector.

(660.) Cor. 1. Hence the area is equal to the third power
of the arc aP' divided by the radius, or may be otherwise ex-
pressed, thus; let r'ca = ¢,

az¢3

6

A=
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PROP. CCLXXYV,

(561.) Of the rectification of the involute.

Let ' be an arc of the curve measured from a,
A =f(%de® + dr?)E.

By substituting the value of dw and integrating, we find
72
% H
the arc of the curve therefore is a third proportional to the
diameter of the circle, and the radius vector of the curve.

Al =

PROP. CCLXXVI,

To find the polar subtangent.

Let ¢ be the polar subtangent. By the general formula,

7*dw r A/ r—a®

PET T T a
(662.) Cor. 1. The intercept of the tangent between the
point of contact and the polar subtangent is therefore a third
proportional to the radius of the circle and the radius vector

of the curve; for let this intercept be T,

74
=P 1= —
a
72
T = .
a

(563.) Cor.2. By the last cor. and prop. (ccLxxv), it ap-
pears that the arc of the curve is equal to half the tangent.

(564.) Cor.8. 1If +' = a perpendicular on the tangent
from the point of contact, 7/ = 7 sin. § = V7% = o This
perpendicular therefore equals the arc ar' of the circle.

(565.) Cor. 4. The intercept of the tangent between
the perpendicular 7' and the point of contact is always equal
to the radius of the circle.
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PROP, CCLXXVIL,
(566.) To find the locus of the extremity of the perpen-
dicular firom the pole upon the tangent.

By cor. 4 of the last proposition, if cp = 7',
= /r®— o
Let acp = ¢. Since

! —1 d
PCP = COS. " —
r

m a

5 +o=w-t COS._17.
By means of these equations
and that of the curve, r and

w being eliminated, the result
1s

7
74 = a(? -+ @).
If ¢y be drawn at right angles to ca, and
Yop = wl = % + @, the equation of the locus sought is
¥ = aw,

The locus is therefore the spiral of Archimedes.

Of the tractriz and equitangential curoves.

(567.) Def. The tractriz is a curve whose characteristic
property is, that the locus of a point on the tangent, at a
given distance from the point of contact, is a right line; and
this line is called ¢%e directriz of the curve.

PROP, CCLXXVIII.

(568.) To find the equation of the tractriz.

Let the intercept of the tangent between the dirvectrix



256 ALGEBRAIC GEOMETRY.

and the point of contact be . By the general formula for
the subtangent,

dz
- %3‘ =o' — Yy (1),
which by integration, gives
292 [N
“_’L“fyﬁ_l —vE =5 (2
which is therefore the equation of the curve, and which may
be otherwise expressed thus,

= al

a+ at—y?

a4 vai—yt = ye a (3).

PROP. CCLXXIX.

(569.) 7o find the equation of a tangent through a given

point.
Let the given point be y'2’. By (1),
d;
v
X «/a‘—yg
The equation of the tangent is therefore
e Yy (5
B
cP
X - | — X
M A M T
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The geometrical construction for applying a tangent to this
curve is obviously pointed out by this equation.  With the
centre A and the radius @ = aB let a circle be described ;
through any point » of the curve let the ordinate pum be
drawn, and »r parallel to xx/, and meeting the circle in v/,
and let P’ be drawn ; a line pr parallel to /A is a tangent to

!
)
_“/;.—_:_ = tan. PTM.

A @ y'a
PROP. CCLXXX.
(570.) To investigate the figure of the tractria.

By (3), when # = 0, ¥y =+ a, therefore if a3 =+ a,
AB' = — @, the curve meets the axis of y at the points B, 8’5
and in (5), if ¥ =4 @, and ' = 0, the equation becomes
2 = 0, which shows that the axis of y touches the curve at

the curve at ». For tan. Pam’ =

the points z, B
By differentiating (4), the result is
a/Q
(a® —y°)
Therefore d% and y have always the same sign, and there-
fore the curve is every where convex towards the directrix.
By (2) it appears that for each value of y there are two
equal and opposite values of &, and for each value of  there
are two equal and opposite values of 7. Therefore the four
branches of the curve, included in the four right angles
round the origin, are perfectly equal and similar, and such
as if placed upon each other would coincide. It also ap-

dy = LY. dat

pears by this equation that, as 2 increases without limit, y
diminishes without limit, and therefore the directrix is an
asymptote. It also appears, from what has been said, that
the points B, B, are cusps of the first kind.
PROP. CCLXXXI.
(571.) The quadrature of the tractrix.
By (1)
ydr = — Ja* — y* . dy.
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One side of this equation is the differential of the area
ABPM, and since — @ — y® = aw, the other side is the
differential of the area BP'c, and therefore taking the in-
tegrals BPMA = BPC.

Also, since the triangle ®am’ = p1, the area BrTA is
equal to the sector BAP'.

It follows also that the whole area included by the four
branches of the tractrix is equal to the area of the circle.

PROP. CCLXXXII.

(572.) The rectification of the tractriz.
By (1) we find

VaF fd‘;e:_f%%

9

where the negative sign is used, because the arc increases as
y diminishes, and which integrated gives
SV A+ dat == aly + c.
To determine ¢, let the arc A be supposed to begin at =,
so that when the arca = 0, y = @; hence
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— ala + ¢ =0, *. ¢ = ala, hence we find
@
A = al—.

Hence it appears that if with the axis of the tractrix,
and — @ as subtangent, a logarithmic be drawn, the line

pm = BP.

. ;?
P e P
/ e T
A

PROP. CCLX XXIIT,

(573.) To find the radius of curvature of the tractria.

By substituting in the general formula for the radius of
curvature the values of the first and second differential co-
efficients, we find
o/ @ —y

T
Hence by geometrical construction the radius and centre of
the osculating circle may be found thus: let rc be perpen-
dicular to the tangent at p, and produced to meet a

perpendicular to the divectrix at T, the intercept pc is the
s 2

7= —
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radius, and ¢ the centre of the osculating circle; for
PM : PT :: MT : B¢, by the similar triangles.

PROP. CCLXXXIV.

(574.) To find the evolute of the tractrix.

