
BIBLIOGRAPHIC RECORD TARGET

Graduate Library

University of Michigan

Preservation Office

Storage Number:

ABW8205
ULFMTBRTaBLmT/C DT 09/12/88 R/DT 09/12/88 CC STATmmE/Ll

035/1: :
|
a (RLIN)MIUG86-B91803

035/2: :
|
a (CaOTULAS)160227642

040: : |aMiU |cMiU
100:1 :

|
a Lardner, Dionysius,

|
d 1793-1859.

245:02:
|
a A treatise on algebraic geometry.

|
c By the Rev. Dionysius Lardner.

260: :
|
a London,

|
b Whittaker, Treacher & Arnot,

|
c 1831.

300/1: :
|
a 1 p. L., [v]-liv p., 2 L., 512 p. |bdiagrs. |c22cm.

590/1: :
|
a Bound with this is Waud, Samuel Wilkes. A treatise on algebraical

geometry ... 1835.

650/1: 0:
|
a Geometry, Analytic

998: : IcRAS Is 9124

Scanned by Imagenes Digitales

Nogales, AZ

On behalf of

Preservation Division

The University of Michigan Libraries

Date work Began: _

Camera Operator:

.



TREATISE

ON

ALGEBRAIC GEOMETRY.

REV. DIONYSIUS LARDNER, LL.D., F.R.S.

PROFESSOR OF NATURAL PHILOSOPHY IN THE

UNIVERSITY OF LONDON.

LONDON :

WHITTAKER, TREACHER, AND ARNOT.

1831.



LONDON

:

HENRY BAYLIS, JOHNSON's-COURT, FLEET-STREET.



PREFACE.

The first thirteen sections of the following

work were written immediately after I ob-

tained my degree. Sensible how imperfectly

qualified I must have then been for the

execution of a work of such extent, I laid

aside the manuscript, in expectation that

some one*bfmore years, experience, and talent,

would supply what was, and has continued

to be, a desideratum in science—a complete

and uniform system of Algebraic Geometry.

After the lapse of several years, no work of

this description having been announced, I

again resumed my labours with increased ex-

perience and knowledge, and therefore with

increased confidence.

The part of the work now published has

been submitted to the best test by which an

elementary treatise can be estimated, the pur-

poses of instruction. Such alterations have

been made as were suggested, and it is hoped

that the treatise, as it now stands, will be
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found properly adapted to initiate students

in the elements of the science.

Such principles of algebra as are assumed

in the text, and not to be found in the com-

mon elementary treatises in our language,

have been explained and proved in the notes.

In these the student will also find a con-

siderable portion of historical information re-

specting the invention and progressive im-

provement of the different parts of geometry

which fall under his consideration throughout

the work, and other matter which, if intro-

duced into the text, would have broken its

uniformity.

Those who are acquainted with foreign

works on this subject will easily estimate the

extent ofmy claims on the score of originality.

Much new matter is not to be looked for at

this period ip any elementary work, and there-

fore one may justly assume a double portion

of credit for whatever may be found. Con-

siderable improvement will be perceived in

the method and arrangement. The formulae

which have been given by other writers are

rendered more general, and therefore more

prolific in results, and more symmetrical in

form, A very considerable portion of the ex-
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amples and illustrations, both geometrical and

physical, will, I believe, be found to be ori-

ginal. The transformation of co-ordinates,

which is in general so operose, and which is

the mean ordinarily used for discovering the

properties of curves, is very sparingly intro-

duced, most of the properties being dis-

covered without it with more clearness and

facility.

I have been very attentive in supplying a

defect which exists in every treatise on the

subject which I have ever seen, a total want

of examples illustrative of the application

of the abstract rules and principles of the

science. This deficiency prevails, without a

single exception, in all the continental writers.

Some will, perhaps, be of opinion that I have

fallen into the opposite extreme, and given

too much illustration. To this I have only

to answer, that in this science the illustrations

and examples are not confined in their effect

merely to the practice they afford in the

analytic art, but that they also store the mind

with independent geometrical and physical

knowledge. Besides, it should be considered,

that the only effectual method of impressing

abstract formulae and rules upon the memory,
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and, indeed, of making them fully and clearly

apprehended by the understanding, is by ex-

amples of their practical application. The

quantity of examples necessary to make the

mind grasp any general principle is different

according to the various degrees of talent. A
sufficiency, at least, should be given for stu-

dents of very moderate capacity. It will be

much more easy for those of superior parts to

omit what they shall feel superfluous, than

for those, whose talents are of a lower stand-

ard, to supply what they might find deficient.

The title " Algebraic Geometry" has been

preferred to either of the titles, * Analytic

Geometry" or " the Application of Algebra

to Geometry," because the one is equivocal,

and the other circumlocutory. The use of the

transcendental analysis has been brought as

an objection to the present title. I do not,

however, think this a sufficient reason for

rejecting it.

It is but justice to myself to state a cir-

cumstance which, though it cannot affect the

intrinsic excellence ofthis work, if it have any,

yet must materially influence the estimation

in which its author will be held by the reader.

During most of the period in which I have
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been employed upon the present treatise,

from eight to ten hours daily ofmy time were

occupied in the labours of instruction : so

that this work may truly be said to be the

result of a few spare hours, and these always

hours of fatigue both ofbody and mind. This

I hope will plead, my apology for any over-

sights which may be found throughout the

work, of which probably there are not a few.

The typographical errors have been very

carefully collected in the errata. Their number

has been principally caused by the circum-

stance of my residence in a different country,

and nearly four hundred miles from London,

where I have found it expedient to publish

the work. The difficulties of transmitting

the proof sheets for correction with sufficient

punctuality and despatch were very great.

These difficulties would have been nearly in-

surmountable, owing to the enormous charges

of the post-office, were it not for the kindness

and attention of some members of parliament,

through whom the necessary correspondence

with the publishers in London was conducted.
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Geometry, in its most extensive sense, is the

science whose object is the investigation of the

properties of figure. Figure # is the mutual re-

lation of the limits of space among each other. It

is therefore an affection of lines and surfaces; lines

being the limits of superficial, and surfaces those

of solid space. The ideas expressed by the terms

line and surface admit no definition, and for

the same cause require nonej\ They are con-

* " Figure is the relation which the parts of the termination of

extension, or circumscribed space,, have amongst themselves."—

Locke.

f Although the abstract terms line, and surface, admit no

definition, yet their species, with the exception of right lines

and plane surfaces, do $ these, being simple ideas, are un-

definable.

" The several terms of a definition, signifying several ideas,

they can altogether by no means represent an idea, which

has no composition at all ; and therefore a definition, which is

properly nothing but the showing the meaning of one word by

several others, not signifying each the same thing, can, in the

names of simple ideas, have no place."

—

-Locke.

D'Alembert entertains a different opinion on the necessity of

defining those terms, and yet, at the same time, seems to admit



Xll INTRODUCTION.

ceptions so simple and obvious, that any necessity

of explaining them is superseded by an appeal

to the senses. It is only necessary to observe,

that the term solid is used without any reference

to body, merely to signify the space which a solid

body might occupy. Lines and surfaces are subr

divided into numerous classes, marked by various

characteristic properties.

The first division of lines is into straight lines

and curves, and of surfaces into plane and curved.

Straight lines and plane surfaces admit no further

subdivision, for they are without any variety.

One indefinite straight line is so applicable to any

its impossibility. He, however, thinks a bad definition better

than none.

" Nous ne pretendons pas pour cela qu'on doive supprimer des

elemens de geometrie les definitions de la surface plane et de

la ligne droite. Ces definitions sont necessaires; car on ne

sauroit connoitre les proprietes des lignes droites et des surfaces

planes sans parler de que]que propriete simple des ces lignes et

des ces surfaces qui puisse etre appercue a, la premiere vue de

Pesprit, et par consequent etre prise pour leur definition. Ainsi

on definit la ligne droite, la ligne la plus courte qu'on puisse

mener d'un point a un autre ; et la surface plane, celle a la-

quelle une ligne droite se peut appliquer en tout sens. Mais ces

deux definitions, quoique peut-etre preferable a toutes celles

qu'on pourroit imaginer, ne renferment pas l'idee primitive

que nous nous formons de la ligne droite et de la surface plane,

l'idee si simple et pour ainsi dire, si indivisible et si une, qu'une

definition ne peut la rendre plus claire, soit par la nature

de cette idee meme, soit par l'imperfection du langage."-—

D'Alembert.
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other as perfectly to coincide with it, so that, in

effect, the two lines will become one. Straight

lines, then, can differ one from another only in

magnitude and position ; but the figure of all

straight lines must be the same, and they must

therefore possess the same properties. Similar

observations apply with equal force to plane sur-

faces. This, however, is not the case with curves

and curved surfaces. Each of these classes con-

tains an endless variety of species, the investiga-

tion of the properties of which is the business

of the geometer. A more particular subdivision

will, however, be necessary before proceeding to

the discovery of these properties.

Lines may always be conceived to be described

upon surfaces. Under this point ofview, curves re-

solve themselves into two classes. The first em-

braces those whose points, all situate in the same

plane, may be conceived to be described upon a

plane surface \ and the second, those whose points

not lying in the same plane, can only be conceived

to be described upon a curved surface. The former

are called plane curves, and the latter curves of

double curvature. The investigation of curved

surfaces involves necessarily the nature and pro-

perties of curves of double curvature, and there-

fore the whole range of geometry may be divided

into two principal parts :

The Geometry of Plane Curves, and

The Geometry of Curved Surfaces.
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In conformity with this, the following treatise is

divided into two parts, under these denominations.

The first part might naturally be called plane

geometry. Names, however, are invented, not

after knowledge has reached its full extent, but in

its progress to that state. After the limits of a

science have been extended by the gradual ac-

cession of discoveries, terms are always to be

found which are used in a much more confined

sense than they might admit of; because their in-

ventors, unacquainted with the extent which lay

undiscovered, only applied them to the parts then

known ; and the difficulty and inconvenience

which always attend the alteration of received

names induced their successors to invent new

terms rather than disturb the accepted sense of

the old ones. To this cause the very limited

sense of the term, plane geometry, must be at-

tributed.

In the earliest infancy of the science, its limits

were confined to the properties of rectilinear

figures, or rather to the properties of triangles,

into which all rectilinear figures may be resolved.

The circle probably served at first as a mere in-

strument in the construction of rectilinear pro-

blems. The properties of this curve, however,

soon became the object of investigation, and were

discovered in a very early stage of the science.

The right line and circle terminated the inquiries

of the first geometers with respect to lines. They
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next turned their views to surfaces, and in these

they confined themselves to those generated by

the revolution of an angle round the line which

bisects it, a rectangle round one of its sides, and

a circle round one of its diameters. They thus

acquired the notions and investigated the pro-

perties of cones, cylinders, and spheres. They

accordingly divided their geometry into two parts,

called plane and solid geometry.

The term plane geometry is still used in the

same sense, and is so much of the geometry of

plane curves as includes the right line and circle.

In plane geometry, treated according to the an-

cient method, nothing is permitted to be done

but what may be effected by a rule and compass,

and nothing is allowed to be true without proof,

except a few simple and general propositions

called axioms, and prefixed by Euclid to his Ele-

ments. On these axioms, and on the definitions,

the whole structure of plane geometry rests.

The science continued within these limits until

the time of Plato, about four hundred years before

the Christian era. The institution of the Pla-

tonic School forms a most striking epoch in the

progress of geometry. In it originated the

conic sections, the geometrical analysis, /geo-

metric loci, and the discussion of the celebrated

problems of the duplication of the cube, and the

trisection of an angle. The geometers of this

school, finding that the ingenuity of their pre-
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decessors had nearly exhausted plane and solid

geometry as they had descended to them, con-

trived, by the combination of these sciences, to

produce new subjects for speculation. They con-

ceived a conical surface intersected by a plane,

and a line traced upon the plane by the points

common to it, and the surface of the cone. Hence

arose the conic sections, the properties of which

have employed the talents of geometers from that

time to the present, and which have been since

discovered to be the lines traced by the planets

and comets in their revolutions round the sun,

their common centre of attraction. These are the

first curves to which the attention of the student is

directed in the following work, though defined in

a different manner, and conformably to the ge-

neral system which has been adopted.

The invention of the geometric analysis, besides

its intrinsic excellence, has the additional interest

arising from our knowledge that it is the invention

of Plato himself. The other discoveries are known

to have originated in the Platonic school, but we

have no authentic record to prove their particular

inventors. It does not appear that Plato wrote

any work purely mathematical. The authority

of Proclus, however, proves him the inventor

of the geometrical analysis. Any geometrical

question, whether problem or theorem, being

submitted to analysis, is assumed as solved if it

be a problem, and as true if a theorem. From
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this assumption a chain of consequences is drawn,

which, by the ingenuity of the geometer, is con-

tinued until he arrives at some proposition known

to be true or false, if the question be a theorem
;

possible or impossible if it be a problem. The
final consequence points out whether the question

be true or possible, and, by retracing the steps, a

synthetical proof or solution may be found.

Geometric loci in the Platonic school were

conceived to be produced by indeterminate geo-

metrical problems in the manner explained in the

commencement of the following treatise. The

principal use to which they were applied by the

ancients was the solution of determinate problems,

by the intersection of two loci determined by in-

determinate problems. To give a very simple

instance; if the problem to be solved be the de-

termination of a triangle, whose base, area, and

ratio of sides are given, the problem is resolved

by the intersection of a right line and circle ; the

former the locus of the vertex, where the base

and area are given, and the latter its locus when

the base and ratio of sides are given.

The celebrated problem of the duplication of

the cube was solved mechanically by Plato. Me-

nechme, a pupil of his, solved the same problem

by the intersection of two parabolas*, and by the

* See art. 585,
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intersection of a parabola and hyperbola. This

was one of the first applications of geometric loci

to the solution of determinate problems.

Geometers next began to extend their in-

vestigations to the discovery of the lengths of

curves, and the areas contained by them. This

gave birth to the Method of Exhaustions, the most

refined and subtle invention of the ancients. In

this method, which was employed with such ad-

mirable ingenuity and address by Archimedes,

and by the use of which he effected most of his

discoveries in geometry, we may, by minute at-

tention, observe the germ of the differential and

integral calculus. This, however, must only be

understood of the metaphysical principle of that

wonderful science ; for in their application to

geometry, to say nothing of the physical and al»

gebraical sciences, the powers of the calculus are

far beyond those of the ancient method.

By the Method of Exhaustions, the lengths

and areas of curves were compared, by comparing

those of inscribed and circumscribed rectilinear

figures. As the number of sides are increased,

the differences between the figures, and therefore,

a fortiori, between each ofthem and the curve, are

continually diminished. It is always possible so

to multiply the number of sides, that these dif-

ferences shall be made less than any assignable

magnitude. Under these circumstances, any pro-
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perty of the rectilinear figures which is inde-

pendent of the number of their sides will be

also a property of the curves. This would ap-

pear to a modern geometer sufficiently evident,

but the ancients were more fastidious, and to

remove all possibility of objection, they con-

firmed the proof in every particular instance, by

an argument eoc ahsurdo*

Although the ancients passed the limits of

plane geometry, yet, from the nature of the

method of exhaustions, all their demonstrations

were tedious and elaborate. When we enter upon

the investigation of any curve beyond the circle,

by this method, we are perpetually embarrassed,

not with the difficulties of the subject, but with

the inadequacy of the method, the insufficiency of

which is supplied at the expense of an immense

quantity of valuable time and talent.

From the time of Archimedes, Apollonius,

Conon, Nicomedes, and Diocles, who lived about

three centuries before the Christian era, until the

seventeenth century, an interval of two thousand

years, geometry made no considerable progress. In

the year 1687 Descartes published his Geometrie.

This work disclosed to the world his discovery of

the application of algebra to geometry, which

vanquished a great number of the difficulties

which had so long impeded the progress of that

science. In assigning to Descartes the entire

b 2
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honour of the invention of Algebraic Geometry,

it is not meant that no mathematician before him

had applied algebra to the resolution of geome-

trical questions. On the contrary, we find many

such applications in the algebra of Bombelli, an

algebraist, nearly contemporary with Cardan, and

also in the works of Tartaglia
5
a mathematician of

the early part of the sixteenth century, and even

so far back as the time of Regiomontanus ; but

more particularly in the works of Vieta. The

general method of representing curves by equa-

tions between two unknown quantities, and thence

deducing their various properties by algebraic

operations performed upon these equations, was,

however, unquestionably the invention of Des-

cartes.

This discovery suggested itself to Descartes in

the investigation of the following problem, which

had. been attempted without success by several

ancient geometers j among others by Euclid,

Apollonius, and Pappus. " To determine a point

upon a given plane, from which, if a number of

right lines be drawn, inclined at given angles, to as

many right lines given in position* the continued

product of half the number of lines so drawn, shall

bear a given ratio to the continued product of the

remaining lines, if their number be even, and so

that the continued product of half their number

diminished by one, shall bear a given ratio to the
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continued product of the remaining lines, if their

number be odd. Thus, if n be the number of

lines so drawn, the continued product of y of

these shall bear a given ratio to the product of

the remaining lines, if n be even, and so that the

continued product of ^- of them shall bear a

given ratio to the continued product of the re-

maining lines, if n be odd." Descartes observed

that the problem was indeterminate, and that an

infinite number of such points might be found

;

in other words, that the solution of the problem

was not effected by a point, but by a curve which

might be considered as the locus of the sought

point. He also found that all these points were

related to the lines given in position, and to the

given angles by one common relation, which he

expressed by an equation composed of constant

quantities, representing the several data ofthe pro-

posed problem, and which therefore are supposed

to remain the same, however the sought point

may vary its position, and two variable quantities

representing lines, the magnitudes of which de-

pending on the position of the sought point,

change as it changes. The sought point passing

through its various positions being supposed to

describe the locus, he assumed this equation to

represent the curve ; for, any value being as-
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signed to one of the variables, the equation solved

for the other determines a point of the locus. It

is not difficult to conceive one of the variables

uniformly and continually to change its mag-

nitude, and the other at the same time to undergo

such a continuous change of magnitude, that the

condition of the equation will always continue to

be satisfied ; the generating point will thus, by

continued motion, trace out the locus.

Descartes perceiving the importance and power

of the principle which he used in this solution,

immediately conceived the notion of founding

upon it the whole geometry of curve lines. By

this felicitous application of equations of two un-

known quantities, the science of geometry was

utterly revolutionised. Every curve described by

any given law being expressed by an equation

between two variables deducible from that law,

was thus brought under the dominion of algebra.