Let the co-ordinates of the centre of the osculating circle
be 2. By substituting in the general formulae for the
values of these the particular values of the differential co-
efficients, the results are

2

By eliminating  and « by means of these equations, and
that of the curve, the result is
& = al‘y—————' + VH
a
which is the equation of the evolute. The evolute is there-
fore a catenary, whose parameter is @ = AB, whose vertex
is at B, and whose axis is AY.
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_/

Y

Hence, if a string applied to a catenary have its extremity
at the vertex, and be wound off, its extremity ® will describe
the tractrix.

(575.) Deff The locus of a point p upon the tangent of
the tractrix at a given distance b from the extremity T of
the tangent is called the syntractria.

PROP. CCLXX XV,

(576.) To find the equation of the syntractriz.

Let the co-ordinates of a point on the tractrix be 32/, and
those of the corresponding point of the syntractrix zy. The
conditions of the definition furnish the equations

ay = by,
(v — Yo = (@ — b) va* — yP.
By means of these equations, and that of the tractrix, y'and
#' being eliminated, the result is
b+ Vb =y
Y
which is the equation of the syntractrix.

- sz "“"Z/Z"

x =al.
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PROP. CCLXXXVI.
(671) To find the equation of a tangent to the syntractriz.
By differentiating the equation, we find
dy _yvB—y

de™  ab—y*’
hence the equation of a tangent through the point y'@' is
= y V- ylz
Y=y =-" (-

PROP. CCLXXXVII.

(578 ) To investigate the figure of the syniractriz.
°, Let b < a.
By the equation of the curve it appears that whenx = 0,
y = =+ b, and by that of the tangent that the tangent to this
point is parallel to the directrix. It also follows, as in the
tractrix, that the directrix is an asymptote, and that the
branches or portions of the curve included in each of the
four right angles round the origin are symmetrical.
By differentiating the equation a second time, we find
@—-h ab® + y*b — 2a)
d Y (ab — y*y®
This equals 0 when

o
y= b\/ﬁa — 0

and the corresponding value of « is

Z¢2a~b+da~b b\/a——b

Va 2 — b
Since, by supposition, & < a, these values are real. There
is therefore a point of contrary flexure at the point whose
co-ordinates are the values of y and =, found as above.
Let AB = b, and am, aM' be the values of x, which give

= b\/ — for all values of « between x = 0 and




ALGEBRAIC GEOMETRY., 263

2 = AM, or AM, the second differential of ¥ is negative, and
therefore the intercept of the curve between the points re' is
concave towards the axis of 2, and beyond these limits on

13/// \

M Al

each side it is convex towards the axis of #. The form of
the curve when b < a is therefore represented above.

2. Let b > a.

In this case, as before, when ¥ = & and 2 = 0, the tan-
gent is parallel to the axis of z, and between # = 0 and that
value of @ which gives ab=y?2, the first differential coefficient
is increasing, and becomes infinite under this last condition,
which shows that the tangent is approaching to parallelism
with the axis of «, and at this point becomes parallel to it.
Also, between these points the second differential of y is ne-
gative, and therefore the curve is concave towards the axis
of a.

Let the points p, ¥, be those at which the tangent is
parallel to the axis of . The portion psr' is concave to-
wards the axis. At the points », v/, the second differential
coefficient passes through infinity, and therefore changes
its sign, and becomes positive, and remains so, and therefore
every other part of the curve is convex towards the axis,
The same reasoning applies to the part of the curve on the
other side of the axis.
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B
T~
2

_‘._//
T

(579.) EQUITANGENTIAL CURVEs in general are those, the
intercept of whose tangent between the point of contact and
any given line of any proposed species is of a given mag-
nitude, and in general that line, of what kind soever it
may be, which is the locus of the extremity of the tangent,
is called the directriz. The consideration of these curves
presents two classes, problems to the analyst. 1°. Given the
nature of the directria, the magnitude of the tangent
and its position at any given point of the directriz, to find
the curve of traction. 2° Given the nature of the curve of
traction, and the magnitude of the tangent, to find the di-
rectriz. 'Those problems which come under the latter class
are much more easily investigated than the former, the solu-
tion of which, except in
a few instances, involves
difficulties almost insur-
mountable. There are one
or two instances, however,
in which the solution is
obvious enough. Thus,
if the directrix be a circle,
A % and the tangent cqual to

P

b
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half the chord with which it coincides in any position, the
curve of traction is a concentrical circle, the square of
whose radius is equal to the difference of the squares of the
tangent and radius of the directrix. It appears also (566),
that the involute of the circle is the curve of traction of
which the directrix is the spiral of Archimedes.

SECTION XX,

The nature and properties of the roots of equations illus-
trated by the geometry of curuves.

(580.) Every algebraical equation of a degree expressed by
m, that is, where m is the index of the highest dimension of
the unknown quantity, after the equation is cleared of surds,
is necessarily included in the general formula

am + Ax"! - Ba™? 4+ ca™ L. X V=

Any value whatever being assigned to @, let the cor-
responding value which the first member of this equation
assumes be 7, and the result is

y = a™ + axm! 4 B2 4 cam e T2 + V.

If this equation, related to rectangular co-ordinates, be
supposed to represent a curve, the examination of the course
of the locus will point out several important theorems con-
cerning the roots of the proposed equation. But before we
proceed to this investigation, we shall give a method for
constructing the values of y, corresponding to any assumed
value of @, and thereby constructing the curve which re-
presents the equation.,

Since the equation, in the form in which it is given, is not
homogeneous, let » be the linear unit, and this being intro-
duced in such a manner as to render all the terms linear, the
equation becomes
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am Axm—l B . xm—fl

y:

,nm-—l + ,nm——l ,nm-2

the coeflicients a, B, C.........T, Vv, being supposed linear.

D E Let AB =n, AC = a,

———7'1' and let 3 and cE be
parallels to av : let
Ba = n, and through «
7 o draw A« meeting CE at g,
A7 and draw gb parallel to
ax. Let be = A, and
draw Ac, meeting cE in
h, and draw %d parallel
to Ax as before, and take
’ de = B; and, as before,
Y. B C X draw Ae meeting the

N; \\\&4

=
=

line cE in 4, and continue this process to T, and finally from
the point where the last of the lines, drawn from a, meets
the line ¢, take a portion on it equal to v, and the extremity
of this is that of .

For since AB: AC :: Ba : Cg, . g = a.

X

Also AB: AC :: BC: Ch, ’.'C]l:Bc.-ﬁ
X% | Ax
=(@+A).—=—f—;
n ' on

And AB: AC::BC: €l % Cl = Be ., —;

7
but se = d + de = -+ 22
ut se = 8d + de = n+n+]3,

I 2% AX® B

.* Cl = E —|--;b-2— +-;;

And it is plain that by a similar process the successive
intercepts between ¢ and the lines drawn from a are found

by adding to each former intercept the next coefficient, and
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multiplying the result by el the successive intercepts will

be

m,
x2  Ax
n o n’

X3 ‘ Ax? BX

SR Rl
n* n? n’

xt axt bat o
n? ns n® n’

x% Aaxt Bt ca®  bx

—+t =+t =4+ -+
nt + n* n3 ne n’

axm Axm—l  px™? T

f——— .. —_

nm—l + nm—1 ,nm—2 n

Adding then to the last intercept the line v, the result is
the value of y; for any negative coeflicient, the line repre-
seting it is to be taken in an opposite direction: thus, if A
were negative, bc should be taken from & towards a.

Being thus able to construct the values of y, correspond-
ing to every value of z, the curve can be constructed by
points. The values of x, corresponding to the points P,“l", P,
P, p's p, when the curve meets the axis ax, are the roots of
the proposed equation.

Since in general the curve cannot pass from one side to
the other of the axis of # without intersecting it, it neces-
sarily follows that, between two points of the curve, situated
at opposite sides of the axis Ax, the curve must at least in-
tersect that axis once, and may intersect it an odd number of
times, that is, between two values of @, which give values of
y with opposite signs, there must be an odd number of in-
tersections of the curve with the axis of @, and there must
at least be one point of intersection between them. Hence
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if two numbers, substituted for x in any equation, produce
results with opposite signs, there musé be an odd number of
real roots between them, and ot least there must be one.

Y

5w »" | T 2 N\¥

S ~— NS X

Between two peints of the curve, sitnate at the same side
of the axis of «, there must be cither an even number of
intersections with that axis or none. That is, if two values
of @ give corresponding values of g, affected with the same
sign, between those values of w, there must either be no
intersection of the curve with the axis aAx, or an even num-
ber. Hence, if two numbers substituted for x in any equa-
tion give results affected with the same sign, there must be
either no real root between them or an even number of real
700t8.

The intercepts »r!, ', &c. pp/, p'p', &e. between two
consecutive points of intersection of the curve with the axis
of x, are the successive differences between the consecutive
roots of the proposed equation. If two values of & be as-
sumed, whose difference is less than the least of these dif-
ferences, there cannot be more than one point of intersection
between them; for if there were two points of intersection
between them, the intercept between those two points would
be necessarily less than the difference of the assumed values
of @, which is contrary to hypothesis. Hence, if two such
values of # give values of y with different signs, there will
be one and only one point of intersection between them ;
and if they give values of y with the same sign, there will
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be no point of intersection between them. Therefore, if°
two numbers, whose difference is less than the least dif-
Jerence of two consecutive roots of an equation, substituted
Jor x in the equation, give results affected with different
signs, one and only one real root lics between them ; and if
they give results affected with the same sign, no real root
lies between them.

When any of the intercepts r?/, pp/, &c. equal nothing,
the curve touches the line ax at that point. The intercept
which vanishes, being the difference of two values of «,
which give y = 0, these valyes must be equal, and therefore
a point of contact with the axis of x is the indication of
equal roots of the proposed equation. If one of the inter-
cepts PP’ vanishes, the curve at each side of the point of
contact lies at the same side of the line ax, and there-
fore two values of @, which intercept between them a point
of contact of this kind, give values of y affected with the
same sign. Hence, if'two numbers, which include between
them two real and equal roots, be substituted jor x in any
equation, they will give results ajfected with the same sign.

If two consecutive intercepts rr', p'e, both vanish, the
curve also touches the axis of « at that point ; but the parts
of the curve on each side of the point of contact lie at dif-
ferent sides of the axis of x, and therefore the point of
contact is a point of inflection. It appears, as before, that
in this case three points of intersection unite in one, and
that the values on each side of the point of contact give
values of y with opposite signs. Hence, if fwo numbers
which include between them three equel and real roots of an
equation be substituted for x they will give results with
different signs.

In general, if an odd number of consecutive intercepts
vF, ?'p’, &ec. vanish, and therefore an even number of points
of intersection unite in one, the curve will touch the
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axis of x, and the parts of the curve on each side of the
point of contact will lie at the same side of the axis of .
It follows from this, that if' ¢wo numbers substituted for x
in any equation include between them an even number of real
and equal roots, they will give results with the same sign.

If an even number of consecutive intercepts p?/, p'p’, &c.
vanish, and therefore an odd number of points of inter-
section unite in one, the curve also touches the axis of
25 but in this case the parts of the curve at each side
of the point of contact lie at different sides of the axis
of x, and therefore that point is a point of inflection. The
values of @ on each side of the point in this case give values
of y affected with contrary signs. Hence it follows, that
two numbers which include between them an odd number
of real and equal roots of an equation, substituted in it for
x, will give results affected with opposite signs.

The point of contact corresponding to four real and equal
roots 1s called a point of simple undulation. If it cor-
responds to six real and equal roots, it is said to be a point
of double undulation.

A point of contact corresponding to three real and equal
roots is called a point of simple inflection ; if it corresponds
to five real and equal roots, triple inflection, &c. The
character of such points is merely algebraical, there being
no visible geometrical distinction.

As in algebraical curves, the number of intersections are in
general the same as the index of the highest dimension of z,
when the equation is cleared of fractional indices, that num-
ber is finite. The entire of the curve, therefore, which
extends beyond the most distant point of intersection on the
positive side of the origin must lie at the same side of the
axis. And the same inference is applicable for the same
reasons to that part of the curve which lies beyond the
most distant point of intersection on the negative side of
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the origin; and therefere all values of @ greater than that
of the most distant point of intersection give values of y
continually affected with the same sign. Hence, if num-
bers greater than the greatest root of an equation, whether
positive or negative, be substituted for x, they will con-
tinually give results with the same sign.