This equation, including the essence of the curve,

its various properties flowed from it ; its different

branches, the limits of its course ; its asymptotes,

diameters, centres ; inflections, cusps, and, in a

word, all its affections he found to be algebraically

deducible from its equation. Thus the equation

may be considered as a short formula in which all

the properties of the curve are embodied, and

from which the analyst is always able to deduce

them by fixed and general rules, which are not



INTRODUCTION. XXIII

peculiar to the equation of any particular curve,

but indifferently applicable to those of all curves.

The immediate consequence of this memorable

discovery was, that geometry at once oversprang

the narrow limits which had circumscribed it for

ages, and took a range, the extent of which is

literally infinite. Instead of a few simple and

particular curves, which had hitherto constituted

the only objects of the science, the geometer dis-

cussed the properties of whole classes of curves,

distinguished and arranged according to the de-

grees of the equations which represent them.

The variety of curves thus became as infinite as

that of equations. The ancient geometry pro-

ceeded upon no general methods. It consisted

of scattered propositions arbitrarily put together,

connected by no necessary tie or general law.

The discovery of each particular property there-

fore cost the geometer a distinct effort of in-

vention, and demanded a separate expenditure of

intellectual energy; and, even when successful,

he was as often indebted to chance as to his own

sagacity. Thus, for example, their method of

drawing a tangent to one curve furnished no clue

which could lead to the solution of the same pro-

blem with another curve, and therefore the geo-

meter was beset with the same difficulties every

new curve he approached. The application of

algebra at once removed these defects. It de-

termined uniform and general rules for the in-



XXIV INTRODUCTION.

vestigation of the properties of every curve what-

ever. Nay, it did not alone assist the operation

of the reasoning faculty, but actually supplied the

place of invention by furnishing means of dis-

covering curves in infinite variety. No equation

between two unknown quantities can be proposed

but a corresponding curve is immediately dis-

coverable, whose nature and properties afford

matter for geometrical speculation.

To algebra we are indebted for the classification

of curves in different orders, forming, says Cramer,

a sort of geometrical arsenal, where the imple-

ments of the science are so arranged, that, with-

out hesitation, we can choose whichever may be

best adapted to the resolution of any proposed

problem.

Notwithstanding the extent and importance of

the invention of Descartes, something still re-

mained to be done before geometry could be con-

sidered to have reached that perfection of which

it seemed susceptible. No method had been

given by Descartes for the discovery of the

lengths and areas of curves
j
problems, known by

the names rectification and quadrature. Rectifica-

tion had even been by some geometers considered

impossible. Quadrature had been effected only

in a very few instances. Archimedes had effected

that of the parabola, and given an approximation

to that of the circle. Besides these deficiencies,

the method of drawing tangents, given by Des-
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cartes, although general, was, in many cases, at-

tended with considerable difficulties, and required

frequently the resolution of equations ofthe higher

orders. A very short period, however, gave to

the world a science which removed these dif-

ficulties, and may justly be considered to have

brought geometry to a state little short of positive

perfection.

The investigations which had arisen from the

invention of Descartes, directed the attention of

all the great geometers of the world to the dis-

covery of a general method of drawing tangents

to curves, which should be free from the objections

to which both the methods * which Descartes had

delivered were liable. Fermat, Roberval, Barrow,

Sluze, and others, severally attempted the general

solution of this problem without complete suc-

cess. Their methods were operose, frequently

impracticable, and never applicable to transcen-

dental curves in general. Although the essays of

these geometers did not subdue the difficulties of

the problem, yet every new attempt shed ad-

ditional light upon the subject, and gradually

facilitated the solution. At length attentive con-

sideration of the subject conducted two great

geometers to the discovery of the true and ge-

neral principles upon which all such problems de-

pended.

Newton and Leibnitz each claim the honour of

* See note on art. 132.
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the discovery of the Fluxionary or Differential

Calculus, which at once presented easy and ge-

neral methods for the solution of all problems of

tangents, rectification, and quadrature. The in-

vention of this science, unquestionably the most

splendid conception the human mind ever enter-

tained, whether we regard the nature of the

science itself, or the extent, variety, and im-

portance of its applications, was too grand an

achievement of genius not to rouse the ambition

even of the greatest men to claim the credit of it.

The mathematicians of the continent, on the part

of Leibnitz, and those of England, on the part of

Newton, each advanced their claims, and hence

arose the greatest and most protracted contest

which ever agitated the philosophical world. With

the exception of Newton himself, the parties dis-

played on both sides a degree of asperity and per-

sonal acrimony very inconsistent with the dignity

of the prize for which they contended.

Without entering into any detail of the par-

ticulars of this memorable scientific war, we shall

merely observe, that in its commencement, Leib-

nitz appealed to the Royal Society for justice for

the injuries done to his fame by the British ma-

thematicians ; upon which the Society appointed

a committee to examine into and report upon the

rights of the illustrious candidates for the in-

vention of the Calculus. Their report was pub-

lished in 1712? under the title " Commercium
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Epistolicum D. Johannis Collins et aliorum de Ana-

lysi promota." The principal part of this pub-

lication consists of extracts from a correspondence

between Newton, Barrow, Gregory, Wallis, Keil,

Collins, Leibnitz, Oldenburg, Sluze, and others.

Upon this correspondence, the committee re-

ported as follows :—

•

I. " That Mr. Leibnitz was in London in the

beginning of the year 1673 \ and went thence in

or about March to Paris, where he kept a corre-

spondence with Mr. Collins, by means of Mr. Ol-

denburg, till about September^ 1676, and thence

returned by London and Amsterdam to Hanover

:

and that Mr. Collins was very free in communi-

cating to able mathematicians what he had re-

ceived from Mr. Newton and Mr. Gregory.

II. " That when Mr. Leibnitz was the first time

in London, he contended for the invention of an-

other differential method, properly so called j and,

notwithstanding that he was shown by Dr. Pell

that it was Mouton's method, persisted in main-

taining it to be his own invention, by reason that

he had found it by himself without knowing what

Mouton had done before, and had much improved

it. And we find no mention of his having any

other differential method than Mouton's before

his letter of the 21st of June, 1677? which was a

year after a copy of Mr. Newton's letter of the

10th of December, 1672, had been sent to Paris

to be communicated to him, and above four years
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after Mr. Collins began to communicate that letter

to his correspondents ; in which letter the method

of Fluxions was sufficiently described to any in-

telligent person.

III. " That by Mr. Newton's letter of the 13th

of June, I676, it appears that he had the method

of Fluxions above five years before the writing of

that letter. And by his Analysis per equationes

numero terminorum infinitas, communicated by Dr.

Barrow to Mr. Collins in July, 1669, we find that

he had invented the method before that time.

IV. " That the differential method is one and

the same with the method of Fluxions, excepting

the name and mode of notation ^ Mr. Leibnitz

calling those quantities differences, which Mr.

Newton calls Moments or Fluxions, and marking

them with the letter d, a mark not used by Mr.

Newton. And therefore we take the proper

question to be, not who invented this or that

method, but who was the first inventor of the

method. And we believe that those who have

reputed Mr. Leibnitz the first inventor knew

little or nothing of his correspondence with

Mr. Collins and Mr. Oldenburg long before ; nor

of Mr. Newton's having that method above fifteen

years before Mr. Leibnitz began to publish it in

the Acta Eruditorum of Leipsic.

" For which reason we reckon Mr. Newton the

first inventor j and are of opinion that Mr. Kiel,

in asserting the same, has been no ways injurious
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to Mr. Leibnitz. And we submit to the judgment

of the Society, whether the extract and papers

now presented to you, together with what is ex-

tant to the same purpose in Dr. Wallis's third

volume, may not deserve to be made public/
5

The foreign mathematicians, as might be ex-

pectedj were by no means satisfied of the justice

of this decision., in which it was more than in-

sinuated that Leibnitz was guilty of a disgraceful

theft. Even to the present day a difference of

opinion on the subject exists, and the fire of party

zeal is far from being extinct. The foreign

writers generally contend that Leibnitz has the

merit of the invention, though some of them, at

the same time, allow that Newton was acquainted

with its principles first, although he did not

disclose them to the world. Bossut insinuates

that Newton, being president of the Royal Society,

must necessarily have had a strong influence on

this report ; also, that it was made ex parte, and

that its publication was hastened to avoid intro-

ducing a defence which Leibnitz had in pre-

paration. The foreign writers, in general, strongly

deny the fact, that the principles of Newton's

method, or any hints which could lead to them,

are contained in the letters and papers alluded to in

the report, and published with it. Montucla, one

of the most candid of the French writers on the

subject, says, " On ne peut douter que Newton

ne soit le premier inventeur des calculs dont il
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s'agit. Les preuves en sont plus claires que

lejour; mais Leibnitz est-il coupable d?
avoir

pubKe comme sienne une decouverte qu'il

auroit puisee dans les 6crits m6me de Newton."

At the same time he insists upon the injustice of

Newton to Leibnitz, in suppressing in the edition

of the Principia, published in 1728, a scholium

which appeared in the former edition, in which

Newton is alleged to have allowed Leibnitz the

merit of the invention. He also accuses Newton

of having been secretly the author of the notes

which accompany the Commercium Epistolicum.

One of the latest attempts to keep the discord

of the scientific world alive upon this subject, is

the preface to the last edition of Lacroix's Traite

du Calcul Differentiel et Integral, repeating again

all the former arguments on the subject, except

those on -which the claims of Newton are founded.

He observes, " L'expose fidele queje viens defaire

de la naissance du Calcul Differentiel, d'apres le

Commercium Epistolicum, imprime par ordre de

la Soci6t6 Royale de Londres, ne pent laisser

aucune doute sur les droits incontestable de Leib-

nitz a la decouverte de ce calcul ; et comme il est

le premier qui Fait renclue publique, tandis que

Newton, preferant son repos a sa gloire et h Tin-

ter6t de ses contemporains, semblait avoir oublie

sa methode, n'est-il pas aussi celui qu'on doit

nommer le premier dans cette decouverte ?
5 *

Although there certainly still exists a difference
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of opinion as to the proportion of the merit of the

discovery to be allotted to each of these illustrious

claimants, yet, it seems to be generally agreed 5 that

a proportion is due to each. It is generally acknow-

ledged that, although Newton did not promulge

the method of Fluxions, yet that he has the

priority as to the invention. Even some of the

partisans of Leibnitz do not dispute this. On the

other hand, Leibnitz first gave formal publication

to the calculus. His notation also is very superior

to that effluxions—so much so, that even in these

countries it has nearly superseded it.

The first subject on which this surprising science

began to work its wonders was geometry. Pro-

blems, which solved by the ancient methods, or

even by those of Descartes, were tedious and em-

barrassing, were solved by the dash of a pen.

Problems which had foiled the talents of Archi-

medes, eluded the sagacity of Apollonius, and

under which, even the method of Descartes sunk

powerless, yielded with the utmost facility to the

new calculus. By the uniformity and generality

of its processes, it rendered geometry at once an

imposing and magnificent edifice, raised upon a

solid foundation, displaying an unity of design, a

justness of proportion, and a stability of structure,

which would strike an ancient geometer with

astonishment and admiration! were he to rise

from the tomb to behold it
#

.

* Si les deux plus grands geometres de Pantiquite, Archi-
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From the date of its discovery to the present

day, the calculus has been rapidly advancing to-

wards perfection under the hands of the great

mathematicians of Europe, who have devoted

their talents to its improvement. Every impulse

given to the advancement of this science has pro-

duced a corresponding impression upon the other

parts of mathematics and physics, but on none

more perceptibly than Geometry. This branch

of mathematics is largely indebted to the calculus.

It owes to the integral calculus all solutions relative

to rectification and quadrature, and to the dif-

ferential calculus, the general method of tangents,

the general principles of contact and osculation,

the methods of detecting singular points, and its

entire power over transcendental curves.

One of the most remarkable circumstances at-

tending the progress of Geometry is the different

routes pursued by the British and foreign geo-

meters since the time of Newton. That great

man entertained a strong predilection in favour of

the ancient geometrical methods. A stronger

proof of this cannot be offered than his having

discovered, by the aid of the modern analytic

and fluxionary calculus, most of those wonderful

medes et Apollonius, pouvaient revivre, ils seraient eux-memes

frappes d'etonnement et de l'admiration, en contemplant les

progres que les sciences exactes ont faits depuis leur temps

jusq'au notre a travers des siecles barbares qui ont tant de fois

interrompu la marche du genie.

—

Bossut.
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truths communicated to the world in his Prin-

cipia ; and yet presented them in all the repelling

tediousness and circuitous complexity of the an-

cient geometry.

The method followed throughout this stupendous

work is such, as to induce foreign mathematicians

to ascribe the adoption of it to motives which could

never have influenced a mind like Newton's. " La
clef des plus difficiles problemes," says Bossut,

" qui y sont resolus est la methode des fluxions ou

Panalyse infinitesimale, mais presentee sous un

forme moins simple qui rendait Pouvrage penible a

suivre. Aussi n'eut il d'abord tout les succes qu'il

meritait ; on y trouva de Tobscurit^ des demon-

strations puisnes dans des sources trop detourn^es,

un usage, trop affect^ de la methode synthetique

des anciens tandis que Panalyse aurait beaucoup

mieux fait connaitre Pes'prit et le progres de Pin-

vention. L'extreme concision de quelques en-

droits fit penser ou que Newton doue d'un sa-

gacity extraordinaire avoit un pen trop presume

de la penetration de ses lecteurs ; ou que par une

faiblesse dont les plus grandes hommes ne sont

pas toujours exempts il avoit cherche a surprendre

un admiration qui le vulgaire accord facilement

aux choses qui passent ou fatiguent son intel-

ligence." Alluding to the superiority of the mo-

dern analysis over the ancient methods, D'Alem-

bert says, " Peut etre serons nous contredits ici

par les Anglois grands partisans die la Geometric

c
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Ancienne stir la foi de Newton qui la louoit et

qui s'en servoit pour cacher sa route en employant

Panalyse pour se conduire lui m6me." Though

no one, knowing the character of Newton can,

for a moment, assent to these imputations
j
yet,

it is much to be regretted, that through an ill-

founded prejudice, he should ever have given oc-

casion to them.

In the hands of Newton the powers of the

ancient geometry were extended to their extreme

limit. Supplying their inadequacy by his own

sagacity, Archimedes had previously astonished

the scientific world by what he made them effect.

But even Archimedes would shrink from the com-

petition, if he beheld the miracles wrought by the

more than human genius of Newton, with the

same feeble instruments, very little improved.

Deeply impressed with the wonders they thus

beheld effected and guided by his avowed judg-

ment, the English schools of science, until a few

years since, have uniformly pursued the ancient

geometrical methods. The consequence has been,

that the progress of mathematical science has been

much dower in Great Britain than elsewhere.

At the death of Newton, Geometry had done all

that geometry could do, and the highest efforts

of human talent could stretch its powers no

farther. The students at our universities have

traversed the same ground in every direction

again and again. Ingenuity has been exhausted
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in supplying them with employment by the in-

vention of collections of contemptible geometrical

quibbles for their solution, which possess no other

excellence than their difficulty. Instead of ex-

panding the mind and invigorating the intellect,

presenting enlarged views, extended and general

theories, and storing the memory with useful and

elevating knowledge, they confer very little benefit

but what may justly be called geometrical trick.

While the schools of Great Britain were thus

wasting the splendid abilities by which they have

ever been distinguished, on objects so unworthy

of them, and throwing away the golden oppor-

tunities of honour which the progressive improve-

ment of analysis each year presented, far different

were the objects which exercised the rest of the

learned world. The Algebraic and Transcendental

Analysis were embraced with eagerness, and pro-

moted with rapidity. Every year witnessed new

accessions to these sciences, and consequent ad-

vancements in geometrical and physical know-

ledge. Impelled by these powerful engines, the

Newtonian philosophy, which at home stood nearly

where its illustrious founder had left it, abroad

advanced with the speed of light, and we find the

result of the various improvements it has received

up to the present day in the great work of Laplace.

The immense advantage thus gained upon us

by the philosophers of Europe in mathematical

and physical science became at length too ap-

c 2
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parent to be longer overlooked. The university

of Cambridge was the first to begin the reforma-

tion. The works of Euler, and the French ma-

thematicians Laplace, Lagrange, Lacroix, and

numerous others, were introduced and studied

with activity. The notation of fluxions and fluents

was superseded by the more elegant and powerful

algorithm ofthe Differential and Integral Calculus.

Students, who hitherto seldom had courage to

labour through more than a few sections of the

Principia, were now becoming familiar with the

pages of Laplace and Lagrange. That the change

effected in this great national institution is deep,

radical, and permanent, we have public proofs

in the works of Herschell, Woodhouse, Babbage,

Peacock, and Whewell.

The university of Dublin, though later in adopt-

ing these measures of improvement, has not been

less vigorous in their prosecution, and will soon ac-

company her British sister passibus acquis. There is

something worthy of notice in the circumstances

attending the introduction of what is called the

" new science" into this university. Great changes

in the literary and scientific arrangements of an

extensive institution are generally slowly effected,

and produced by a combination of the industry

and talents of a number of individuals co-operating

for the attainment of the same end. In this in-

stance, however, the revolution was great, rapid,

and the work of one man. About the year 1811,
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Dr. Bartholomew Lloyd, then a junior fellow, was

elected to the professorship of mathematics. The

state in which he found the knowledge of that

science amongst the students, and, indeed, the

state in which it had remained for a century, was

nearly as follows.

Students in Dublin must be four years in the

university before they become candidates for the

degree of bachelor. Of this time, ten months

were spent in the acquisition of the first, second,

third, and s?xth books of Euclid. These con-

stituted the entire mathematical knowledge ex-

pected even from the candidates for the highest

academical honours. A short selection of me-

chanics, taken from an old treatise by Helsham,

accompanied by a popular introductory pamphlet

to Natural Philosophy (both replete with errors),

a very few of the first elementary principles of

optics, and a selection from Keil's Astronomy,

gave the under graduate employment for twelve

months. The remainder of the course (two years

and two months) was divided between the ancient

and modern Logic, and the Ethics of Cicero and

Burlemaqui. Such was the state of the under-

graduate course. The mathematical and physical

knowledge requisite in candidates for fellowships,

the situations of highest honour and emolument

in the university, consisted of Newton's Arith-

metic, the properties of Conic Sections geome-

trically, Solid Geometry, Keil's Trigonometry,
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Newton's Optics, and a selection from the Prin-

ciple; Maclaurin's Fluxions were touched upon,

but with reserve. Such was actually the state

of scientific knowledge in this national academy

about the year 1812.

Such a course of study might have been very

proper in the university of Dublin in the year

1712 ; but in the year 1812, with the accumulated

discoveries of a century, the various scientific

establishments of Great Britain and the continent

all actively cultivating physical and mathematical

science in their most improved state, the con-

tinuance of such a system must have been con-

sidered disgraceful. Deeply impressed with this

feeling, Dr. Lloyd, singly and unassisted, con-

ceived and executed the most important and rapid

revolution ever effected in the details of a great

public institution. In order to appreciate the

benefits derived from his exertions,, it will be only

necessary to compare the state of science already

described, with its state in the present year 1822.

Among the under-graduates, those who now look

for high academical honours read the works of

Cagnioli and Wood'house on Trigonometry, Brink-

ley's Astronomy, a course of Algebraic Geometry,

equivalent to the extent of the first part of the

present treatise, the Elementary Treatise of La-

croix on the Differential, and part of that on the

Integral Calculus ; with Peacock's examples as a

praxis j a selection from the Mecanique of Poisson,
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including the Statics, the Dynamical principle of

D*Alembert, with its various applications ; the

theory of the moments of inertia, the motion of a

body round a fixed axis, and most of the Hydro-

namics ; also the subject of the first seventeen

propositions, and the seventh section of the Prin-

cipia, and the theory of projectiles in vacuo, all

treated analytically.

The course of science read by the candidates

for fellowships has also advanced, but not nearly

in the same proportion ; and it is to be feared, that,

until some change takes place in the manner of

conducting the examination for fellowships, there

can be little hope of improvement. This is a

viva voce examination held in the Latin language.

The object being to ascertain the knowledge which

the candidates have acquired in the different de-

partments of science and literature, it would ap-

pear that the medium of communication between

the examiners and candidates ought to be that

which would be most readily and clearly appre-

hended by both, and, therefore, that the English

language would be much preferable to any other.

For whatever facility may be acquired in speaking

a foreign, not to mention a dead language, no

one will have the hardihood to assert that it can

ever be spoken as freely and fluently as our

native tongue. Waving, however, for a moment

the objection to the language, concerning which

there may possibly exist some difference of opi-
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nion, what reason can be given for the exclusion

of writing? Will it be credited abroad, that in

the university of Dublin, at the election of fel-

lows/there is actually held an oral examination

in physics and mathematics, without any use

whatever of writing? The development* of a

function by the theorems of Taylor or Lagrange,

or the integration of a differential equation effected

vivd voce, and in Latin, are probably phenomena

new to the learned world ! It is unnecessary to

extend our observations on this subject further, as

its absurdity is so very apparent, that the strongest

exposure which can be given to it is a simple

statement of the fact.

It has been attempted here to present to the

student a very brief sketch of the history of geo-

metry to the present day. That the analytical

methods have been almost universally adopted by

the moderns in all questions which pass the mere

elements of geometry is undeniable. At the same

time, however, it is fair to state, that in Great

Britain the ancient geometry is not altogether

without some remaining partisans, who, in spite of

the many proofs ofits inefficiency, and in opposition

to the judgment of the great mass of scientific

talent of 'Europe, wish to found upon its principles

the whole theory of curve lines. To show how
vain such an attempt must prove, it is only ne-

cessary to examine how far it has succeeded, even

when seconded by talents of the first order. Pro-



INTRODUCTION. xll

fessor Leslie has lately published a work upon the

Geometry of Curve Lines, which runs in some

measure parallel with the present, and in which

he avows himself the champion of " a juster taste

in the cultivation of mathematical science." In

plainer terms, the object is to produce a counter

revolution in geometrical science in Great Britain,

and to restore it to the state it had been in before

the introduction of the modern analysis.

This work presents the most conclusive proofs

how inadequate the method adopted in it is to

elucidate most of the subjects to which it is ap-

plied. Its failure has betrayed the author in many

instances into the use of a phraseology very un-

suitable to a mathematical work. Whenever it

becomes necessary to explain those properties of

curves which demand the higher instruments of

analysis, the Professor uses sometimes language

which really admits no meaning whatever, and

sometimes endeavours to remedy the weakness of

the method by the use of an highly metaphorical

and figurative style. He states that " the oscu-

lating circle may be derived either from the con-

sideration of three approximating points, or from

that of a tangent and a point merging the same

contact." He describes " points shooting into

extreme remoteness, and "vanishing in the distance"

"lines thrown offto indefinite distances/' "points

vanishing towards one another" " points absorbing

one another/' " curves migrating into one an-
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other/
5 " tangents melting into the curve," &a &c.

If the author had used Taylor's theorem in the

investigation of the singular points, and in the

determination of the tangents, he would never

have been driven to the humiliating necessity of

invoking the aid of poetry to establish the theo-

rems of geometry. Had he effected rectification

by the use of the integral calculus, his work

would never have been encumbered with such a

sentence as the following :
" The gradual ag-

gregation of increments constitute the line to

which the cumulative amount of the elementary

arcs which compose the curve is equal." But

these absurdities are not the worst consequences

which the imbecility of the geometrical method

has produced in this treatise. The Professor

has been in many instances led into positive error.

The investigation of the osculating circle of the

logarithmic, and its point of greatest curvature,

presents a remarkable example both of absurdity

of style and fallacy of conclusion. After va-

rious compositions, conversions, and divisions of

ratios, and comparisons of minute lines and seg-

ments, he concludes, that " the radius of a circle

osculating at any point of the logarithmic curve is

a fourth proportional to the corresponding or-

dinate and tangent.;" this is immediately followed

up by a corollary to discover the point of greatest

" incurvation," as the Professor calls it. After

spending more than a page in describing the
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radius of curvature as " occupying a stationary

limit," and " suffering a decrement at one end

and an equal increment at the other," in the course

of a slight mutation, he concludes, that the point

so found is the point of greatest incurvation,

because the line which represents the radius of

curvature is placed in the limit where it has, on

the whole, neither increase nor diminution, and

has therefore contracted into its minimum. The

radius of the osculating circle is, however, not

what he professes to prove it, neither is the point

assigned by him the point of greatest curvature.

Numerous other objections might be brought

against this work, and, indeed, against any other

proceeding upon the same principles, such as that

by the method of marking the order of a curve by

the number of its intersections with a right line,

many curves of the fourth order would be reduced

to the second, and therefore classed^ among the

conic sections, though having no properties in

common with those curves. It may be also ob-

served that there are many singular points, the

existence of which are not even recognised ; such

are conjugate points, points of undulation, &c.

Neither is any method given for determining the

different degrees of contact and osculation, nor

for finding in general the eyolutes and involutes

of curves. Even those of the lines of the second

degree are omitted with the exception of that of

the parabola, which is casually thrown among
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the properties of the semicubical parabola, which

the Professor calls the Paraboloid. It is un-

necessary, however, to pursue these observations

farther *.

Professor Leslie is most justly esteemed a man

of the highest talents; his works in other depart-

ments of science are sufficient to establish his

fame, and are so many unanswerable proofs how

much the failure of his work on Geometry is to

be ascribed to the method, and how little to the

author. The Professor engaged in an enterprise

which could not have been attended with success

had it been supported even by the genius of

Newton.

That the preceding observations may not be

misconstrued,, nor wrested to a sense never con-

* It is a strange circumstance, that in the preface to this

work the author states, that fe the differential and integral cal-

culus" really derives its main advantage from its algorithm, or

that clear and compact form of notation invented by Leibnitz,

and improved on the continent by his followers, the Bernouillis,

Euler, and Lagrange, and yet at the same time states, that

where he has found it necessary to depart from the ancient

method, he has substantially applied the principles of the cal-

culus without its algorithm, which amounts just to this, that

finding the ancient methods, of which he is so enthusiastic an

admirer, fail in carrying him even to the limited extent to which

he has penetrated into the geometry of curves, he has been

driven to the disagreeable necessity of having recourse to the

more powerful calculus of the moderns ; but that in these cases,

he has uniformly taken care not to introduce the use of that

from which these methods derive their cardinal excellence.
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templatecL, the student is not to suppose that the

following treatise is meant to supersede or replace

the ancient geometry. That science must always

be viewed with admiration by every person ca-

pable of appreciating the clearness, elegance, and

variety, which, by the mere exercise of reason,

may be drawn from one of the simplest of our

ideas. But that admiration can only be co-ex-

tensive with the perspicuity and facility it confers

on the investigation of the properties of figure.

This science then, confined within proper bounds,

must always continue to be cultivated and taught;

but they are really its greatest enemies who at-

tempt, by straining its powers beyond their natural

limit, to apply them to subjects which they can

involve in obscurity and difficulty.

As far then as the elements of geometry ex-

tend, the ancient methods are used with con-

siderable advantage. Not requiring that abs-

traction which the more powerful analysis of the

moderns demands, and directly addressing the

senses as well as the understanding, they are

adapted with peculiar fitness for the initiation of

a student into the science. But, beyond this

point, the young geometer will require engines of

greater efficacy ; and even though the requisite

expertness in the use of these should cost him

some labour, the acquisition of the powers with

which they will invest him will amply repay him.
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The clearness, rigour, and exactitude of the

ancient geometry have been much and deservedly

extolled, and it is not to be denied that, by great

efforts of ingenuity, it may be and has been car-

tied beyond the limits which have been assigned

it* The modern methods have been stated to be

inferior to them in two respects,; in giving less

occasion for the exercise of the reasoning faculty,

and less rigour to the demonstrations. It may

very fairly be answered, that the extent of the

knowledge to be acquired is so great, the space

allotted by Providence to the life of man so small,

and the limits of his intellectual powers so con-

fined, that it is perfect folly to create difficulties

for the mere purpose of vanquishing them. Surely

the natural obstacles which every where present

themselves in the prosecution of scientific spe-

culations are sufficient to exercise our faculties

without raising up artificial difficulties. When
two methods of arriving at the same truths pre-

sent themselves, to select the most intricate and

difficult, purely for the glory of the conquest, is

little short of wilful sacrifice of time and ability.

As to the second objection, that the modern

analytical investigations are inferior in rigour to

those conducted upon the principles of the ancient

methods, it is absolutely unfounded. The truth

is, the objectors here confound the terms clear-

ness and rigour, or probably have not a very
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distinct notion of the true nature of their own

objection. Without taking advantage of the ob-

scurity of their ideas, we will first explain the real

nature of the objection, and then refute it. Locke

very justly observes, that demonstrative truths are

less clear, but not less certain than intuitive, and

he illustrates his observation by the very ap-

propriate simile of a face seen after many re-

flections. Owing to the aptitude of the mirrors

to absorb part of the light, the brilliancy of the

image is deteriorated by every reflection it suffers,

but the features continue the same faithful copy

of the original. So it is with the certainty of the

conclusions to which we are led by the demon-

strative process. That certainly admits of no

degrees, although the clearness of our perception

of it does. As the number of intervening proofs

requisite to establish any proposed truth increases,

so in proportion does it lose in clearness ; but it

certainly is in nowise impaired. That equal quan-

tities increased or diminished by equal increments

or decrements continue still equal, and that the

squares of the lines containing a right angle are

together equal to the square of the line joining

their extreme points, are propositions equally cer-

tain, but by no means equally clear. The reason

of this is, that the former is immediately per-

ceived without the intervention of any proof

whatever ; it carries its own evidence with it, so
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that it never presents itself before the mind with-

out being accompanied by the reason of its truth
;

but with the latter it is quite otherwise. Its cer-

tainty depends upon a long series of truths an-

tecedently established, which have been re-

gistered in the memory, and which themselves

must be ultimately capable of a resolution into

self-evident elements. Now, if the mind of man

were so capacious as to contemplate simulta-

neously all these, then the clearness of the one

proposition would be equal to that of the other.

But this is not so. The human mind, circum-

scribed in its powers of contemplation, can en-

tertain ideas only in succession, and must there-

fore arrive at demonstrative truths by a succession

of proofs. The number and nature of these proofs

regulate the clearness of our perception of a truth,

but do not affect its certainty.

To apply these reflections to the point in ques-

tion ; if the partisans of the ancient geometry in

asserting its superior rigour, mean that it imparts

to its demonstrations a% higher degree of cer-

tainty, they speak illogically, and use terms with-

out any distinct import \ certainty does not admit

degrees. Ifthey mean that the conclusions to which

the modern analytic method conducts are short of

certainty, and must therefore be considered as

only probable \ the charge can be easily refuted.

This method reposes upon the same principles as
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the ancient geometry. Nothing is assumed in it

without proof, but what is also assumed in that

science. It is true that much in it is mechanical,

and it is in this very circumstance that one of its

perfections consists. Regulated by certain rules

previously established by proof, the pen of the

analyst relieves his mind from many painful

details in the demonstrative process, without

shaking the validity of his conclusions, and leaves

him free and unwearied to pursue new truths. If

it be desired, he can always give his demonstra-

tions all that pretended rigour which they are sup-

posed to want by translating the algebraic opera-

tions into ordinary language
3
and which is pre-

cisely what Newton has done in his Principia *. But

most probably what is meant to be imputed to the

modern methods is a deficiency in that clearness

and perspicuousness with which the use of the

ancient method is attended. To this it may be

answered, that in elementary questions the ex-

cellence of the ancient method is not denied, and

that in all geometrical investigations beyond these,

this boasted clearness is not to be found; but on the

contrary, that the demonstrations are intricate and

embarrassed in the extreme, frequently indirect,

* Mais il ne tiendra qu'a l'analyste de donner ensuite a sa

demonstration ou a sa solution "la rigueur pretendue qu'on croit

lui manquer il lui suffira pour cela de traduire cette demon -

stration dans le langage des anciens, comme Newton a fait la

plupart des siennes. D'Alembert.

d
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always tedious, and requiring such a degree of

acuteness, that none but an expert geometer is

able to follow the thread of the proof; and all

this applied to questions that are solved by the

analysis of the moderns with perfect facility. On
the other hand, the want of clearness in this ana-

lysis arises not from any fault in the instrument,

but from the very abstruse and general nature of

the questions to which it is usually applied

;

questions which are utterly beyond the most ex-

tended powers of the ancient geometry. Those,

however, who are skilled in the analytical method

feel too sensibly the extent of their powers to un-

dervalue them ; and the truth is, they are only

decried by those who are ignorant of them, and

who, as a learned writer observes, derive a species

of consolation from stigmatizing as useless that

which they do not understand.

The following treatise is designed to embrace

Geometry in its full extent. It is conducted by the

modern Analytical Method in its most improved

state. It is divided into two parts ; the first contain-

ing theGeometry of Plane Curves, and the second

the Geometry of Curved Surfaces, The processes

throughout the work have been rendered as ele-

mentary as the extensiveness of its object would

admit. It is desirable that students who have

passed the first elements of plane geometry and

the rudiments of algebra should be qualified to

commence algebraic geometry. With this view



INTRODUCTION. ll

the differential and integral calculus is not intro-

duced into the first part until after a very detailed

investigation of the properties of lines of the se-

cond degree, and an extensive collection of ques-

tions, adapted for exercise, as well in these pro-

perties as in the general principles of algebraic

investigations. As far as this point the student

may proceed without the aid of the calculus, and

this part may precede the study of that science

with considerable advantage, as it familiarises him

with the species of investigations which first led

to its invention. Previously to advancing further, it

will be necessary to acquire a knowledge ofthe first

principles of the calculus. The elementary work

of Lacroix, as far as the section on maxima and

minima, with the ordinary methods of integrating

algebraic and trancendental functions of one va-

riable will be sufficient for the remainder of the

first part. In this part the simplest and most

elementary principles of integration are uniformly

adopted. Those who are more expert in the use

of the calculus will probably, in many instances,

find methods more expeditious or elegant than

those which have been used. These have in ge-

neral been chosen, as better suited to the limited

knowledge ofajunior student, and possibly in some

instances from oversight. The general method

of drawing rectilinear tangents, rectification and

quadrature, the theory of evolutes, the general
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principles of contact and osculation, and the

manner of discovering singular points, are ex-

plained by the calculus, and these principles ap-

plied to lines of the second degree. Passing to

transcendental curves and algebraic curves ex-

ceeding the second degree, the properties of all

these, which offer any interest to the geometer,

whether arising from their intrinsic beauty, or

from their utility in physical applications, are very

fully discussed. These, besides possessing the

student with a large portion of interesting and

various geometrical knowledge, serve for exercise

in the manner of investigating algebraically curves

in general.

The geometry of plane curves is next applied

to the illustration of a variety of important theo-

rems relating to the roots of algebraic equations,

and the method of determining these roots by

the intersection of curves is explained, and ex-

amples of its application given. The general

properties of algebraic curves are developed as

far as they appear to possess any particular in-

terest. To enter further into the discussion of

them would have swelled the bulk of the volume

without any adequate advantage to the student.

Those who may be desirous of further information

on this subject are referred to Cramer's Introduction

a VAnalyse des Lignes Courbes, Euler's Analysis

Tnfinitorum, Stirling on Newton's lines of the
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third order, and De Gua's work entitled V Usage

de VAnalyse\ &c. The first part is concluded by

a very copious collection of questions in geo-

metry and physics, for general exercise in the

principles thus far explained, as well as to point

out the utility of this science. The questions in

physics are adapted to the junior students ; this

part of the work being altogether superfluous for,

those who are more advanced.

The second part, which will contain the Geo-

metry of Curved Surfaces, will necessarily re-

quire a more extensive knowledge of the calculus.

The student, however, as he advances, will find

little difficulty in gradually extending his know-

ledge of that science.
~*e>^

Exiguus nascitur, sed opes acquirit eundo.

Hitherto, no treatise whatever on Algebraic

Geometry has appeared in Great Britain, and

even in France no complete treatise upon the

subject has ever been published. The works

of the different French mathematicians, entitled

" Geometrie Analytique" and " VApplication de FAl-

gebre a la Geometrie" do not in general include

any curves beyond those of the second degree

;

and even their discussion of the properties of these

is very incomplete. None of them whatever ex-

plain the application of the calculus to the geo-

metry of curves; this part of the science hieing
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confined to works upon the calculus. One com-

plete system of geometry, proceeding uniformly

upon the most improved algebraic and tran-

scendental analysis, seemed a desideratum in

science, to supply which has been attempted in

the following treatise.