In any algebraical equation, a value of @ may be assigned
to @ so great, that the first term shall exceed the sum of all
the others, and its excess above the others will continually
increase with the increase of 2. The sign of y will there-
fore ultimately be the same as that of the highest dimension
of &, and will continue to be so as @ is increased without
limit. Cousequently, if the highest dimension of x be even,
and therefore its sign necessarily positive, whether « itself be
positive or negative, it follows that the sign of g is ultimately
positive on both sides of the origin, and that therefore the
two parts of the curve which extend beyond the last points of
intersection on each side of the origin both lie above the axis
of &, and that therefore either no point of intersection or an
even number of such points must be included between them.
Hence it follows that every equation in which the index of
the highest power of x is even, has either no real root or an
even, number of them ; and since the number of roots alto-
gether is the same as the highest index, it follows that there
must be either an even number of impossible roots or none.

If the index of the highest power of « be odd, the first term
will be positive or negative according as 2 is positive or nega-
tive, and therefore if continually increasing positive values be
assigned to x, the value of y will be ultimately positive, and
continue so as the positive values of & increase without limit :
and if continually increasing negative values be assigned to
x, the value of y will be ultimately negative, and will con-
tinue so as the negative values of # increase without limit.
These conclusions obviously follow from the same principle
as the former scil, that such a value may be assigned
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to & as will render its highest power greater than all the re-
maining terms of the equation together. The parts of the
curve lying beyond the most distant points of intersection
on each side of the origin therefore lie at different sides of
the axis of @ ; that beyond the most distant point of inter-
section on the positive side of the origin lying on the positive
side, and that beyond the most distant point of intersection
on the negative side of the origin lying on the negative side
of the axis of ; therefore the number of intersections of the
curve with the axis of @ is odd, and it follows therefore
that every equation in which the index of the highest power
of z is odd, must have at least one real root, and in general
has an odd number of real roots ; and since the entire number
of roots, being that of the index of the highest dimension of
, 1s odd, the number of impossible roots is even, if there be
any such.

It follows therefore in general, that the number of im-
possible roots, if there be any, must be even, and there can
therefore never be less than two.

The absolute term v is the value of y corresponding to
x = 0, and is therefore the distance between the origin and
the point where the curve meets the axis of g, and therefore
the curve intersects that line, above or below the origin, ac-
cording as v is positive or negative, If v = 0, the curve
meets the axis of 7 at the origin.

Hence, if any equation wanis the last term, one of ils
roots must be equal to mothing. Also since, in case the
index of the highest dimension of the unknown quantity is
even, the curve ultimately extends above the axis of x on
both sides of the origin; if the absolute term be negative,
and therefore it intersect the axis of y below the axis of «,
it must necessarily intersect the curve at least once on each
side of the origin. Hence, if in any equation whose di-
mension is cven the absolute term be negative, it will have
at least two real roots, one positive and the other negative.
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By a change of origin on the axis of y, that is, by moving
the axis of » parallel to itself, any of the intercepts pr!, »'s",
&c. may be made to vanish, and by a further change, the
axis of # will cease to meet the curve at those points; thus
by changing the axis of « without altering its inclination,
two points of intersection will first approach each other,
then meet, and finally disappear altogether. Also by the
same change of the axis of &, it may meet the curve in other
points, where before the change it did not meet it, first
touching it, and then intersecting it. This change in the
axis of @ is effected by increasing or diminishing the values
of y by any given quantity, which is equivalent to a change
in the magnitude of the absolute term v. Hence it follows,
that by @ change in the absolute term, any two real and un-
equal roots may be first made to become real and equaly, and
afterwards impossible ; and vice versa, any two impossible
roots may, by a similar change, be made to become first real
and equal, and afterwards real and unequal. Tt appears
therefore that the minima values of y indicate the impossible
roots of the equation.

To determine the maxima and minima of y, or the points
of the curve at which the tangent is parallel to the axis of z,
let the equation be differentiated, and its differential equated
with zero, the result of which is

mam 4+ (m—1D)ax" 2 4 (m—2)Bx™34 . ... 1=0 (a).
If the consecutive roots of this equation substituted in the
proposed equation give results with opposite signs, the points
at which the tangent is parallel to ax lie alternately at the
positive and negative sides of ax. Between every pair of
such successive values of  the curve must intersect the axis
of @, and intersect it but once, because if it intersected it
more than once, there would necessarily be another point at
which the tangent would be parallel to the axis of & between
the two assumed values of @, which is contrary to hy-
pothesis. Hence it appears, that if all the roots of the pro-

"
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posed equation be real, all the roots of the equation (a) are
also real, and correspond to maxima values of y; and
between every two consective roots of the equation (a), a
root of the proposed equation must be contained ; the roots
of this equation are called limits of the roots of the proposed
equation, and the equation is called the equation of limits of
the proposed.

If three consecutive points of the curve, at which the
tangent is parallel to the axis of , be situate on the same
side of that line, and the value of y for the second is less
than those for the first and third, there must be two im-
possible roots of the proposed equation intercepted between
those values of x, which correspond to the first and third
values of 73 this is plain from what has been already said.
And hence it follows, that if three successive roots of the
equation (a) substituted in the proposed give results with
the same sign, the second being less than the first and third,
there will be two impossible roots of the proposed equation
included between the first and third values of .

If an even number of successive points of the curve at
which the tangent is parallel to the axis of x be situated at
the same side of that line, half their number will be points
at which y is 2 minimum, and since every such point in-
dicates two impossible roots, it follows that if an even num-
ber of consecutive roots of the equation of limits substituted
in the proposed equation give results with the same sign,
the proposed equation will have as many impossible roots at
least.

Since for every minimum value of y there are two im-
possible roots, the number of impossible roots must be
double the number of such values. To investigate this, let
the equation () be differentiated, and the result is

m.(@m—1). 22 + (m — 1) (m — 2)aa™?
d (= 2Y (- Gt L L s = 0,
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Such roots of the equation (a) as being substituted in
this and the proposed equation, give results affected with
the same sign, correspond to minima values of z; and for
every such value there are two impossible roots of the pro-
posed equation.

(581.) Before the methods of approximation to the values
of the roots of equations which are now used were known,
they were frequently represented by geometrical constructions.
This method of representing them is now, however, used
only as an illustration, and as it is not inelegant, we shall
here explain the principles on which it is founded.