PART THE FIRST.

THE GEOMETRY OP PLANE CURVES.





CORRIGENDA.

Page 6, line 12 and 14, for CD, read cb
27, 21, for —c. read —c'.

29, 3
; for ly'— x, razd &?/#

—

,

4, /or 2/a/, r^«^ 6a/

30, 15, for b', rearZ b"
-—

,

22, et seq., /or =, read =—
31, 1, for b(w)3, rer^ b(») 2

32, 26, /or sa/ — a,", read s(x' — x")

42, 2 from bottom, /or 4ae, r^^ 4af
45, 8, /or u2

, read R
47, 3 from bottom, for >0, razd <0
57, 12./or (99), read (100)

58, 6 from bottom, for b, read c

60, 14, for xx', read yy'
.—

,

last, for B, read D

77, 11, /or —,read—
81, last, for ex'2, read e*jf*

82, 21,-/or .r, mzd a/

90, 23, /or <p — a, read m •—
<p

91, 7, 10, 13, /or = — , read =
.—

,

9, />r p2
, re«^ b2

.93, 13, for (203), read (204)

—

,

5 from bottom, for Acy', read A°cy'

99, 12, for point, read part

100, 17, 19, for p, ready'

107, 3 from bottom, for as the, read as the squares of the

115, 19, /or (167), read (92)

126, 6 from bottom,/or 2' — 2', read 2' — z

141, 5, /or : it2, read : R
144, 4 from bottom, for 4cf, read 4af
—

,

3, for — , read -{-

149, 13, dele —
157, 13, for r, read z

165, 16, for (y' — ?/)da? + (a/ — .r)d?/, read (?/ — 2/)d?/ + (#' — x)dx

168, 2, /or ab have a limit, but ac, read ac have a limit, but ab
172, last, for n + 1, read ^ — 1

224, 22, for Ary, read 8ry

229, 1, 2 from bottom, for c, read d

230, 5, /or c, read d

231, 6, for 0, read (p

252, 4, /or ap, read ay
254, 5 from bottom, for point of contact, read origin

266, I, for to? + v = 0, read — -f- v

271, 7, de/eof a

311, 2 from bottom, /or wth, read —-—-—th
1 • 2i

334, cut, for epb, read ep'b

351, 3 from bottom, for ad =—, read ad' == —
355, 13, /or b'd', read bd'

390, 1 3, for ed, read e

a

392, 3 from bottom, for e4, read e2

393, 11, for 0, read

408, 1 5, 2 1 ,
/or m, read p

417, cut, for ab'c and af'v, read abc and at v.





TREATISE
ON

ALGEBRAIC GEOMETRY.

SECTION I.

Ofthe connection between indeterminate geometrical ques-

tions, and algebraical equations between two variables.

(1). The object of Algebraic Geometry is the investiga-

tion and analysis of the figures and properties of geometrical

magnitudes, by means of the symbols and operations of

Algebra.

No necessary connection subsists between the notation of

Algebra and the ideas required to be expressed in geo-

metrical investigation. Some conventional connection must

therefore be established between these sciences, in order that

the magnitudes and figures contemplated in the one may

find corresponding expressions in the symbolical language of

the other.

Let several finite right lines,

a, b, c, d, be related to any b———
right line v, in the same man-

ner as the algebraical symbols,
—

a, b, c, d, are related to unity. D .

The symbols, a, b, c, d, are then

said to express the right lines v . _

A, B, C, D.

The square of the right line v, bears to the rectangle

B
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under, b and c, the same relation as unity bears to the pro-

duct be.

The rectangle under two lines is therefore expressed by

the product of the symbols which express those lines.

In like manner, the square of any symbol represents the

square of that line which the symbol expresses.

If a.: b :: c : d, and thai a, b, and c be expressed by

a9 b, c, then d will be expressed by —

.

In like manner-, all geometrical relations find repre-

sentatives in algebraical symbols.

When the expression a = a or b — b is used, the mean-

ing is that a or b is the algebraical expression for the line a

or b.

(2.) Having thus established a connection between the

language of algebra and the magnitudes, which are con-

templated in geometry, either may be conceived to represent

the other. That is, a geometrical question can be expressed

algebraically, by translating its conditions into algebraical

notation, and, vice versa, an algebraical question may be

expressed geometrically, by using geometrical magnitudes

as representatives of the algebraical symbols.

An example will illustrate this.

A geometrical problem reduced to an algebraical question.

q To cut a line (ab), so that

A — |~ B the rectangle under the whole

line (ab), and one part (bc), shall equal the square of the

other part (ac).

Let ab *= a, ac = Xy and •
.

* ab — ac — a ~ x.

By the conditions of the question, a(a — w) = at* \*

a? + aw = a2
; thus the question becomes an algebraical

one, scil, to find the roots of w2 + aoo — a? = 0.
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An algebraical question reduced to a geometrical problem.

To find the roots of the equation x2
-f ax = a2

.

By transposition #(a — oc) — «£
a

8 Let # = ab, and

ac = x v bc = a — # v rectangle under ab and bc must

be equal to the square of AC. Hence the question is re-

duced to the geometrical problem, to cut a line so that the

rectangle under the whole line, and one part, shall equal the

square of the other.

(8.) It is therefore apparent, that geometrical problems,

which relate to mere magnitude, without involving the ideas

of figure or position, may with great facility be expressed

by the notation of algebra. And that, on the other hand,

algebraical questions can with equal facility be represented

by geometrical quantities., in which nothing is considered but

mere magnitude. But in order to institute a connexion be-

tween tliose sciences, and to bring each under the dominion

of the other, much more is necessary. Figure and position

are affections of magnitude, in which the geometer finds

objects of investigation much more extensive and interesting

than magnitude, considered merely with respect to quantity,

could supply. It is, therefore, expedient to establish some

principles by whichfigure and position, as well as magnitude,

can be expressed algebraically.

(4.) A method of representing the figure of a line by

an equation is furnished by a striking analogy, which sub-

sists between indeterminate geometrical problems and equa-

tions in which there are two unknown quantities.

In a geometrical problem, whose data are insufficient for

its solution5
the point which is sought cannot be deter-

mined, but yet its position may be considerably restricted

;

for the conditions which are not sufficient to fix the exact

place of the point, may yet be sufficient to confine it, as to

position, within certain limits. That is to say, though an

b2
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indefinite number of positions may be assigned to the sought

point, which will all equally fulfil the conditions proposed,

yet positions might be assigned which would not fulfil those

conditions. The space on which those points are placed,

which fulfil the conditions of the question, is called the locus

of the sought point. If the conditions require the sought

point to be always in a given plane, the locus is usually some

line on that plane, the figure and properties of which de-

pend on the conditions of the question. If the point be not

restricted to a given plane, the locus is commonly a surface.

A very familiar example will illustrate this. Let it be re-

quired. To find a point in a given plane, whose distance

from a given point is given. An indefinite number of

points will equally fulfil the conditions of the problem, but

yet all points will not The first condition excludes every

point of space except those situate on the given plane. The

second excludes all points on the plane, except those situate

at the intersection ofthe plane, with a sphere, whose radium

equals the given distance, and whose centre is at the given

point. If the first condition were removed, and the second

retained, the locus would be the surface of the sphere ; and

if the second were removed, and the first retained, the locus

would be the given plane.

Every line described upon a plane may be considered as

the locus of a point, restricted by certain conditions which

have a necessary connexion with the nature of the line.

(5.) Analogous to this, in an equation containing two

unknown quantities, neither can be absolutely determined.

A great diversity of values can be assigned to the symbols

representing them, which will all fulfil the conditions of the

equation. The symbols, expressive of the unknown quan-

tities, thus capable of receiving different values, are thence

called variables, in opposition to the other symbols involved

in the equation, which are called constants, because their
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values are supposed to remain the same through all the

changes which the variables undergo. Any value being

assigned to either variable, a corresponding value of the

other will necessarily result, and thus each variable is sus-

ceptible of such a series of values as render the correspond-

ing values of the other possible. Therefore, though each

variable cannot be absolutely determined, yet certain limits

and restrictions may be assigned to its variation, and those

are deducible from the conditions expressed in the equation,

just in the same manner as in an indeterminate geometrical

problem the position of the sought point restricted, though

not absolutely fixed, is deducible from the conditions pro-

posed in the problem.

Thus, for example, in the equation y = ax
9 y and x

y
the

variables are susceptible of an infinite series of values.

Their variation is restricted, however, by the condition that

x shall vary as y. Again, in the equation y
2

-!- x2 = a2
,

from which results

y = A/a z -- x 2 x — ,%/a2 — y
2

*

The first shows that x is susceptible of all values not ex-

ceeding that of a ; for any value of x exceeding a would

render y impossible. The second equation shows that the

values of y are subject to the same restriction.

(6.) The analogy just pointed out originates in this cir-

cumstance : soil, if an indeterminate geometrical problem be

expressed by an algebraical equation, that equation will con-

tain two unknown quantities ; and, vice versa, if an equa-

tion of two variables be represented geometrically, the result

will be an indeterminate problem which will generate a

locus.

An indeterminate problem reduced to an equation. v

Given the base (ab), and the sum of the sides (ac and uc)

of a triangle, to find the vertex (c).
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Let ab = a
9
Ac = 3/, cb = x3

and let the excess of the sum of the

sides above the base be d.

\>y + x = a -f d*

Any values of j/ and a?, which fulfil the conditions of this

equation, represent the sides of a triangle, whose vertex

solves the problem.

An equation represented by an indeterminate geometrical

problem.

In y + x = a -f- d, to express the values of y and x

geometrically* Let a = ab, ac + cb = a + <^? '•" AC and

cd represent y and #. That is, describe the locus of the

vertex of a triangle, whose base ab = a, and the sum of

whose sides ac + cd = a -(- d, and then the sides of any

triangle on the given base, and whose vertex is placed on

the locus described, will be representatives ofy and x in the

equation y + x — a + d.

Since an equation of two variables can be represented by

an indeterminate problem, from which a locus may be de-

duced, the figure of which depends on the conditions of the

problem proposed, and therefore on the equation from which

the problem results, an equation may, therefore, be con-

ceived to represent the figure of a line, that is, the figure or

species of the line is deducible from the equation. By this

meansjfigwtf, as well as magnitude, is expressed algebraically

.

The equation from which the species of any line is deduced

is said to be the equation of that line, and the line is said to

be the locus of the equation.

(7.) In both the preceding examples the process is partly

arbitrary, and at the discretion of the analyst. In the first,

the sides of the triangle were represented by the variables,,

These might, however, have been made the representatives

of other lines, as the perpendicular and either segment.,
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either side, and the cosine of the angle it forms with the base,

or any trigonometrical function of that angle, or trigono-

metrical functions of the angles at the base, or, in fine, any

two quantities, either of which being given would, with the

data of the problem, determine the vertex. Hence, in re-

presenting an indeterminate problem by an equation, 6t any

quantity, which, being given, would have rendered the pro-

blem determinate, may be represented by a variable." Sub-

ject to this restriction, the choice of quantities to be repre-

sented by variables is arbitrary.

(8.) The form of the equation of a given locus depends

on the quantities selected as variables. If, in the example

given, the variables represented the perpendicular and either

segment, the equation would have been of the second de-

gree ; if one of the sides and cosine of the angle, at which it

is inclined to the base, had been selected, the equation would

also have been of the second degree, but still different from

the last.

From these observations it appears that,

1st, " Any line, being considered as the locus of a point,

restricted in its position with respect to some fixed points or

lines by given conditions, may be expressed by an equation."

2d, " The form of the equation, expressing any given

line, depends on the quantities represented by the variables."

(9.) In the second example, the geometrical quantities,

selected to represent the algebraical symbols, of which the

equation is composed, are arbitrary. Thus, instead of

being represented by the sides of the triangle, they might

have been represented by the perpendicular and segment, or

in any other manner whatever. But on the manner of re-

presenting them depends the nature of the line which the

equation generates. Thus, had they been represented by

the perpendicular and segment, the locus would have been

a right line. Hence it appears,
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1st,
u Any equation between two variables may be con-

ceived to generate a line which is called the locus of the

equation."

Sd, " The species of the line which a given equation

generates depends on the manner in which the symbols in

that equation are geometrically represented,'"

SECTION II.

Of' the manner of representing equations between two

variables by relation to axes ofco-ordinates,

(10.) In the investigation of the loci of equations, pro-

secuted in the following part of this work, the method

most usually adopted, of representing geometrically the

symbols composing those equations, is as follows :

Let y and x be the variable symbols in any equation.

Two indefinite right lines^

(yy') and (xx') 5 being assumed

in a given plane, intersecting at

a given point (a) at a given

angle, are called axes of co-

ordinates* Every system of

/x values of the variables (y and x)

resulting from the equation, are represented by portions

(Ap and ap) of those axes, measured from the point (a) of

their intersection. Through the extremities (p, p) of those

values, parallels (pm, pu) to the axes of co-ordinates are

drawn, the intersection (m) of which is the point of the locus

corresponding to the assumed system of values (ajp, ap) of

the variables y and x ; and in the same manner all points of

the locus are determined.

In order to make a geometrical distinction between the
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positive and negative values of the variables, they are

measured from the point (a) of intersection of the axes in

opposite directions. Thus, if the positive values be taken

towards Y and x, the negative are taken towards y' and x!
.

Any system of values of the variables are called the co-

ordinates of that point whose position they determine.

The point of intersection (a) of the axes of co-ordinates

is called the origin ofco-ordinates.

Suppose the positive values of y measured from a towards

y, and those of x from a towards x, then,

+ y 9
-\- x characterises a point in the angle xay

-f ij
3

~~ x - - - - x ;ay

"~ y> ~~ x - " * " x 'AYf

—
£/, 4" X - » - - XAY f

y ~ Oj + x - - on the line
t
ax

y = 0, — x = - - - AXf

-f-^, X = - - - - AY

— y 3
x = - - - - AY f

y — 0, x = - - -the origin a

Particular values of the variables y, x
3
are distinguished

usually by traits, thus, y
]x\ y

]x ]

\ &c. and the points di-

stinguished by those values are denominated the points

?/V, y
!!x\ &,c, A point on yy' is expressed y

!o9 and on

,

7'

IP

A —-X

(11.) Another method of re- y
presenting equations geometrically

is also occasionally used. In the

preceding method, let the origin x—
(a) and one only (xx') of the axes

be given in position. Let the

other axis (zz (

) be inclined to it at

a variable angle. Let each system of values of the variables

be thus represented : let one of the variables (x) be ex-
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pressed by any trigonometrical function of the angle (zax)

at which the axes of co-ordinates are inclined, and the other

(y) as before, by a portion (Ap) measured along the axis

(zz')> whose position is variable. The extremity
(p) of this

portion (Ap) is the corresponding point of the locus.

The value of that variable which is represented by the

distance of the point in the locus from the origin, is called

the radius vector. The origin is called the pole of the equa-

tion.

An equation represented thus is called a polar equation

;

and for distinction the variables represented by the radius

vector is called z, and the variable angle by w. The equa-

tion is thus expressed, z = f(w).

Particular values of z and w are in this case also usually

distinguished by traits, thus, z]w\ sV, &c, and thus cha-

racterised are called the points sW, sV, &c.

(12.) As the angles which the axes of co-ordinates form

with each other, and with lines which intersect them, and

also the angles which lines in general form with each other,

become frequently objects of investigation, it is expedient to

adopt a concise and clear notation to express them.

The angle ofordination is expressed thus, - yx

The angle under radius vector and fixed axis - w

The angle under any line and an axis of co-or-

dinates - - - -Ix^ly

The angle under two lines - - -ll1

Thus, sin.s/tf is sine of ordination.

Sin. VI = sin. ofthe angle under the lines thus denominated.

All angles are supposed to be measured in the same

direction.

(13.) Equations are classed according to their degrees.

The degree of an equation is estimated by the number ex-

pressing the highest dimension of the variables which enter

it. Thus an equation, in which single dimensions only
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occur, is called an equation of the first degree. One, in

which the variables enter in dimensions not exceeding two,

is called an equation of the second degree^ he.

A general equation of any degree is one which embraces

within its extension every particular equation of the same

degree. Such a formula must necessarily consist of a series

of terms, including every dimension and combination of the

variables not exceeding the proposed degree, and an ab-

solute term, which for symmetry might be conceived to be

involved with dimensions of the variables, whose index is

cypher. In this formula each term must include a literal

coefficient, expressive, in general, of any value, > 0, < 0,

or = 0. Thus, the general equation of thefirst degree is,

Ay -f b# + c = 0.

That of the second degree,

A?/2 -f tsxy -{- ar 2 + Dy + E«r -f- f — 0, &c. &c.

And in all such formulee the symbols A, b, c, &c. are each

understood to represent quantities, > 0, < 0, or = 0, as

the case may be in particular instances.

The loci of equations are investigated according to their

degrees, beginning from the first.

The discussion of a general equation is the investigation

of its locus, and the effects produced on the locus by the

various values and signs which its constant quantities may

have in particular cases.

SECTION III.

Discussion qfthe general equation ofthefirst degree.

(14r) Let the fixed axes yy' and xx' be assumed.

In the general equation. Ay + b^ + c = 0j the coefficient
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of one or other of the variables must be finite ; for if a = 0,

and b~0, v also c = 0, and the equation would cease to

exist.

Let a represent the finite coefficient, and putting the equa-

tion under this form.

y + B

A
'

Let Ap and ap be any system of

values of y and x resulting from

• c
this equation. Let ab = — ,

•.•

vp~y +

and since ap — pm

Let
A " AP

~~
A

the parallels pm and pm be drawn,

jsp B

pm ~~
A

v Bp : pm is a constant ratio ; and since b is a fixed point,

the locus of m must be a right line, l'l.

(15.) This right line being designated by the symbol, /,

-. Hence all equations in which is
sin. Ix Bp

sin. ly
~~ pM ~~ a

the same, represent parallel lines.

(16.) If b = 0, v sin. Ix = 0, v the line ll' is parallel

to xxf

, L e. in general, " If the coefficient of either variable

=r- 0, the equation is that of a right line parallel to the axis

on which the values of that variable would be measured,,,

V Ay + c = is the equation of a parallel to the axis xx,

and bx + c = a parallel to yy'. In these cases, if c = 0,

the first, by dividing by a, gives y ~ 0, and the latter, by

dividing by b, gives x = : these are the equations of the

axes themselves.