Let the equation whose roots it is proposed to represent
be ¥(#) = 0, and let any part of the first member be ¥/(z),
and let the equation ¥'(x) = ¥'(%) be assumed, in. which the
form of the second member is arbitrary, and let this value of
¥'(«) be substituted in the proposed equation, the result will
be an equation ¥"(yx) = 0, between yand ». It is obvious
from this process, that if y be eliminated from the equations
¥(2) = ¥'(y) and ¥"(xy) = 0, the result will be the pro-
posed equation; and it follows therefore, that if two
curves be constructed which are the loci of the equations
¥(x) = ¥'(y) and ¥'(xy) = 0, the values of & corresponding
to their points of intersection are the roots of the proposed
equation. 'The investigation which we have just given on
the nature of the roots of equations may be looked on as an
example of the application of the principle, since the equa~
tions of the two loci, whose Intersection gave the roots of
the equation sought, were

y=0
y=a" + az” '+ Bx" 2. .. .. T2 4 V.

But this is evidently useless, as it requires the solution of
the equation itself to construct the second locus. We shall
however proceed to apply the principle to some examples

&
TR
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which will render it clearer than any abstract explanation
could make it.

PROP. CCLXXXVIIX.

(582.) To represent by geometrical construction the roots of
a quadratic equation.
Let the proposed equation be
22 + 2x + 82 = 0.

Let one of the loci whose intersection give the roots of
the equation be a right line parallel to the axis of x, re-
presented by the equation

Yy = B.
This substitution being made in the given equation, gives,
when B* > 0,
¥+ o+ 2r=0

for the equation of the other locus; this is the equation of
a circle whose radius is A, and whose centre is on the axis of
2 at a distance from the origin equal to —A. Let Ac=—a,
and with the
centre cand the
radius ac let
the circle be
described ; let
c A AB=3, and let
the parallel Bp'
be drawn; the
values of z scil.
AP, AP, corre-
sponding to the points p, p, where this parallel meets the
circle, are the roots of the proposed equation.

The centre lies at the positive side of the origin if A < 0,
and at the negative side if A > 0; therefore in the one case
both roots are positive, and in the other negative.

AP 4 AP = 2ac, i, ¢. the sum of the roots taken with

e

=
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their proper signs is equal to the co-efficient of 2 in the
given equation.

AP X AP = pp® = B?% i.e the product of the roots is
equal to the absolute term.

If Az = ac, p and p' coincide, and Ar = a¥, i. e if
B = 4 the roots of the equation are equal.

If A > ac, the parallel does not meet the circle, -°if
B > A and 3% > 0, the roots are impossible.

If 8* < 0, the second equation is

¥~ 2%+ 22 =0,
which is the equation of the equilateral hyperbola, the trans-
verse axis of which coincides with the axis of @, and the
origin being at the vertex.

But the equation can be constructed in all cases by the
circle alone. In general let the equation of the right line
parallel to the axis of « be

Y= vy/m®+ B

Making this substitution the equation becomes

Y + 2° + 27 — m* = 0;
m being arbitrary, it may be supposed =0, if 3 >0,
which reduces this case to the former. But if 3% < 0, in
order that y may be real in the equation of the parallel, m
cannot be less than B; in this case let m = B. The
parallel will in that case coincide with the axis of = itself,
and the equation of the circle is

92 + 2° 4 e — B = 0.
This is the equation of a circle whose radius is /A% 4 1%
and whose centre is at a distance from the origin equal to
—4A. Hence let Ac = — a, :and the circle be described
with the radius 4/ A* 4 8% and the roots of the equation are
Ap, AP,

The equation may be constructed by the intersection of
the right line with any line of the second degree as well as
the circle. Thus let the equation of the first locus be
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2

Y=o+ g5

which is the equation of a right line intersecting the axis of

. .. B? .
y at a distance from the origin expressed by o and in-

clined to the axes of co-ordinates at angles of 45° The
equation of the other locus will be

2 4 2ay =0,
which is the equation of a parabola whose axis is the axis
of y, whose vertex is the origin, and whose parameter is
—2a, The intersection of this with the right line gives the
roots of the proposed equation.

PROP. CCLXXXIX.

(583.) To represent by geometrical construction the roots
of @ cubic equation.

Let the proposed equation be
23 + Ax® 4 3w + ¢ = 0.

Let the equation of one of the curves whose intersection

is to determine the roots of this equation be
& + Ax = By.
By substituting v in the proposed equation the result is
B2y + 8% 4 ¢ = 0.

The former of these equations represents a parabola, the

. P A C oy
equation of whose axis is # = — L which is therefore
parallel to the axis of y. The value of y which gives the

. A% - .
vertex 1s — ——, and the principal parameter is .

43
The latter equation represents an hyperbola, the axis of
Y is one asymptote, and the equation of the other is y=—p,

which is therefore parallel to the axis of 2; and since the
asymptotes are rectangular, the hyperbola is equilateral.
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Let o be its semi-axis, its equation related to the asym-
ptotes is

aQ
yr =g
; @ c? 2c?
H e e ——, @ = ——,
ence — R >
A
Let A = — 5 and through B draw a parallel to Ay ;
A? . .
and let BV = = e On the axis vc with the vertex v, and
a parameter equal to B, let a parabola be described. Let
Ap = — B, and through » draw a parallel to ax. Let
Fr’ be drawn bisecting the angle o, and take
2c®
DF = - —
B

describe an hyperbola whose vertices are ¥, ¥, and whose
asymptotes are vy’ and zr!. The roots of the proposed
equation are ap, apl, Ap", the values of 2 corresponding to
the points of intersection », ¥, ', of the parabola and
hyperbola.

If the equation of the first locus be
axy + ¢ =0,
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the other will be by substituting for ¢3, and dividing the
result by a,

2® + axr — Ay + 32 =0,
The former, related to rectangular co-ordinates, is the
equation of an equilateral hyperbola, the axes of co-ordinates
being the asymptotes, and its semiaxis equal to

' 20‘5

C—

The latter equation represents a parabola, the equation of

‘ .. A .
whose axis is @ = — o and the co-ordinates of whose
t A B2 A
VOIteX Are & = mme ey U == —— ———,
Y ="N T

Through the origin » let F¥' be drawn bisecting the angle
2c? . .
D, and let oF = J == pF, with the line ¥¥' as trans-

verse axis, and the points ¥, ¥, as vertices, let an equilateral
. A
hyperbola be described. Also let pB'= — L and

with the vertex v, the axis vc, and the parameter a, let a
parabola be described ; the points of intersection of this with
the hyperbola will give the roots required.

It is always possible by a transformation to remove the
second term of the equation. Suppose this done with the
proposed equation, and that it is reduced to the form

2° + 3% + = 0.
Let it be multiplied by = 0, by which it becomes
a2t + 3%2® + Pz = 0.

If the equation of one of the curves whose intersections

determine the roots be
2% = BY.
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That of the other will be, when 8% > 0,
C3
2 p—
y* + -+ —lﬁx = 0.

The former is the equation of a parabola whose vertex is
at the origin, whose axis is Ay, and whose parameter is B.

\,

ﬂ

=J

The latter is a circle passing through the origin with its
. c?

centre on the axis of  at the distance — o Therefore let

a parabola be described with the vertex a, the axis av, and

the principal parameter B; and a circle with the radius
3

N c
CA = — .
2p2

the proposed equation. The point A gives the root = 0,
which was introduced by multiplying by 2. 'The other two
roots must in this case be impossible. The circle will lie on

The point of intersection  gives the root of

the negative or positive side of the origin, according as c® is
positive or negative ; and therefore the real root will in the
one case be negative, and in the other positive.

If 22 < 0, the second equation becomes
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03
yg_x9+ ']—3;—.1'—_-0.

This is the equation of an equilateral hyperbola whose
vertex is the origin, and whose transverse axis is the axis

of .
\\ /
AP /
N\ yd
{ /s
i 7
1 \ ! A D
N\ /
7
‘ \ ///
i Y B o el ” /rl N '
/'Il_ < ‘\Tx
/ \
/ \
e N
/// \\\
PR // ] \\
c? . .
Let ac = =— = cA/, and with the vertices AA’ let an

2p2

equilateral hyperbola be described, the points », 2/, ', give
the roots of the proposed equation.

The centre of the hyperbola lies on the positive or ne-
gative side of A, as ¢® > Oor < 0. Ifc lie on the positive
side of a, there must be one point of intersection on the
negative side; and if ¢ lie on the negative side, there must
be one point of intersection on the positive side. Hence the
equation must have one real root having the sign contrary
to that of ¢®.

Supposing both parts of the hyperbola to intersect the
parabola, the roots will be real and unequal; and two will
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be positive and one negative if ¢* > 0, and two negative
and one positive if ¢ < 0.

If the parabola and hyperbola touch, there will be two
equal roots.

If one of the branches of the hyperbola does not meet the
parabola, two of the roots of the equation are impossible.

PROP. CCXC.

(584.) To construct the roots of an equation of the fourth
degree.

Since the second term may always be removed by a
transformation, the equation can always be brought to the
form

at 4 p%2? + Sx ot = 0.
Let one of the curves be the parabola represented by the
equation 2% = By,
which being substituted for x*, gives for the equation of the
other when 52 > 0,

C3 D4
y? 4 x* &x -+ ik 0.
And when 52 < O,
2 D4‘ — O
y 9 TV

1. Let B* > 0. 'The parabola being constructed as in

the last proposition, let a circle be described with its centre
3

. . c .
at ¢ on the axis of @ at the distance Ac = — o and with
fo

6T
c . .
the radius ¢z = J 7 —n. As this circle, from its po-
4z B?

sition, cannot intersect the parabola in more than two points,

there can be only two real roots to the equation in this
Casc.
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A B [¢]

If the circle touches the parabola, the two roots are equal ;
and if it does not meet it, they are impossible.

If cB > ca, the circle must intersect the parabola, there-
fore in this case the roots must be real; they will also have
in this case different signs: this necessarily happens when
the last term in the given equation is negative.

2. Let 3* < 0. The equation of the second curve is

in this case that of an equilateral hyperbola, its centre is on
3

. . c .. .
the axis of & at the distance — e from the origin, and its
o ¢®  pt
semiaxis is —_———
4p* p°

This curve being constructed as in the annexed figure,
gives the roots required.

The observations made in the other cases as to the real,
equal, and imaginary roots apply here also. It is evident
that since the hyperbola may intersect the parabola in four
points, all the roots may be real. Also it is plain that in
this case one of them at least must be negative, and two at
least positive,
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Since one or both branches of the hyperbola may touch
the parabola, there may be one or two pairs of equal roots,
and since neither branch may meet it, all the roots may be
impossible.

PROP. CCXCI,

(585.) o find a cube which shall bear o given rotio to
given cube.

This problem is in effect to construct the equation
2% — ma® = 0,
Let it be multiplied by @, and we find
xt — madr = 0,
Let one of the curves whose intersection is to determine
the roots be the parabola

2% = ay.
This being substituted in the above equation, gives
* = max.

Hence the root 1s determined by the intersection of twe
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parabolas having a common vertex, and their axes at right
angles, and whose parameters are in the given ratio.

PROP. CCXCIIL.

(586.) To find two mean proportionals between two given
lines.

Let the given lines be @, b, and the sought means y and

x. Hencea:y: x: b, and therefore

y* = ax,

2 = by.
Hence, if two parabolas be described having a common
vertex and their axes at right angles, and whose parameters
are equal to the two given lines, the co-ordinates of their
point of intersection related to their axes, as axes of co-
ordinates, are the sought means.

PLOP. CCXCIII.

(687.) To trisect an angle.

Let A be the given angle. By trigonometry,
cos.3 JA — 3 cos. FA — Lcos. A =0
which by supplying the radius 7, and representing cos, +a
by @, becomes
4a® =~ 3r2%x — r* cos. A =0
which multiplied by @, gives
4ot — Bria® — r*cos. A . @ =
Let the equation of one of the curves be
2 = ry,
and the other by substitution will be
2y* — 3ry — 2 cos. ax = 0.
The former is the equation of a parabola, the axis of
which 1s the axis of y, the origin the vertex, and the prin-
cipal parameter equal to 17.
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"The latter is also a parabola, the equation of its axis is

y = 3r, and the co-ordinates of its vertex are y = 27,
7.2

T = and its principal parameter is cos. a.
08.