(17.) If neither of the coefficients (a, b) = 0, the right

line, being parallel to neither axis, meets both. To find the
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points where it meets yy', let oc = in the general equation,

%

y -, the distance of b from the origin (a). To find

where it meets xx;

, let y = v oc = -, the distance AC.
y ^ B

(18.) If c = 0, the points c and b coincide with A, v
Ay -f B«r = is the equation of a right line through the

(19.) If a and b have the

same sign with c, v and
to A

C
9
are both negative, v the

B

right line intersects both axes of

co-ordinates at the negative side

of A.

(20.) If a and b have a sign

€5

different from c, v and
' A

are positive, v the right

line meets both axes at the po-

sitive side of the origin.

(21.) If a and c have a

g
different sign from b, v& ' A

is negative, and is posi-

tive, v the right line meets

yy' at the negative and xx' at

the positive side of the origin.
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(££.) If b and e have a sign

different from a, v — — is po-
A

C
sitive, and is negative, v

9
B & '

the right line meets yy' at the

positive, and xx' at the negative side of the origin.

SECTION IV.

Of the equations of right lines restricted by certain con-

ditions.

PROP. I.

(23.) To find the co-ordinates of the point ofintersection of

two right lilies, whose equations are given.

Let the given equations be

&y + bx -f c = 0,

A !y + b'% + d — 0.

The point of intersection being that point whose co-ordinates

must fulfil the equations ofboth right lines ; let the variables

in these equations express them, and the resulting values are,

BC7 — b'c acJ — a'c

^ ba' — b'a ab' — a'b

(24.) If the numerators of these formula be finite, and

ab'— a'b = 0, the lines are parallel, the point of intersection

being supposed infinitely distant. This condition of paral-

lelism was offered before, where it was established that lines

are parallel if — = —.
, L e. ba' — b'a = 0.r a a'
7

But if at the same time that ab'•— a'b= 0, also ac'—a'c=
y

and v bc7 — b'c — 0, the two lines coincide, for then their

equations being put under the forms.



ALGEBRAIC GEOMETRY, 15

B C
y + —x Ae/ A A

= 0,

b' d = o,

B B' , c
are identical, since — = —r, and *

A , A" A

PROP. II,

(25). To investigate the condition on which three right lines

will have a common point ofintersection.

Let the equations of the lines be

hy Jr bx + c = 0,

A ry + b'x + d = 0,

Af

'y + b"# + c" = 0.

By equating either of the co-ordinates of the point of in-

tersection of the first and second, with the^ corresponding

co-ordinate of the intersection of the second and third, there

will result, after reduction, the equation,

a(b"c' - b'c") + a'(bc" - b"c) + a"(b'c— BC f

) = 0,

expressing the required condition.

If any of the lines he parallel to either axis of co-ordinates,

the formula must be determined by that variable which is

common to the three equations.

PROP. III.

(£6). Tofind the equation ofa right line passing through

a given point.

Let the point be ijx\ and the sought equation

Ay + £# + c = 0.

Since t/af is on the right line, v Ayf + bx! + c = 5

••• by subtraction

Ay + bx — (Ay 1 + b#') = 0, or

My — y) + Kx ~~ x') = ^°
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This formula might also be demonstrated thus : the

equation must be such as that when y'x? are substituted

in it for yx, the whole shall be equal to cypher ; hence

c = — (Ay + B,r
f

).

PROP. IV.

(27.) To express the equation of a right line passing

through two given points.

Let the co-ordinates of the points be y
fx\ y

,,xu
. By (26)

the equation of a line through y
]]x }]

is

A
(.y — yo + Ax - x'

1

) = °<

But since this line also passes through y
f

x', the equation

must hold good after substituting y'x! foryx ; v
A(y ~ /) + b(x i - #") = 0.

From this and the former, the result is

(x 1 — x,!

)y — (y
J —y]l)x + y

fx !f —ynx f = 0;

or, (x ! — x") {y — y) — (y — «/
f/

)
(x — #v

) = 0.

PROP. Vc

(28.) To express the equation ofa right line making given

angles with the axes ofco-ordinates*

Let the given angles be Ix, ly. Let the general equation

of the right line be divided by A, and it becomes

the sought

y + —x -\ = 0.
* A A

Let —
A

sin. Ix c .

__ . ancj —. sm# ly —
sin. lii a ^ c';

equation is

sin. ly . y ~- sin. te . # + c f = 0.

PROP. VI.

(29.) To express the equation of a right line passing

through a given point, and making given angles with

the axes of co-ordinates.

The given point being y
]x\ and the given angles ly and
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Ix it follows from (26) and (15) that the sought equation is

sin. ly . (y — y
!

) — sin* Ix (x — x) = 0.

PROP, VII.

(30.) To express the angle under two lines as afunction of

their equations , and of the angle ofordination.

Let the equations be

At/ + ~BX + C = 0,

k ]

y + %'x + d = 0;

sin. Ix b sin. Vx b'

sin. ly a
'

sin. I'y a'
#

tit, ly = yx — ix, Vy = j/# -- Vx\

sin. Ix B sin. fe B f

sin. (## — Ix) a sin. (j/# —l!x)~~ a'*

By expanding the denominators, and dividing both numera-

tor and denominator of the first by cos. lx
}
and of the second

by cos. Vx
9
the results solved for tan. Ix and tan. Ux are

b sin. yx B f sin. yx
t&xi.lx = , tan. Ar™

B COS. j/^T — A' B f

COS. 2/X

—

A1

'

Let the angle under the lines be //',

W = (/# - fe);

tan. Ix — tan. /'#

™~
I

.
+ tan.Z#tan./'#"

Substituting in this formula the values found above,

tan IV - ^J^l^l^^—^
aa' -f bb'— (ab' -f a'b) cos.yx

which expresses the angle U as a function of the two equa-

tions, and the angle of ordination.

(31.) Cor. 1. If the angle of ordination be right,

cos. yx = v

„, ab'-a'b
tan, IV = —r-—

-,.

aa' + bb'
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(32.) Cor. 2. If the angle under the lines be right, tan. //

is infinite, v
aa'+bb'— (ab' + a'b) cos. yx = 0.

(38.) Cor. 3. If#'=yr,

AA1 + BB 1— %AB ! COS. ?/X = 0.

(84.) Cor. 4 If /Z' = yx = 90°,

AAf + BB ; = 0.

(35.) Cor. 5. If/' coincide with the axis of x, #'= &;
and Br ="0, (16.)

, b sin. yx
tan. fx = .

B cos. yx— A

(36.) Cor. 6. In like manner, if V coincide with the axis

ofy, //'= /#; v
a sin. yx

tan. «/ = —

.

^ a cos. yx — B

PROP. VIII.

( 37.) Tofind the equation ofa right line inclined at a given

angle to a given right line.

Let the given angle be W, the given right line

A2/ + b# + c = 0, and the sought line Afy -f b'x + c' = 0.

In the formula

(ab'-~ a'b) siu.yx
tan. W = —;-

-.—;

—

> ,

'

> \
M

>

aa' -1- bb'— (ab' + a'b) cos. yx

found in (30), by dividing numerator and denominator by

b'

aa', and solving for —p, the result is, after reduction,

Bf b sin. (yx— ll
1

) + a sin. IV

a'
""

a sin. (yx + ll
1

) — b sin. IV
'

therefore the sought equation is

{Asm.(yx+lV)—BsmJV }y+ [b $in.(yx~- ll
1

) + a sin.ll1 ]x -\-

c" = 0,

where d 1 is indeterminate.
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(88.) Cor. 1. If the angle of ordination be right,

sin. (yx + lV) = cos.//'; vin this case the formula becomes

(a cos. //'- b sin. IV)y -f (b cos. W -f- a sin.//') a? + d1 — 0.

(39.) Cor. 2. Tofind the equation ofa line perpendicular

to a given line.

In the general formula (37) let Z7=90°, v sin. (yx ± It)=
+ cos. yo? ; •/ the equation sought is

(a cos. yx — b) j/
— (b cos.yx — a) x -f d1 =z 0.

(40.) In this case, if the angle of ordination be right, the

equation is

By — ax — c f/ = 0,

which is the equation of a right line perpendicular to a given

line, and referred to rectangular co-ordinates.

(41.) Cor. 3. Tofind the equation ofa right line inclined

to a given right line at an angle equal to the angle of

ordination.

luetyx = //', v sin. (yx — //') = 0, and sin.( yx + //') ==

sin. 2yx = 2 sin.yx cos.yx ; v the sought equation is

(£a cos. yx — B)y + ax + d1 •=. 0.

(42.) The formulas established in the preceding questions

may be further modified by subjecting the right lines sought

to pass through a given point ; the general formula (37) will 9

in this case, by (26) become

{a sin. (yx + ll
1

)
— b sin. //

;

} (y — y
!

)

-f {b sin. (yx — //') 4- a sin. IV) (x — x1

) = 0.

(43.) The formula in (40) becomes

b (y — y) - a (x — xf

) = 0.

c ,1
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It is clear that (£9) is a particular case of (37), and can be

deduced from it,

PROP. IX.

(44.) To express the length ofa linejoining two points.

Let the points be yx, y
]x\ and l the sought length ;

l= «/(y—2/
fy+ (%—z'y + %{y~y

]

) (x—ri) cos.j/#.

If the co-ordinates be rectangular,

l = v{y -yj + (*- a!)*.

These formulae are derivable from the common principles of

geometry.

prop. x.

(45.) To express the intercept ofa given right line between

two points situate on it.

Let the right line be A!y + b'x + d = 0, and the points

yxytmdy'xL By (26)|^= -~
; v since

V (#— #) (a? — af) ^

, v Va'2
-h b'2~ 2a'b' cos. v^v l = (a? — ar) .

~~— —
—7

—

,

PROP. XI.

(46.) To express the distance between any point on a given

line and the point where it intersects another given line.

Let the lines be k]y + b !x + c'= 0, and Ay -j- bx + c =.0,

and let the point given on the first be y
!xL In the formula
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in (45), substituting for x its value for the point of inter-

section found in (S3), the result expresses the sought

distance,

az/-M#' + c

AB' — A'B
V*!* + b/2— Sa'b'cos. yx-

PROP. XII.

(47.) To express the length of a line drawnfrom a given

point to meet a given right line, and inclined to it in a

given angle.

In the formula of (46) substitute for a' and b' the values

for them in the formula found in .(37), and the result will

be the formula sought; but for brevity, let the substitution

be only made in the terms of the denominator, retaining the

symbols a', B f under the radical, signifying, however, the

values in (37), the result is

Ay 1+ xx f c Va12+ b ;~— Sa'b' cos. yx
J ~~ ~~ ~

sin. IV
* a2+b 2—Sab cos, yx

'

(48.) Cor, 1. If the co-ordinates be rectangular, the

formula is

az/4- B# r -fc
~"

sin. II v^aHb2
'

for cos. yx = 0, and by the values in (38), a's -f b
:

'

3= a2+ b2
.

(49.) Cor. S. To express the length of a perpendicular

drawnfrom a given point to a given right line.

In (47) let sin. W = 1, v
*/ a * -f Bn— Sa'b' cos. yx

v J ' AM- b 2— Sab cos. 7/<r
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(50.) Cor. 3. If the co-ordinates be rectangular, also

L =-
a/a2+ b 2

(51.) Cor. 4 To express the length ofa line drawnfrom
a given point to meet a given line, and inclined to it at an

angle equal to the angle of ordination.

In (47) let //' = yx^ and let a' and b j have the values

in (37) restricted by the condition of VI = yx
9

Ay1 + B#'+C

//

A

2 + B2— ^AB COS. j/a?

SECTION V.

Propositions calculatedfor exercise in the application of the

equations of thefirst degree.

PROP. XIII.

(52.) To investigate the intersection of the three perpen-

dicularsfrom the angles of a triangle on the opposite

sides.

Let the base
3
ac

s
of the

triangle be taken as axis

of <r
5
and a perpendicular

ax through it as axis of

y ; let the co ordinates of

2£ h be x'y !

, those of c, x",

y'1 = 0, Let aa!
3
ho\ cc\

be the three perpendiculars. The equations of the three

sides result from the formula of (S7). Hence,

T b

)&

^\oo
4
r
l> V c
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The equation of ah is - x !y ~ y'x == 0.

The equation of ac is - - y = 0.

The equation of 5c is (a?' — # f/

)?/ — j/(<r — x fl

) = 0.

Hence, those of the three perpendiculars result from the

formula (43):

The equation ofW is $y — (x!l — ^)a; = 0.

The equation ofW is - #—#' = 0.

The equation of cef

is yy + x\x — ^/;

) = 0*

Eliminating «/ from the first and third, the value of x for

the point of intersection is oc\ and this value being sub-

stituted in either, we find the co-ordinates of the point,
5
of

intersection of aa! and cc\

(x ]]—x f)x !

f

(58.) Cor. Hence, it follows that the three perpen-

diculars intersect in the same point; for since the values of x

for the points h and are the same., the same perpendicular,

hh\ must pass through both,

PROP, XIV.

(54.) To investigate the point erfintersection of the bisectors

of' the three sides ofa triangle drawn through the several

vertices.

The axes of co-ordinates

being as before, and aa\ bh\

cc\ being the bisectors, and

the point h being x]

y\ and

c, x'!

;

If J£ —\~ X
The co-ordinates of point a! are —, —^-— .

The co-ordinates of point V are
;

—-.

if x!
The co-ordinates of point d are ~~

5 ~^>

on $
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Hence, by formula (87),

The equation of act! is (x! + xv,

)y — y
]x = 0.

The equation of 55' is (2^' — x!

')y — y(&r — x 1

) = 0.

The equation of cd is (a/ — 2x,!

)y — y(#— # f/

) = 0.

The values for y and x found from first and second are

;

* ~ T3 x " "~¥~~ *

The same values being found from the second and third,

proves that the three bisectors meet in this point.

It is obvious from the proportion of y' to y\ that each

bisector is divided at their common point of intersection in

the ratio of 1 : %
(55.) Cor. From the principles of Mechanics, it is ob-

vious that this point is the centre qfgravity of the triangle.

PliOP. xv.

(58.) To investigate the point qf intersection qf perpen-

diculars to the three sides qf a triangle, drawn through

their several points qf bisection.

The axes of co-ordinates being

as before, the equations of the

three perpendiculars result from

the equations of the sides ex-

pressed in (52), and of the co-

ordinates of the points a\ h\ c\ in (54) ? by the formula

(43). Hence,

V' x !

The equation of do is y\y — — ) -f x\x - — ) = 0.

The equation ofdo is

The equation of Vo is x »
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By the first and second equations we find the co-ordinates

of the point of intersection of do and do to be,

i/* + a?*— afxn
- „ x"

Y - gy '

x ~ 2
'

Hence, since the same values result from the second and

third, it appears that the three perpendiculars meet in this

point.

(57.) Cot. The distance r of the point o from each of the

angles of the triangle may be hence found,

(

V

a+ 00* -x]x]]f + y
!*xfl*

r2 = y"2 4- x"2 = - --

Let ab = c, be = d, and ac = d\ Hence, y
h

-f x'2 = c2
,

c 2 4- c'
/2 c2

xn = <?", also, c2 + c"2 = c'
2 + 2d]x\ v ^ = -

„

By substituting fory2 + a/2 , its value, and changing xn into

d\ we have

"" ~
" 4yT •

And since 2dfxj = c2 -f- c"2 — cf2
,

•.' c2 —cV = ^
•

Also, y» = c2 - x'* = c® - -rfa
~. Making these

substitutions, and observing that (c2 + cf2 — d'Q)
2 —

(c2 + d12 — c'
2
)
2 = 4c2(cf2 - c"2

), we find that

__ c2c'2

R — i r^s V R =

Let the area of triangle be a, v y
]d ] = 2a, hence

cc fcff

R = -: .

4a

This expression being symmetrical with respect to the

three sides, must be the same for each of the three vertices,

and therefore the distances of the point o from the three

angles are equal. Hence it appears also, that the point o

is the centre of the circumscribed circle, and the value of r

is its radius, expressed as a function of the three sides.
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cd
The equation r = ~-y, which gives 2Ryj = cd, proves

that the rectangle, under any two sides of a triangle, is equal

to the rectangle under the perpendicular on the third side,

and the diameter of the circumscribed circle.

If y" = 0, c2 = c'V, and hence d2 + c"2 = d\ v, there-

, fore, the angle is a right angle ; hence the angle in a semi-

circle is right.

If y" > 0, c2 > d ]x\ v c2 + cH > d'% v the angle b is

acute, and v the angle in a segment greater than a semicircle

is acute.

If y ,! < 0, ti
1 < d lx\ v e1 + ch < d !% v the angle b is

obtuse ; and, therefore, the angle in a segment less than a

semicircle is obtuse.

PROP. XVI.

(58.) The three points of intersection^ 1°, of the perpendicu-

larsfrom the angles of a triangle on the opposite sides ;

2°, ofthe bisectors of the sides ; 8°, of the perpendiculars

drawn through the points of bisection of the sides, will be

in the same right line.

The equation of a right line through the points yx and

y;

x' is,

(y - y') (x - xf

) - (y - Y f

)
{x - x !

) = 0.

Substituting, in this form, the values already found, it be-

comes, after reduction,

y(% -y) O'-O -
{
S(x"- x)ri-y^

}
(3x -x f --#") = °-

The values for Yn and xf/ being substituted for y and x in this

equation, will fulfil the conditions, and therefore the right

line joining the points yx and y'x! must pass through yV.
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PROP. XVII,

(59.) To investigate the intersection of the bisectors of the

three angles ofa triangle.

The axes of co-ordinates being

placed as before, let aa! and cd bi-

sect the angle a and c respec-

tively.

The equation of aa! is,

y — tang. \ a . x = 0.

The equation of cd is, y -f tang. \ c . (x

„ . sin. a
But since tang. | = —

—

y
COS. «'

and sin. a = — , cos. a =

, and tang. -Jc=

y
^ > COS. C :

<?'
5 Sill. C =

the equations, by these substitutions, become,

(c + af)y - ya? = 0,

(<y + c" _ ^y + y(o- - d>) = 0.

From the two equations, the co-ordinates of the point of in-

tersection are,

y<?"

But yc" = 2a, vy'" =

2cV = c2 + d1* —

(c + c r + dr
) (c + c"

2a
" c+c' + c"

e/
2 v %c\c + #')

c + c' + c"'

. also

(c + c") 2

cOvx"'= , ___ — c.

The values of x,n being symmetrical with respect to the sides,

will be the same, whichever side is assumed as axis of x ;

hence it follows^ that the three bisectors meet at the same

point, and that the perpendicular distances of that point,

from the sides of the triangle, are equal. Hence, also, that

point is the centre of the inscribed circle ; and the value of

y !" expresses the radius of that circle as a function of the

sides of the triangle.
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PROP. XVIII.

(60.) Tofind the locus of'a pointfrom which two right lines
9

drawn at given angles, to two lines given in position,

shall have a given ratio.

Let the equations of the two right lines given, in position

referred to rectangular co-ordinates, be,

AJ/ -f BX + C = 0, A[y -f B fX + c' = 0.

The given angles being and (p
f

, the point, whose locus is

sought, being yx\ let — = -^

L = —

But by (48)

Ay -fB^+c
sin. <p Va2 +b2

A'^+ B^-f-c'
"~

sin. oVX^Tb^ 9

v (at/ + b^ + c) a/a!* + B
fQ

, rn! sin. <p
f = (A!

y + b'^' -f c')

Va2 + b 2
. 7w sin. pi,

which being a simple equation, the locus is a right line.

PROP. XIX.

(61.) A parallel to the base ofa triangle being drawn, and

its points of intersection being connected with the ex-

tremities of the base, tofind the locus of the intersection of

the connecting lines.

Let ac be tne axis of x, and

that of y perpendicular to it

;

also, let the perpendicular di-

stance of the points d and E,

from the base, be b. Since the

equation of ab is yx }~~i/x~Q,

and d is a point on it, the

. bx f

value of x for the point d is ~-y. The equation of bc being
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y(x f— a;'
1

) —y\x—x !l

) == 0, and the point e being on the line, the

x ,!

) + y'a

byJ—x

1 f r ^ • . • Hx'—X^+y'x 1

tj
value of .r for the point e is -——

—

-

f

. Hence,

The equation of ae is, y =
b(x j—x ,!

) +y'x
j' e

Inl
The equation of cd is, y = — ^(x — x 1

).
IjX — U X

Eliminating 5 from these equations, we find the equation of

the locus of the point of intersection,

7/(2x ! - x') — %y'x + y
]x] = 0, or

#'7 xu

yW --^-) "^ + y]~¥'^ °
9

which by (27) is the equation of a right line passing through

x f!

the points j/V, and — , : hence, the locus sought is a right

line, bisecting the base^ and passing through the vertex*,

PROP. xx.

(62.) A parallel being drawn, as before, iofind the locus of

the intersection ofperpendiculars to the sides through its

extremities.

The co-ordinates of the points b and e, being expressed

as above, and the equations of the sides, as in (52) the

equation of the perpendicular through d is,

bx

The equation of perpendicular through e is,

4) + & - *) {
x _ *JfL=£!>Z2- ) = 0.

Eliminating b from these equations, the result is,

(y'y + sdsc) {y
!*+ [si- x"f } = {y'y+ (x

l- x!!)(x—x») } (y* + a!*)

But,
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x] =—9^r~ • <y = ^a,
c^+e^— e'

2

~%$

A expressing the area. Making these substitutions, the equa-

tion, after reduction, becomes,

4Ay(c*—c*) + ^ {
c"9^8+

c

s)-(cf2 -c2
)
2

} + cPc* (

c

2- c'
/2—

c

f
'2
)= 0,

which, being an equation of the first degree, shows the locus

sought to be a right line.

PEOP. XXI.

(63.) Tofind the locus ofa pointfrom which the sum ofthe

perpendiculars, drawn to several right lines given in po-

sition, may have a given magnitude.

Let the equations of the right lines given in position be.

Ay + bx + c = 0,

A!y + b'«t + d = 0,

a'V+ b'# + c"=0,

The co-ordinates of the point, whose locus is sought, being

expressed by the general symbols yx9 the perpendiculars re-

spectively are,

Ay + BX + C
p =

\/a2+ b*

f

A!y+ b'# + c f

Af

'V+ B /;^+C /;

T>" — -

vV/2+ b'
,:

p(«) ;

A {n
\y+ BxW+ c {n)

VA (n)2+ B ln,a

the conditions of the question give the equation
y
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f A A' A(n) 1

lVA2
-f.B

2 ^A/3 + b'» Va^+B^J
f B B f B(w)

->

IVA2 + Ba Va^+bV VA(n
' 8 + B (n

' a/
C c'

VaHb 2 v^+b'4

which being a simple equation, shows the locus to be a

right line

PROP. XXIL

(64.) To express the area of a polygon as afunction of the

equations of the sides, and the co-ordinates of a 'point

within it.

Let the equations of the sides be expressed as in the last

prop. By the formula (27) it appears that i}x\ y
l]x]

\ being

the co-ordinates ofthe extremities of the first side, A— x ] — x ]

\

B= _ (y—/). Hence, ^a*+b^= y (y
j

~f)^+ (x J—x f{f=c,

c being the first side of the polygon ; and for the same rea-

son, the several denominators of the values of p, p', p ?/

, he.

are the successive sides c, d, cf/

, c]]

\ &c
Let the figure be supposed to be resolved into triangles,

by lines drawn from the point within it to the several angles^

a being the area

2a = vc + v'd + pV ..:.. p-w ?c-
n

) . (1) v
2a = (aj/

? + bod' + c) + (a[2/' + bW + c') ,

(A (n)y 4- B<
nW + dn)

), (2),

which is the required function, y
]x ] being the co-ordinates of

the point within the polygon. If the figure be a regular

polygon, of which c is the side, (by equat. 1), we have

2a
p + p' + p7

. . . . . ? (n) =— • This value being inde-
c °

pendent ofyx\
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(65.) Cor. It follows that, in a regular polygon, the sum

of the perpendiculars on the sides from any point within it,

is of a certain magnitude. If, at the same time, the per-

pendiculars are equal to each other,

2a
p = —

,

which is an expression for the radius of the circle inscribed

in a polygon, whose side is c, and whose number of sides

is n.

PROP. XXIIIo

(66.) To inscribe hi a triangle a parallelogram, whose sides

shall have a given ratio.

Let abc be any given triangle ;

let ac be assumed as axis of #,

and ay making the angle yac

equal the angle of the proposed

parallelogram. The co-ordinates

of b being xhy\ those of c, oc
u
o, the

equations of ab and bc are ex-

pressed as in (52.) Let s and

s
f be the sides of the proposed

parallelogram ; and by the terms

s m
of the question,

A D

A. D 3£ C

s for y, we find #, or ad

Sub«
s' n

stituting in the equation of ab

p/yif

and, in like man-
y

ner, substituting s for
' y in the equation of bc, we find

#, or ae ==

y
l

+ #".

If the parallelogram be situate as in the first figure,

AE — AD
w

y

-'sW'
-,——, and this combined with die
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,
sn . mi/a/1 _ , n . .

equation 5' = — gives s = —p
«• I>ut if the paral-^ m ° ny + mar* L

lelogram be inscribed as in the second figure,

v 5
r= r-— , and, therefore, s = —p^—jr. Hence, in

y ny — mai 1

general, s = —~ ... according as the side of the paral& ny f ±mx?n * r

lelogram parallel to the base lies above or below the vertex.

Hence, there may be two parallelograms inscribed, which

will equally fulfil the conditions of the question.

t/tf1

It m = n, s = -

Ifm — n, and the angle of the parallelogram be right,

the formula solves the question, to find the side of a square

inscribed in a triangle. In this case «/ is the altitude,

and z/#" = 2a, •.•«$= -;
>,.

y ±#
Hence two squares may be inscribed on each side of a

triangle, except when the side and perpendicular on it are

equal: in that case, the lower sign renders s infinite; and

the other value of s, half the side on which the square

stands.

(67.) Cor. 1. The sides of squares inscribed on the sides

of the same triangle, are inversely as the sum of each side,

and the perpendicular on it.

?/x^
(68.) Cor. % The formula

f/
, points out a geome-

trical construction for the inscription of a square, by the

equation being expressed as a proportion
>

y
! + xn

: 7/ : : xn
: s.

If the upper sign be taken through b, let bd be drawn

parallel to AC, and take ce = ad and join de, and through

c draw cf parallel to ed, and through e let a parallel

D
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to ac be .drawn, and gi will

be the side of the inscribed

square.

If the lower sign be taken,

(3> take ce upon ca and equal

to ad?
and draw ed, and pa-

rallel to it draw cf. The

parallel to ac through f will

determine gi, the side of the

square.

Ify = x]

\ ed coincides with ad, and s is infinite.

TUOP. XXIV.

(69.) Tofind the equation ofa right line, such that the per-

pendiculars drawnfrom several given points to it shall

have a given magnitude (M.

)

The points being ifx\ y
v,x\ yV, ... y<n>x<n>, let the

sought equation be ky + bx + c — 0.

By the formula (50), the condition of the question is ex-

pressed thus

:

Aj/ f+ B^ + C A^ + B^ + C ky (n) +K^n)+ C _
^+b« v^-M2 '"* Va2+ b 8

~~

or, - a (y +y-f ... y
(n)

) - b (^ + xn + . . . ^) -

f/C ~ M Vk 2
-J- B2 = 0.

By dividing by ft, and eliminating c,

.r
;

-f x11 + - - - -^
) + B [X —
M

-)-

or (3/
- y+y •2/

1r»;

V-A2 + B2 = 0.

-) + tan. lx(x -

— sec, loo = 0.

.t
? 4- #'' 4 . . • x (n)

)-

As the value of the angle Ix still remains undetermined, the

line sought cannot be absolutely determined ; but its position

is limited ; for let c be a point, whose co-ordinates are
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_ y+y >
• •y2>

__ ^ +%!l

+. •..• • ^w;

A perpendicular, drawn from this point on the sought line,

M
will be (50) — . Hence it follows, that if with this point as

n

M
centre, and a radius = —

-, a circle be described, any line

drawn, touching this circle, will have the required property.

If the question required, that the sum of all the perpen-

diculars should be = 0, scil. that the sum of those on each

M
side of the sought line should be equal, then— ~ 0, there-

fore the circle vanishes into the point c, and any right line

drawn through this point would have the required property.

(70.) Cor. The point c is manifestly the centre of gravity

of a rectilinear figure, formed by joining the given points.

SECTION VI.

Ofthe transformation of co-ordinates.

(71.) It is frequently desirable to express the equation of

the same locus referred to different systems of co-ordinates.

This is effected by expressing the values of the co-ordinates

of any point related to one system of axes, in terms of the

co-ordinates of the same point referred to the other system,

and in functions of this position of the two systems of axes

with respect to each other. The values thus expressed, being

substituted in the equation, related to the one system, give

the equation of the same locus referred to the other system.

Let yx be the co-ordinates of any point related to one

system of axes, and y
]x ] those of the same point referred to

the other system. Let m, n
3 p9 q, tf, #, be quantities deter-

mined by the mutual position of the axes. Suppose., then,

d2
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y = myf

-f ntf + a, and x = £?/ -f g.r' -f £. If these

values ofy and «r be substituted in the equation of any locus

related to the axes ofy and x, an equation will result be-

tween the variables y and x\ i. e. one of the same locus

related to the other system of axes. The question will, there-

fore, be resolved when it is shown what functions of the

position of the axes the quantities m, n
9 &c. are/'

(72.) Let ay, ax, and a;
y', a'x;

,

be the two systems of axes. Let

the co-ordinates of the point m
referred to these axes bej/= MP,

x = ap, y = mp', x 1 = aV.

Draw AfAff and p'p7 parallel to

~X ay and a^", and p^/ parallel to

a'a" = y, v y = y
!l + p

f

p
(l + j/m, or

?/ = y'( + p[p -f p'M, and #==#" + a';? + p'y. Expressing

the angles under the respective axis by the notation ex-

plained in (12.)

FP
ax. Let aa"

Hence,

sin. xx .
sm. w #

p'M = T-^-.y,rp — . , x

,

r sm. yx

sin.yx1

,

Aip — .
-y y

^ sm. yx

, sin.?/?/
,

r sm.^/x^

-. -ji . y sin - y^^+#' sin. #;#

a; = a?" +

sin. yx

x1 sin. x[y+y sin. y^
sm. z/«r

(73.) If the axes a'y', a'x;

, be parallel to ay, ax,

y = y + y

,

o; = a;
7 4- #'

.

(74.) If j/# = 90°, v sin. yx = 1, sin. ^y = cos. x!x9

and sin. y«/ = cos. y'x, v

y =-y + y sin. y^r + x\ sin. #'#,

# = xu 4- #r cos. rfx + y cos. y^.
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(75.) Ify^ = 90°,

y = y +
y cos. #f

.r + oo
f sin. #'#

x ] sin. y# f —y cos. yx}

00 = ^" +
sin.«/«r

(76.) Ifya?=y^ = 90°,

y = y -f #' sin. a?'a? -f y cos. #'#,

# = xu + #' cos. a/# — y sin. ^^r.

(77.) If the two systems have the same origin, y ~ 0,

and x jl = 0.

SECTION VIL

jF$£ discussion of the general equation of the second decree.

(78.) When an equation is constructed in the manner

described in (10), its locus, if it have any, is a line in the

plane of the axes of co-ordinates, whose points are deter-

mined by supposing each variable susceptible of an unlimited

series of values, positive and negative, and the equation

thereby furnishing a corresponding unlimited series of values

of the other variable, and thus determining the course of the

locus. Under this view, it might appear that the locus, of

every equation whatever, was (like that of the first degree)

a line of unlimited extent. This would, in fact, take place

did it not frequently happen, that certain values being as-

signed to either of the variables, the equation furnishes im-

possible symbols for the values of the other. Such values,

since they have no arithmetical, have no geometrical repre-

sentatives; or, in other words, the locus has no point corre-

sponding to such values. In what manner this circumstance
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affects the figure of the locus, whether by limiting its extent

in one or more directions, or by completely circumscribing

it, is determined by certain relations between the constant

parts of the equation. The values of these affect some-

times the form and properties of the line, and sometimes

only its position with respect to the axes of co-ordinates*

The general equation of the first degree was found to ge-

nerate a right line, whatever the values of the constant

parts might be, and, therefore, in this case they merely

affected the position of the line ; but its figure and properties

were independent of their particular values. This, however,

does not happen in other cases. In equations of the higher

degrees, it is found that not only the position of the locus,

but its nature, form, and properties, depend on the relative

values ofthe constant parts ; and that loci of different species,

that is, having different forms and properties, will be ge-

nerated by equations of the same degree, according to the

relative values of the constant parts.

(79.) The classification of the different species of lines

included under a general equation, and the investigation of

the functions of the constant parts, which characterise each

of those species, is called the discussion of the general

equation.

(80.) An equation of the second degree is one which in-

volves the variables in powers or products not exceeding two

dimensions. Hence, an equation of the second degree, pre-

sented under its most general form, is,

a?/2 -f Bxy -f cx°~ -j- v>y -f E«r + f = (a).

Where a, b . . . . e represent, generally, the respective

coefficients of the dimensions of the variables admissible into

an equation of the second degree, and f the sum of all the

terms not involved with the variables.

The solution of this equation for the two variables gives
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y = _ 3?lt? ± J-
A7nB

i:=:^c)^a+ 2(BD--2AB)a?+ (d*-4af) (6)
87 2a 2a

= - 5^±1^7i^l4Ac)y»+ 2(BB-2cD)y + (d2-4c7) (c).

These solutions appear to exclude those equations of the

second degree which do not contain the squares of one or

both variables. But it will be shown in (86) that these cases

can be brought under the above solutions. In what im-

mediately follows the values of a and c will be considered

finite.

To construct the equation, let any fixed lines, yy' . xx',

be assumed as axes of co-ordinates. Let the suffix of the

radical in (b) be represented by r2
, and that in (<?) by b>.

The value of y consists

ot two parts scil. — —^—

-

\/R2

and ~tz—. The first is the
2a

value of?/ in the equation

2ky + bx + d = 0, there-

fore, if the line bd be

the locus of this equation, and any value, ap, be as-

signed to x
y
the corresponding value of — ——— will be

pp' drawn through p parallel to yy' to meet the right line

bv. The other part -^— is real, = 0, or impossible, ac»

according as u2 > 0, = 0, or < 0. If e,
2 > 0, let

p fm = + — , and p fMf = •— ~, and the values of y corre-

sponding to x = ap, are pm and pm', and, therefore, m, m7
,

are the points in the locus.

If it
2 = 0, there would be but one value of y, scil. pp',

and the corresponding point p' of the locus would be on the



ALGEBRAIC GEOMETRY.

line bd. If R 2 <0, y would be impossible, or, in other

words, the locus would not meet the parallel pp f in any

point whatever.

In like manner the value of x consists of two parts, scih

B2/+ E
1 V^

~~^—- and
2c

<2c

The first is the value of

x in the equation %cx +
mj + e = 0; there-

fore if the right line,

EF
3
be the locus of this

equation , and any value,

a^>
9
be assigned to y^ the

corresponding value of

will be ft p\ a parallel to xx'j drawn from p to

a/R/2
.

meet the line ef. The other part —— is real, = 0, or im-

possible, according as p'2 > = 0, or < 0.

b! n !

If r/2 > 0, letp
!m = + .— , and p

!m! = — -^-
5
andpm and

_p
fW are the values of x9

corresponding to 3/ = Ap, and

m
9
m!

, therefore the points are the locus.

If e/2 = 0, there would be but one value of ^, scil. pp
!

,

and the corresponding point, p\ of the locus would be on

the line e-'f.

If r'2 < 0, the locus would not meet the parallel, pp\ in

any point whatever.

The lines bd and ef have the property of bisecting a

system of parallel cords in the locus. Such lines are called

diameters; and the cords which they bisect are called their

ordinates.

The course of the locus of the equation of the second
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degree is limited to that series of values of each variable

which give real values of the other. It appears that from

that series, all values of x, which fulfil the condition,

r2 < 0, and all values ofy9
which fulfil the condition, it'

2 < 0,

are excluded. It will therefore be necessary to determine

how the sign of R2 is affected by the values of #, &nd how

that of r/2
is affected by the values of y. As these circum-

stances depend on the roots of the equations, u2 = 0,

and b/2 = 0, it will be convenient to consider the cases,

b2 — 4ac > 0, b 2 — 4ac = 0, and b2 — 4ac < 0, (See

Notes.)