These parabolas being described, their points of inter-
section give the roots of the equation. 'The intersection
at the origin gives the root @ = 0, which was introduced
by the multiplication by «.

The equation having more than one real root, it might
appear that there were more values than one for the third
of the given angle. But upon examining the process, it
will be seen that the question really solved was not to find
an angle equal to the third of a given angle, but to find
the cosine of an angle which is the third of an angle whose
cosine is given. Since then the arcs

As

O — Ay, 2w 4 A,

b — A, 4w 4 A,

67 — 4, 6w + A.
And in general all arcs which come under the gencral
formula 2mm + 4 'have the same cosine, the question really
solved is to find the cosine of the third of any of these arcs.
And here again another apparent difficulty arises. If the
number of arcs involved in the question be unlimited, shall
there not be an unlimited number of values for the cosine
of the third parts of these? To account for this it should

. . . 2m A
be considered that in general the arc rd + — must have

3
the same cosine as some one of the three arcs,

2 o F R W
39T°77 Thy 5T — A5

o

. .m . .
for the number - must be either of these forms, n, » + 3,
7 73
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or # 4 %, where 7 is an integer. If it have the form 7,
that is, if 8 measure m, then

2m
—g-vr &= ZA = 2w + a3 therefore

Qm I I b 4
cos. 5= + fA = cos, (2n7 + 2A) = cos, LA,
1If 1t have the form n 4 %;

2m
BTk a= Znw 4+ 2w + Za; therefore

\

€os. %ﬂ + 1A = cos. (7 + 47 + LA} = cos. (2w +A).
If it have the form n + %;

m
2. gr L= Qnw + 4w 4 LA therefore

cos. (orr + La)=cos. (27 + £p + 1A)=cos. Ldw + a).

( 3
. 2mn
And hence it follows that the cos. (?- + A), whatever be

the value of m, must be equal to one or other of the quan-
tities

cos. A,

cos, (27 — a),

cos, L(47 — a),
which correspond to the three roots of the cubic equation
already found.

PROP. CCXCIV.

(588.) T'o resolve the formula x™ + a™ into its simple_fac-
tors by geometrical construction.

Let # = a (cos. ¢ + 4/ — 1 .5in. ¢), and since by tri-
gonometry,

(cos. ¢ + 4/ — 1 sin, P)™ = cos, mP +4/ — 1 sin, me s
it follows that
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™ = g™ (cos. mp + »/ — L sin mo).

Hence subtracting o™ from both members,
o —an = am (cos. m + o/ — 1 sin. me — 1.)
The question then is to find the factors of
cos. mp + o/ — 1 sin. mp — 1,

which will be found by investigating the values of ¢ which
satisfy the equation,

cos. m¢ + o/ — 1 sin. mp — 1 = 0.
This condition can only be fulfilled by the real and im-
possible parts being separately equal to nothing, which
gives

cos. m¢ -~ 1 = 0,

»/ — 1 sin. mo = 0.

27
And hence cos. m¢ = 1, ‘' md = 2w, *0 ¢ = n—-.
m

Hence the factors sought are found by supposing » in the
o o
formula
Qw —_— 2r
x — a3 cose n— + o/ —1sm.n— ¢,
m m
successively to assume the values, 0,1,2,8, . . . . m—1,

which give

x — a,
2 —_— . 2r
& -~ aécos. — 4/ — 1 sin. —
m m
4 — . 4
x — a$ cos. - + v =1 sin. —— ¢
L m m $
Y R
@ —a$ cos. il + & —1 sin. 2
¢ n m §
2w —_— . Qw ¥
r — a{cos. (m__Q)—;; + /=1 sin. (m — Q)—?;l—g

Zw - . 2
& =G gcos. (m — l)-ﬁ—bu 44/ —1sin {m — 1)77? %

U
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After this factor the values recur; for if n = m,
22 . 2m .
COS. 7 —= = COS. 2r =1, and sin. n ~ = sl 2r = 0,

which gives # — @, which is the same as the first factor, and
in like manner every succeeding factor would be only a
repetition of the former one. These therefore are the simple
factors of ™ — o™, Their forms may be somewhat modified
by observing that

2m 2m
cos. (m — 1) - = 08—,
2 i
sin. (m — 1) ——Tr-...—-« sin, —,
qu
cos, (m — 2) = cos.

. 27:‘ . A
sin. (m — 2) —- = = sin. —,
m m

and therefore omitting the factor & — @, the series of re-
maining factors will be

§ 274 —_— 277’}
x —a zcos. —+v—151n.—— .

4
x—a{cos ———+«/—lsm ——-}

m
6r —_—
xr—a gcos. — 44 -1 sin.—-%
e m m

PR . . . .

MM

G S

x — a{cos. — — /=1 sin. —~§
m m
il

X —a {COS.

1 4w
4 sin. po” }

m
cuSeos T Tian
x alcos. pon A/ =1 sin. :

m § J
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If m be odd, and therefore (m — 1) even, we find, by
multiplying the extreme terms of this series and every pair
of terms equidistant from them, this series of real qua-
dratic factors,

o »j
a2 — 2a cos. — . & + a*

m
4
2% — 2a cos, —— . 2 + a®
m
e g 6m + o
a® — 20 cos. — . & + a®
m (©)
w7
a® — 2@ cos. — . x + a®
m

Therefore in this case the real factors of #™ — a™ are
(v — a) and the above serles of quadratic factors; all the
simple factors except (# — a) being impossible.

If m be even, and therefore (m — 1) odd, after multiply-
ing the extreme terms of the series (8), and also every pair of
terms equidistant from them, a solitary term will remain in the

middle. The coefficient of %711 in this term will be 9—;—, and
therefore the term will be

x — afcos. 7 » — 1 sin. 7} =& 4 a.
Hence in this case #” — @™ has two real simple factors x — «
and x 4 a; all the other simple factors being impossible, It
has also the real quadratic factors expressed in the series (c).

These results may be thus expressed.
10, If m be odd,

. 2
am — a" = (v — a) (* — 2a cos. o a*)

. om . Q
(2% — 2 cos. 2 —- . & + a%) (#°—Ra cos. 3 — .x+a’)...
m m
2 9 m—1 2w + o)
x? — 2 cos. —5— . — . & + a*)
( 2 m

v2
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2°, If m be even,

r
M — g = (x — a) (ag + a) (xz —_— Qa COsS. '7"77 -+ a’a)

o r
(2* — 20 cos. 237[ 2 =+ a?) (2*—2a cos. 3 —;n~.x—|~a‘~’)...
m—=2 2w )
o) . —77]/" -|-' [ )

To represent these factors geometrically, let a circle be de-
scribed with the radius ca = @, and let cr = #, and let the
circumference be divided into 2m equal parts at the points
Ay Agy Agy oo Agyy, and let PA = 2, PA; = 21, PAg = 25y o0 o

(2* — 2a cos.

PAgn—1 = Zom—1 Hence,
Zo = & =~ A,

[
v
I

r
2% =~ 20 cos. — . & + a2,
m

R N 4
L= -—Qacos.Tn—.:v—l-uQ,

If m be even, one of the points of division will coincide
with B, S0 PB = 2 + @ = 2,. Since z, = 25,1, %= 2y,
%y = Zamegy o o - » Wefind

2 2m
RoRommg == X7 Q(Z COS. ;7—2— . X _{_ a‘l]

. 4
oy = &* — 2a cos, P a2,
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Hence in general,
L™ == A" = Ry Zyy By R e o 0+ Ropege
To find the factors of ™ 4 @™, it is necessary to proceed
in a similar manner, which will give
a™ 4 am = a" (cos. mp + o/ — 1 sin. mo + 1).
Therefore,
cos. mp + 1 =0,

sin, m$ = 0,
Do 2n+1
which gives ¢ = (——z%;———)—ﬁ, the result of which is
_ 2n+1)= — . (n+Dr
x = a (cos. po 44/ —1 sin, —T—),

n being supposed successively to assume the values, 0, 1, 2,
« . . m — 1 as before, the simple factors will be

& — a (cos. z + 4/ —1 sin, —W—),
m m
37 —_— . 3

& = @ (cos. — -+ 4/ ~1 sin, —),
m m

5 _
x——a(cos.l + 4/ ~1 sin. —-T),
m m

° . o . . . ° °

or beginning with » = m — 1, &c. the series will be

T — w
& — a (cos. — — 4/ —1 sin. —),
m m

3 — . v
x — @ (cos. — — 4 —1 sin. —),
m m
5 —_— . b
x — a (cos, — — 4/ —1 sin. —),
m m
And by uniting the extreme factors and those equidistant
from them, we find
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w
2" + o™ = (2 — 2a cos. e + a*)
0

B 5w
(22 -Qacos.c—m—.x + a?) (a®* — 2a cos. el +a%)....

The last factor being simply # + @ when m is odd, and

(m—1)w

x? — 2a cos. .2 4 a®* when m is even; the num-

ber of real quadratic factors being in the former case
m— m

2 2

As before, let the circumference of the circle with the
radius ¢ be divided into 2m equal parts, and the lines
drawn from a point ¢ at the distance z from the centre
to the successive points of division being denominated as
before,

1 .
, and in the latter

Y

w
= 2% — 2 cos. — . 2 + a%
7

3w
2 = 22 — 2a cos. —;;;m + a%

@

=

593

= 2* — 2a cos. —x + a’.
m

[
|

w

. . . . . o . . . .

And since  z, = 2,5, 2 = X9 &C.
LA A - S - S

(589.) Cor. 1. The formula,
7 —_— 7
& = & (cos. 2n . - 4 v —15sn.2n —47_2)’

is a general formula for the mth roots of a™.

(690.) Cor. 2. The mth roots of unity are expressed by
the formula,

w T w
cos. Qn—;n—— + v/ =1 sin. Qn P

(591.) Cor. 8. If @ = 1, this proposition gives the reso-
lution of 2™ — 1 into its simple factors.
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SECTION XXI.
Of the general properties of algebraic curves.

(592.) As every equation between two variables may be
conceived to generate a curve, the Variety of curves are as
infinite as the variety of the equations by which they are
represented. The classification of curves therefore should
be conformable to that of equations; and as the first and
principal division of equations is into algebraical and tran-
scendental,the curves represented bythem have been similarly
divided and similarly denominated. An equation between two
variables (yx) is called an algebraical equation when it is
reducible to a finite series of terms involving only factors of
the variables (y«) with integral and positive exponents.
An equation, which is not reducible to such a series, or
which, when reduced to a series of such terms, will consist
of an infinite number of terms, is called a transcendental
equation. Accordingly, the two principal classes of curves
are algebraic and transcendental. Thus the lemniscata,
whose equation is

Y+ Q0 b 2t o+ @y — ata® = 0,
is an algcbraic curve. The logarithmic and the cycloid
whose cquations are

Yy =&
&— /2y —gy°
Y — 7 — 7" COS. ———i—;ﬂ-—j—i =0,

are transcendental curves, for they would, if resolved to a
series of integral and positive powers of 7 and @, consist of
an infinite number of terms.  From the nature of tran-



296 ALGEBRAIC GEOMETRY.

scendental equations, it is impossible to form any regular
classification of the curves they represent. They possess no
generic properties, and the peculiar properties of each curve
may be investigated by the rules already established. This,
however, is not the case with algebraic curves. The means
of their classification are obvious; they possess general pro-
perties which may be discovered from the nature and pro-
perties of general algebraic equations, as well as those di-
stinctive and peculiar properties which characterise each
subordinate species, and are derivable from its particular
equation.

In a classification of equations, with a view to a cor-
responding classification of the curves represented by them,
we should use such a means of distinction, as that equations
coming under different classes may not represent the same
curve.

Thus, for example, if the equations were classed according
to the number of their terms, the equations,

ye 4 % = 7.4,,

Y+ 2t — e =0,
would come under different classes, and yet they represent
equal circles. Such a distinction between the classes of
equations must therefore be adopted as will prevent the
possibility of the same curve coming under two different
classes. We shall find this distinction by investigating how
the transformation of co-ordinates affects an equation ; for as
this never affects the curve represented by the equation, any
quality in the equation which is changed by this operation
cannot be used as a distinction of classes; and, on the other
hand, any quality which the transformation does not affect,
is a fit one for the purpose. The formula expressing the
co-ordinates of a point relatively to one system of axes,
as a function of those relatively to another being of the first
degree, cannot make any change in the degree of the equa-
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tion in whi