(81.) If b 2 - 4ac > 0, let the roots of the equation^

r2 = 0, be x\ x]K

If x\ £c
!,

9
be real and unequal, all values of x included

R2

between x ] and x'L render ——— < 0, and since b 2 — 4ac
?

b 2 ~4ac

>0, v r2 <0; •.• all values of y corresponding to such a

series of values of x are impossible. All values of x > x'
!

,

or < x\ render r2 > 0, and x = x\ or x = xu
, render

n2 = 0; v all such give real values ofj/.

R2

If x ]x]] be impossible, all values of x give —-—j—
-^ > 0,

v r2 > 0; '.Tender all values of y real.

If x ] = x ]

\ all values of x (except x = x') render

R2

> 0, and v r2 > 0, and x = x\ gives R2 = :

b 2 — 4ac ' 6

v all such values give real values of y.

By the same reasoning, let y[y
u be the roots of the

equation r' 2 = 0.

Ify
]y" be real and unequal, all values of y between y

1

and 7/
,! give impossible values of #, and all others real values

of x\

If y
f

y
n be impossible, all values of y give real values

of x.
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Ify = y\ all values of^ give real values of x.

(8£) IfB 2--4AC^0, v p.
2^^(bd-2ae>+(d2 ~4af).

If bd — $ae > 3 let x] be the root of u2 = ; all values

of # > x] give — ?;—r-> 0, v u2 > 0, and # givesb 2(bd-2ae) ' &

b,
2 = 0; v all such values of x give real values of y. All

R*
values, of a? < x' give ^TJ^Zg^ < °> v li3 < °> "•* glve

impossible values for y.

If (bd — Sae) < 0, ••• all values of x > x f give

j-

—

> 0, v R2 < G, v all values of y impossible.

R2

All values of x <# f give- -77— < 0, v & l > 0, and& bd— Sae ?

a? = x1 gives R2 = ; all values of y corresponding to such

values of x are real.

If (bd — 2ae) = 0, v ua = d 2, — 4aFj *.* all values of

j/ are real, if d 2, — 4af be not < 0, and impossible, if

(d* — 4af) < 0.

In like manner in this case, let r,z = 2(be — 2cd)j,' +
(e* — 4cf).

If be — 2cd > 0, all values of y > y\ or y = y, give

real values of a?., and j/ < y, give impossible values of x.

If be — 2cd < 0, y > y renders a? impossible ; but all

other values render x real.

If be — Sen = 0, all values of x are impossible, if

e* — 4cf < 0, real if not.

It is observable that bd — 2ae = 0, and be — 2cd — 0,

are fulfilled at the same time, for bd — 2ae = — ;t-(be —

Scd), on condition that b2 — 4ac = 0.

Also, if b 2 — 4ac = 0, and bd — 2ae = 0, (d
2 — 4ae),

and (e2 -» 4cf), will have the same sign, and be at the same
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time = 0, for e 2 — 4cf = -— (d 2 — 4af).

(83.) If b 2 — 4ac <
9
as before, let x]xn be the roots of

R2 =a 0.

If x'x l! be real and unequal, all values of x between x f

R2

and #" give——-— < 0, v r2 > 0, and x = .*•', a? = #",° B 2—4AC ' 3 3

give r2 = 0; •.• all such values of x give real values of y.

All values of x > x\ or < x\ give ——-— > 0, v r2 < 0.
?fc

> b
2—4ac

v all corresponding values ofy impossible.

R2

If xhcu be impossible, all values of x give ~—7— > 0,

and *.• r2 < 0, v all values ofy impossible.

If x ] = £?
f/

, all values of x (except x = # f

, or a? = #f/

) give

R2

~—^— > ®> "•" u'2 > ®* v a^ values of y impossible; but

os = Ogives r2 = 0, v y real.

In like manner, if y
f

y
l! be real and unequal, all values of

y included between 7/ andy, as well as y = y, and 3/ = y,
give real values of <r

?
and all other impossible values.

Ifyy be impossible, all values of ?/ give impossible values

of x.

If y = y, all values of x are impossible, except those

corresponding to y = y, 3/ — y.

(84.) To determine the conditions, by which A7 and

yy are real, equal, or impossible, let the equations r2 =
and r'2 = be solved ; hence the roots are respectively

— (bd — 2ae)± 2 VAM
x

b2— 4ac

^ — (BE - SCD)± 2 ,V/CM
y
—

b2 -4ac '

where m = ae2 4- cd 3 + b2f — bbe — 4act,
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Since a and c are both supposed finite

:

If xfx fl be real and unequal - am > 0,

Ifyy be real and unequal - cm > 0.

if x' = x ft

, ory = y - - m = 0.

If xlx" be impossible - - am < 0.

Ifyy be impossible - - cm < 0.

(85.) To investigate the course of the locus under the

condition, b 2 — 4AC > 0.

1. Let x !

x'! be

real and unequal;

let x' = ap, xu ~
ap'

?
and through

p and p;

let the in-

definite parallels,

yy
1 and y

tf

y
flf to yy'

bedraVn :No point

of the locus lies be-

tween these paral-

lels (81); but it

bx' + D~
sJT 9

BX ,! + D

meets the line 2/y at a point i;, such, that py = —

and the lineyy,; at the point x>', so that pV - —
2a

Beyond the limits of the parallels, the locus spreads to un-

limited extent in two opposite branches (81), touching those

lines at v andV.
% Let x!x'f be impos-

sible, all values ofy are

in this case real (81).

Let ap be that value

of x, which renders 2r

the least possible value

;

draw pp' parallel to yy ;

to meet the line bb,

whose equation is %aij

+ bjt + d = 0; take

p'm = + Rj and pV =
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— r. Through the points M, m7
, let the indefinite parallels

hd, h-dl to bd be drawn.. Since p'm, p'm' is the least value

that the radical in (b) can receive, the locus must be ex-

cluded from between those lines; but the radical being

susceptible of every magnitude, however great it extends in

two opposite and unlimited branches beyond them, touching

them at the points m, mK

3. Let x 1 = x' 1

: in this case it
2, = (x —- x!)^/b % — 4a c,

and as all values of y are real, the equation is that of two

right lines.

Similar inferences follow with respect to the roots y
f

y
u

.

1. If they be real and unequal, the curve touches two

right lines parallel to xx', is excluded from between them,

and extends indefinitely beyond them.

2. If they be impossible, the curve touches two right

lines parallel to the diameter, whose equation is 9,oy -f

sx -f d = 0, is excluded from between them, and extends

indefinitely beyond them.

S. Ify = y, the equation represents two right lines.

Hence, in order that the locus of an equation, fulfilling

the character, b2 — 4ac > 0, should be a curve, it must

also satisfy the condition, m>, or < ; if not, it will

represent right lines.

Curves thus characterised, are called Hyperbola.

(86.) If the squares of one or both variables be not con-

tained in an equation which does contain their product, it

comes within the character b 2 — 4ac > 0. But the in-

ferences which have been just made with respect to the locus

cannot be immediately applied to this case, because they

were made on the supposition, that the equation contained

the squares of both variables. However, if the axes of co-

ordinates, to which such an equation is related, be trans-

formed by the general formulae given in Sect. VI. (72), such
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a position may be assigned them, that the values of the co-

efficients of the squares of the variables shall be finite.

In the equation

Ay -j- itfxy + dx* -f vly -f e'# + d = 0.

Suppose a', or c ?

, or both = 0, but b' finite, let the

equation resulting from transformation of the axes be

a?/2 + vyx -f ex'2, + D2/ + eo? + r = 0.

Such values .being assigned to the quantities composing the

formulae in Sect. VI. as will render a and c finite.

From the values of a, b, c, in terms of a', b', c
r

, and the

angles under the axes of co-ordinates,

, , % ( sin . ify sin

.

xfx — sin . xkj sin . i/x)2

b 2—4ac= (b'8- 4a'c
? — r— d—J-~L= v*.

( sin . yif sin . .r<r'— sin . xly sin

.

yx)2

sin. 2
«/#.

The quantity (sin, yy
!
sin. ## ; — sin. x fy sin. y#), must be

> 0, for being a complete square, it cannot be < 0, neither

can it be = 0; for if sin.yy 1 sin. x'x — sin. xy sin.y#= 0,.

. sin, y
l
y sin. xy v

and*.'-;

—

^-r-— -•——r> "•' the new axes of co-ordinates
sm.j/'x sm. xx

would be coincident. Hence, since the quantities B f2 and

sin. 2 yx are essentially positive, the quantity B2 — 4ac > 0,

in which a and c are finite, and which is an equation of the

same locus as that in which a' = and d — 0, all that has

been proved of curves characterised by b2 — 4ac > : on

the supposition that A and c are finite also, apply to the

cases,where A or c, or both, are = 0, provided that b is

finite.

(87.) To investigate the course of the locus when

E2 _ 4AC _ o.

Let ap — x\ Ap = y, and let the indefinite parallels yy
f

and xx1 be drawn.

If bd — 2ae > 0, the locus touches yy\ and lies entirely

at the positive side of it. See (82).
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If BD — &AE < 0,

the locus touches yy\

and lies entirely at the

negative side of it*

If be - 2cd > 0,

the locus touches xx\

and lies entirely at the

positive side of it.

If be — 2cd < 0,

the locus touches xx\ Y / if

and lies entirely at the negative side of it.

If bd — 2ae = 0, and v also be — 2ei> = (82), the

equation is that of right lines. If n2 — 4af > 0, or = 0,

and v also e 2 — 4c.f > 0, or = ; but if d2 - 4af < 0,

and v also e2 — 4cf < 0, there is no locus.

This class of curves characterised by b* — 4ac = 0, and

bd — &ae finite, and consisting of one unlimited branch,

extending in one direction, are called Parabolce.

Equations of the second degree, in which the square of

one of the variables and also their product is wanted, come

under the character b2 — 4ac = 0; but for the reason

before stated, the conclusions preceding cannot be imme-

diately applied to them. However, if a transformation of

axes be effected as before, it will follow that since b' = 0,

and also a1 or d = 0, v b 2 — 4ac = 0, for the other factor

has been proved finite (86). Hence, since by the trans-

formation, A and c become finite, and at the same time

b* — 4ac = ; those loci come under the class of Para-

bola?, and the preceding references apply to them.

(88.) To investigate the course of the locus when

b2 - 4ac > 0.

To fulfil this condition, a and c must have the same

sign*

1. If #V and v also y\ 9/ be real and unequal, let
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yt p/ — ,//AP = X\ AF — W\

kp = y\ Ap f = y\
Let the indefinite

parallels, 2/2/ andyfly"f

to yy', and x!x! and

x ]]xm to xx'be drawn.

Let p^ = —

vv' = —

2a

n^/yi'f _

2a

; from (83) it appears
,,

B?/+E B?/ + E

that the locus touches those parallels at ^ */, v'
!

, v
111

, and is

included between each system.

% If oc
]x]}

, and •.• also yy be impossible, no locus

exists (83).

3. If x 1 = xf/

, and v also y = y
l

\ the variables have

B07
,4" I) B^;/+E

each but one real value, scil. y= ~— , a? = —

v the locus is in this case a point.

Hence, in order that an equation characterised by

b2 —- 4ac < may be that of a curve, it must also fulfil

the condition m > 0.

Curves, thus characterised, are called Ellipses.

(89.) To recapitulate the preceding results.

If b2—4ac> and m not =0, the equation represents loci^

called Hyperbolas*

- - - > m = :
- Right lines*

- - - =0 bd—2ae not =^0 - Parabolce.

„ „ - ^0 bd—2ae=0,d'—'4AFiiot <Q Right lines*

„ - - =0 bd— Sae= 0, d 2 — 4af< No locus.

- ~ - <0 m > - - - Ellipses.

- - <0 m = - - - A point,

~ - - < m < - - - No locus,
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SECTION VIII.

Of the diametersi axes, and asymptotes of the lines of the

second degree.

(90.) In the discussion of the general equation, it was

proved that two right lines bisected systems of chords parallel

respectively to the axes of co-ordinates. Hence arose the

definition of a diameter. An inquiry naturally presents it-

self, whether every system of parallel chords has not a cor-

responding diameter.

To determine this, let

ay -f bx + c = be

a line meeting the

curve at c, c'. To

consider this as one

of a system of paral-

lel chords, let— be
a

considered as given,

and — as indeterminate. By eliminating y by this and

the general equation, the roots Ap, Ap! of

x* +
^Abc — Bca—vba+ Tza9-

oc +
Ya^+Ac^—Dca

-0,
a&2— Bba + ca2 *

w '

x

Aff— Bba+ ca2

which is the resulting equation, will be the values of x for

the points c, c f

. Let cc' be bisected at m, mp be drawn

parallel to ay,

.' AP
Af -f Ap 1

, V AP ~ — %Abc— Bca—vba -{- e&2

2 .' '
*"

^(Abt-Bba + cazy

By substituting for c its value in ay + bx + c= 0, and

denominating ap by oc
9
and pm by y, the equation of the

locus of m is fotand to be,

(b« - %Ab)y -f (2c« — b6) x + %a -~ d6 == 0,
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This being an equation of the first degree, the locus sought

is a right line, and consequently a diameter to which the

parallel chords are ordinates. If the curve be a parabola?

the condition b2 — 4ac =
5
gives

$a(e&— Dh)
%\y + bx -f

—~ a ,- = 0,

by eliminating c. The co-efficients of the variables in this

equation being constant, prove that all diameters of a parabola

are parallel to the line %hy + bx = 0.

B*
As— = %a, the equation may also be expressed

2c(e&— d5)

PItOP. XXV.

(91.) Given a diameter, to determine its ordinates.

1°. If b2 — 4ac be not =; 0, let the given diameter be

dy + Vx + d = 5 and its ordinates djy + to + c = 0.

5' gctf — B# & ^caf— B&

a' b&— 2a&
5 * a Bd-~%hV

Which equations determine either the diameter or its or-

dinates when the other is given.

2°. Ifb2— 4»ac = 0, let the diameter be Qky + bx -\- d — 0,

* 2a(e«—d6) _ 6 _2ae— B6*
f

PROP. XXVI.

(9$.) To find the equation of a diameter through a given

point.

The equation of any line through the given pointyW is

dy -Y Vx — (dy 1 + 6W) = 0.

This being a diameter, let its ordinates be ay + bx + £ = 9

v d=Ba — 2a£, &' = Sea — b5, «y + SW = vb — Ea.

jf
(
B2 _ 4AC)y + (be— 2cd)

a; ~~ ~~"

(b 2
.
— 4ac)o?'+(bd— £ae)

6

Therefore the equation of the diameter is
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.{(b* - 4Ac)^f + (bd —2ae)} (7/ — y-) —
{(b 2 - 4<Ac)y + (be-£cd)}(jt - a?') = 0.

The equation of its ordinates is,

(2Ay -f b# + d)j/ + (2co?f

-f By -f- e)# + e = 0,

where £ is indeterminate.

(93.) GV. 1. If b 3 - 4ac = 0, and therefore

BE— 2CB B 2C _
,

.'

^— = — 7T" = -— —» the diameter becomes either or
bv - 2ae $a b

2a(# — y) + b(# — ^) = 0,

b(j/ — y) 4- 2c(a? — #') = 0.

(94.) Cor. % If b 2 — 4ac be not = 0, the equation of the

diameter being divided by (b 2 — 4ac) becomes

bd — 2ae v , , , be—2cd ,c + ir^-c) ^-y)-(y+^-_^) <* - *o = o,

which is a right line through the pointy

be— 2cd bd— 2ae
y -~ ~~

B2--.4ac' ^ ~~
b

s— 4ac
9

therefore all diameters of an ellipse, or hyperbola, intersect

each other at this point, and, vice versa, all right lines

passing through this point are diameters.

(95.) Def The point y
Vlxn

is called the centre, and the

ellipse and hyperbola are thence called by the common name

of central curves. Since b 2 — 4sac = renders the co-

ordinates of this point infinite, the parabola may be con-

ceived to have a centre at an infinite distance.

PROP. XXVI I.

(98.) In central curves, ifany diameter be parallel to the

ordinates ofanother diameter, the latter will he also pa-

rallel to the ordinates of theformer.

For, in (91), if —
.

determine the position of a diameter,

V
-7 determines that of its ordinates, and vice versa .

a!

Def Such diameters are called conjugate diameters.
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PROP. XXVIII.

(97.) To discover whether any and what diameters intersect

their ordinates perpendicularly .

1°. If b2 — 4ac be not = 0, let the sought diameter be

a!(y~y«) +#(#-#") = 0,

y xfl being the co-ordinates of the centre; and its ordinates

ay + bx+c = 0, by (91), -^ = ^^ly and by (3.2)

aci -f bB — (a!b 4- &#) cos. ?/# = ; hence,

( b - 2a cos. «/#)#2 4- 2(a - c)6W+ (2c cos. yx— s)a'2= 0,

# C—A± a/(C— A) 2
-hB2

-f 2cOS. ?/^(2ACCOS.«/^ — BA— BC)
e

a'
""

b— 2a. cos. yx
b]

These values of- are always real. For if the quantity under
a

the radical be arranged by the dimensions of b, and equated

with zero, we shall find

B 2 -j- 2(a -f- c) cos. 2/jr. b h 4ac cos. yx 4- (c~a) 2= 0,

which, solved for b, gives after reduction

b= (c+a) cos. 2/^±(c— a) sin. y%\/ — 1;

which being impossible, the suffix of the radical in the

values of —
f

is always positive. The equations sought are v
a

(b — 2a cos, yx) (y — y
1

') 4- (c — a)

± V {c — a)- 4- b 2
-f 2 cos. yx (2ac cos. yx — ba — bc)

x (a? - x») = 0.

2°. If B2 — 4ac' = 0, let the sought diameter be

2a (e&— d#)
2aj/ + b# + — ^-r1 = 0.

•^ Ba - 2a6

Since it is perpendicular to the line ay 4- bx + c =
?

, _ 7 6 b cos. z/^— 2a
2a& + b£ - (2a6 + b«)cos. wa?= 0, v — = ^ .^ & b — 2acos.?/;f

Making this substitution

2a{be4-2ad-(bd+2ae) cos. yx\
2ai/ -f bx +—! ^—^—

f-^—^— = 0.
b 2— 4ab COS. ?/<£ f 4a2
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Such diameters are called axes, and it appears that ellipses

and hyperbolae have two, and parabolae but one.

V
(98.) The two values of— fulfil the condition (82), there-

Qi

fore the axes of central curves are at right angles.

(99.) Hence also the axes are conjugate diameters.

PROP. XXIX.

(100.) Tojind the intersection ofa curve with its diameter.

1°. If b 2 — 4ac — 0. Let the equation of the diameter be

%z/ -f bx -f & ~ 0. P\

The elimination of y be- 1
c/

tween this and the ge-

neral equation gives

2(bd-2ae)
'

Therefore every diameter

of a parabola meets the

curve in one, and but one

point.

2°. If b 2 - 4ac be not

= 0, the diameter is a (y — y
v
') -f h (x — x'') — 0,

where y
,!x!l

is the centre. Eliminating y, we find

1

Ab2—Bha + ca2

The roots of which, after expunging the terms which mutu-

ally destroy each other, and dividing both terms of the frac-

tion under the radical by b* —• 4a c, are

of'

+

s/ b*-4ac ' Afr-Bba + ca
-'

Where m retains its signification in (84).

Supposing these values of x to be real, let c be the centre,

and v, v7 the points of intersection. Since vp and v'p are the
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two values of the radical, they are equal v cv = cV; there-

fore every diameter which meets an ellipse or hyperbola is

bisected at the centre. It is from this property that the centre

has received its name.

(101.) Def. The points where a diameter meets the curve

are called the vertices of that diameter.

(108.) Def. The vertex of an axis is called a vertex of the

curve,,

(108.) When a diameter of central curves is spoken of as

a finite line, that portion of the diameter intercepted between

its vertices is meant.

prop. xxx.

(104.) To find what diameters qfcentral curves meet them.

It will be necessary to determine how the values of a and b

affect the suffix of the radical in (100) negative, and what not.

a2

The sign of the factor -7—— , depends on the re-
,

&
, Ab^T-Bba+ca 1 l

lation of the values of a and b to the roots of

b2 b ^ . b b + v b3-— 4ac
A _ B —y c — o, z. e. -— = « ——

'

.

a2 a a 2a

Let these values of— be r 5 rL If they be real and un-
a J

b
equal, sciL if b* — 4ac > 0, all values of— between r and

a2 b b
r ] render —jz =—

-

r < 0. If— = r, or — ~ r\ v
Abz—Boa+ca2 a a

—__ js infinite; and if — have any value > r9

A&3 -~ b6^4 ca 2 a J

If r and r! be impossible, scil. if b3 — 4ac < 0? all values

or— render —nr-~j— :

* > ^.
a AoV— Bba^ca2
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The roots r and rf cannot be equal, for then b2 ~~ 4ac= ?

which is contrary to the hypothesis.

M
If b 2— 4ac > 0, and m > 0, the factor — - <0,

B2 — 4ac

therefore the real values of x are those corresponding to

a2 b—_

—

_— < o or to those values of — intermediate
ao2 —Boa + ca2 a

between r and r\ and the impossible values are those which

correspond to values of —, > r, or < r\

be called d
9

'.*

a

sin. doc

Let the diameter

Through the centre c, let

a ~sin. dy

the lines ss and sV be drawn, so that, calling ss, I, and

, , ,,
sin. Ix ,

sin. Vx

sin. Z#*

In order, therefore,

that a diameter d

should meet the curve,

sin. dx

sin. dy

sin. Vx

sin. I'y
5

sin. I'y'

>

sin. te

sin. ly

ss and sV extend ad

infinitum without

meeting the curve.

Those diameters fulfilling the condition ^—-7-, > V-~-, or
sm. ay sin. /?/

< .
*

7/
"3 do not meet the curve. Hence the angles scs' and

sm. I'y
°

s
fcs include between their sides all those diameters which

meet the curve, and consequently include the curve itself;

and the angles s'cs f and scsf include all those diameters which
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do not meet the curve, and consequently exclude the curve

itself.

(105.) The values of r, r\ being

b b± Vb 2 — 4ac

a
""

2a

Since
b-^b'-j^ _*£__ the vaiues f r, /,

2a b+v^b2— 4ac

may be expressed thus.

r':

B-f v'B2 — 4AC

2c

B-f Vb2-4ac

The equations of the lines ss and sV are therefore,

2A(y — y) + (b + y'B3 — 4ac) (.r — a?
7
) = 0,

2c{x - a:") -f (b -i- Vb2 - 4ac) (y - */') = 0.

Though these right lines pass through the centre, yet they

are not diameters, for if they were, the equation of their

ordinates would be (9&) respectively,

cZhy + (b2 + </'& — 4ac)# + c — 0,

2c# + (b + v/ b
2 - 4ac)«/ + cf — 0.

That is, the ordinates would be coincident with the diameters

themselves, which is contrary to the definition of ordinates.

(106.) These lines, therefore^ are not themselves diameters,

but may be considered as the limits of diameters. They se-

parate those diameters which meet the curve, called trans-

verse diameters, from those which do not meet it, called

second diameters. As the diameters, both transverse and

second, approach to coincidence with these lines, they also

approach to coincidence with their ordinates; and the lines

ss and sV are the limits at which that coincidence actually

takes place ; these lines are called asymptots*

(107.) From the position of transverse and second dia~
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meters, it is plain that the ordinates of the former intersect

the same branch of the curve, but those of the latter opposite

branches.

(108 ) If b 2 — 4ac > 0, and m < 0, inferences similar

to those already made will follow, with this difference, that

the angle scV, scs\ will then include the curve ; and the

diameters which meet it and the angles scV, s'cs, include

the second diameters.

(109.) If b2 —
• 4ac < 0. In this case

?
if the equation re~

M
present an ellipse , m > 0, therefore —

-^— > ; but the

values of r
9

r', are impossible, and therefore

ai —- > hence the
-

values of oc, in (99), are al-

ways real and unequal, therefore every diameter of an ellipse

intersects it in two points.

(110) If the axes of an ellipse be unequal, the greater is

generally called the transverse, and the lesser the conj ugate

axis. In an hyperbola, the axis which meets the curve is

called the transverse, and the other the conjugate axis.

SECTION IX.

Of the differentforms of the equations of lines of the second

degree, related to different axes of co-ordinates.

(111.) That an equation of the second degree should in-

clude under it any or all of the three classes of curves which

have been investigated in the discussion, it is not necessary

that every dimension of the variables, consistent with its ge-

neral character, should be found among its terms. A term

wanted does not necessarily' render the equation less general,

if its generality be estimated only by the curves included
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under it. But, in another sense, the generality is always

impaired by such deficiency, which, though it may not ex-

clude from the extension any of these classes of curves, yet

it may restrict the curve in its position with respect to the

axes of co-ordinates by which the equation is constructed.

As this circumstance gives great facility to the develop-

ment of the properties of lines of the second degree, it will

be useful to ascertain the form of the equation, (that is, the

terms of which it consists,) corresponding to certain par-

ticular positions which the curve may assume with respect

to the axes of co-ordinates.

PROP. XXXI.

(11£ 9) To fnd the form of the equation when the curve

passes through the origin of co-ordinates .

In order that this should happen, the conditions y =
and x = 0, should be co-existent, v f = 0, v the form is

kf -f Bxy + ex2 4- By + ex = 0.

PROP. XXXII.

(IIS.) To Jlnd theform of the equation when a diameter

and its ordinates are parallel to the axes of co-ordinates.

The diameter, whose ordinates are parallel to yy;

, is

%\y + bx + d = 0.

In order that this should be parallel to xx', the condition

b = is necessary ; therefore the form sought is

Aj/2 + ex 9, + By + e# 4- f = 0.

In this case, also, provided that a and b are both finite, the

diameter

2cx + By + e = 0,

has its ordinates parallel to xx', and therefore the curve is

central, and the axes of co-ordinates parallel to a system of

conjugate diameters.
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PROP. XXXIII.

(114.) Tofind theform of the equation when either axis of

co-ordinates is coincident with a diameter whose ordinates

are •parallel to the other.

In addition to the condition b = in (113) let d = 0,

then the diameter 2ky + b# + i> = will be coincident

with xx', in this case the form is

ky 1 + cr2 + e^ + F = 0.

(115.) But if in addition to b = 0, also e = 0, then the

diameter %cx -f m/ -j- e = will be coincident with yy',

and the form will be

Ay 9, + ex* + By + f = 0.

In this case, if f = 0, the origin is at the vertex of the

diameter, and the equation becomes

ky% + cx% + nx = 0.

(116.) If all these conditions, b = 0, e = 0, d = 0, be

fulfilled together, the axes of co-ordinates coincide with a

system of conjugate diameters, and the form is

aj/ 2, + cx z + f = 0.

(117.) In any of these cases, if the origin be on the curve,

the form is had by omitting f.

(118.) In case b == 0, if the curve be a parabola, a or c

must also = 0.

PROP, xxxiv.

(119.) Tofind theform of' the equation when the centre of

the curve is at the origin.

The co-ordinates of the centre in (94) must each = 0, in

order that the centre should be at the origin ; v
BD — &AE = 0, BE — 2CD = 0.

If d and e were finite, these equations would give

b2 — 4ac = 0, which united with either of the above con-

ditions, would render the equation either impossible, or that
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of right lines ; therefore, in order that the equation should

be that of a curve, the conditions must be satisfied by d =
and e = 0, which shows that when the centre is on the

origin, the form is

Aj/2 + BXJ/ + CX~ + F = 0.

PROP. XXXV.

(120.) Tofind the form of the equation of the hyperbola

when the axes ofco-ordinates are, one or both, paral-

lel to the asymptots.

In order that ss (105) should be parallel to yy', a =
9

and in order that s's
f should be parallel to xxf

, = 05 and

in order that both should take place together, a = 0, c = 0;

hence,

(121.) If an asymptot be parallel to xxf

, the form is

nxy + ex 1 + By + E«r +• w = 0.

The equations of the asymptots are in this case

(x - x ,!

) = 0, or x -!- — = 0,V J B

c(x — x j

') + b(?/ — y
,!

) = 0.

(122.) If an asymptot be parallel to xxf

, the form is

Ay2 + vxy + vy + e# + f = 0.

;

and the equations of the asymptots are

E

A(2/ ~ /) + B(* - tf") = 0.

(123.) If both axes be parallel to the asymptots, the

form is

Bxy -f ay -f e# -f f = ;

and the equations of the asymptots are

d E
* + - - 0, y + - = 0.

(124) If an asymptot be coincident with yy', v a = 0,

b = ; therefore the form is
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ex2 + Bxy + E^ + f = ;

and the equations of the asymptots are

x = 0, ex -f B(y — y'!

) = 0.

(125.) If one asymptot be coincident with xx', c = 0,

e = 0, the form is

Ay* + Bxy -f Ey {- d ~-
;

and the equations of the asymptots are

y = 0, aj/ + b(^ — <r'
7
) = 0.

(126.) If both asymptots be coincident with the axes of

co-ordinates,

a :~ 0, c = 5
d = 0, e = ; v

¥>xy -f f = 0.

PROP, XXXVI.

(1S7.) To find the form of the equation of the parabola

when one axis is a diameter and the other parallel to its

ordinates, the origin being at its vertex.

If the equation be that of the parabola 5 c = 9 and the

origin being on the curve
? f = 0, therefore the form is

Aj/ 3 + EX = 0.

PROP. XXXVII.

(1S8.) To express the equation of a central curve related to

a system of conjugate diameters as axes of co-ordinates,

and in terms of those parts of the diameters which are

intercepted within the curve.

F
In (116) y = gives x* = -

5
and x ~~ gives

v <z — let -

—

- z=z Af2
5
and — — = b/c

. If the curve
J a c a

intersects the axes of co-ordinates, 2a' and 2b ] will be the

parts intercepted 5 and the equation sought is
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A^ft + B'%2 = A!*Bte
;

a'
2 being positive, or made so by changing the signs, the

curve will be an ellipse, if b/2 > ; an hyperbola, if b !q> < 0,

for b2 — 4ac = — 4a'2b'2 .

(129.) If a'
2 = nn = B f2 and yx = 90°, the equation is

y* + #3 = R/2
.

In this case the curve is a circle, since all points are a given

distance r' from the origin.

(130.) To express the equation of the circle in its most

general form, the origin and inclination of the axis should

not be limited. A circle being defined to be a curve, every

point of which is equidistant from a fixed point tfoo\ its

equation must be (44)

(y — y
ly + (x — x!y + Q(y — y') (x — xf

) cos.yx = u'%

or?/2 + 2cos.
t
yx . yx + x* — 2(yf + x' cos. j/.r)j/ —

2(a?f + «/ cos.^r)# +y 2 + #f2 + 2y
fxr

cos. yon — r'2 = 0.

Hence the general equation represents a circle, if a = c

and the axes of co-ordinates are assumed at an angle, whose

. b
cosine is ~-.

(131.) To express the equation.

Ay2 + c#2 + ~ex = 0.

In terms of the conjugate diameters; ify= 0, the value of

x being 2a!

,

2a! = - — ,
••• a' = -

c

E

if x = a', the value of y will be B f

, v
E2

B,ft = -r- :

4ac

A Ah2

hence — = — —
9
and the equation bejcomej

Afy + Bf2
zr

? - 2a'b'*# = 0.
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SECTION X.

Of the equations of'tangents, normals, subtangents, and

subnormals.

Previous to an investigation of the properties of those

curves already defined, it will be necessary to determine the

equations of certain lines related to the curve, and on which

those properties depend.

PROP. XXXVIII.

(132.) To express the equation ofa line passing through a

given point and touching a curve of the second degree.

Let the value of y in

the equation a(y —• y
1

) +
b(x — x!

) = of a right

line (pm) passing through

the point (r) y
}x ] be sub-

stituted in the general

equation of the second

degree, and the result

solved for x9
gives an

equation of the form

m±a A/R,2a2- %vab + b,*6»

x = _ ,
9

in which E2 and Rf2 represent the quantities under the

radicals in (80) (6) and (c), jfoi being substituted for yx,

and

— p = (b 2 - 4ac)j/W+(bd — 2AE)y+ (BE - 2cv)x!

— (de — £bf) ;

the values of m and n being of no importance to the present

inquiry.

In like manner the value of x in the equation of the line

pm being substituted in the general equation, and the result

solved, for y gives
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m 1 ± h ,/R;2
fl
2 - %pfl6+ R£68

The line is a tangent when the points m and m' unite as in

pttc, therefore they must have the same co-ordinates ;• hence,

it'
3aa — 2p&5 4- R2^2 = 0,

which gives

b f + ^Vmf'
a

~~
r2 5

^ p + Sa/mf'
or

and therefore — =

5
~~

Rf2

n?2

a p±Vmf'
Where m represents the formula (84), and

f ; = &y]% + B^y -f cxjz
-\- Dj/f

-f- ejt' + r

;

hence, the equation sought is

u2
(?/ -y) + (p + % Vmf^ (a? — #

?

) = 0.

Since the radical is susceptible of two signs, there may be

two right lines from the same point touching the curve;

their equations may separately be represented thus,

n\y - y) + (p +' 2 vw) (# — #0 = o,

K fv - <*/) + (p + a vm7) («/ - y> = o.

(133.) If the point y
]x] be on the curve f' = 0, and

p __R/2

__ R f 2ca?f + By + E

R2 ~~ P
~"~

It """^Ay+B^ + D'

therefore the equation of a tangent to a point j/V on the

curve is

(SAy+B^+D) (y-y)+(2c^ f +By+E) (#-#') = o.

Hence, and by (9$), it follows that the ordinates to a dia-

meter are parallel to tangents through its vertices, and that,

therefore, these tangents are parallel to each other. It also

follows, that the tangents through the vertices of a diameter

are parallel to its conjugate.

(134.) Def. A right line passing through the point of con-

tact, and perpendicular to the tangent, is called a normal.



ALGEBKAIC GEOMETRY. 65

PROP. XXXIX.

(135.) Tofind the equation of the normal.

From the equation of the tangent and the formula

in. (39), it may be inferred that the equation of the nor-

mal is

l(2cac! + bj/' -f e) — (Sa/ + b^ + d) cos. yx\ (y — tf)

-[(^aj/ + B.v f + v)-(2cxf + By f
-j- e) cos.jat] (%- ri) = 0.

PROP. XL.

Tofind the subtangent*

(186.) The portion

of either axis of co-

ordinates intercepted

between the points

~b> p, where the tan-

gent and a parallel

p'p to the other axis

through the point pf

ofcontact intersect it,

is called a subtangent.

In (133) the value of

(x 1 — x) corresponding to ?/= is the value of the sub-

tangent s on the axis of x, and the value of (j/ — y) cor-

responding to x = is the subtangent s' on the axis ofy;

therefore

;

2A^+ B^-fB
s = ~ y ' 2cy+By+E 9

__ f

^c^+^y+E
_ — x

»

2

Ayf.\- Bx!+i)'

PROP. XLI.

(137.) Tofind the subnormal*

A portion, pb ;

, of each axis of co-ordinates similarly
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situated with respect to the normal and the parallel ppf

is

called a subnormal, and its value is found in the same

manner from (135),

f

(2cr'-j-By-FE)— (2Aj/f+ B^f+D) cos, yx
S — ""^

\%Al/ ]
'+ B#'+ I>) — (2c^ + BJ/' -f E) C0S.«/«27

5

f

(2 A.?/ -f B#f + P)— (^C^ -f By + E) COS. ya?

" #

(2c^+ By +e)— (Saz/' + b^+d) COS.Z/tfc*'

SECTION XL

Of the general properties oflines of the second degree.

PROP. XLII.

(188.) Ifseveral pairs of intersecting right lines parallel

to two right lines given in position meet a curve of the

second degree, the rectangles under their segments inter-

cepted between the several points of intersection and the

corresponding points ofoccurse with the curve, will be in

a constant ratio.

Let the axis of co-or-

dinates be those lines which

meet the curve, the points

where they intersect it are

found by supposing suc-

cessivelyy = and # =
in the general equation,

and are therefore deter-

mined by the roots of

ex* + ejt + f = 0, (8)

az/2 + vy +f = 0,(8).

F F
Hence, ap x ap' = + — , and Ap x Apf= ^ , therefore

^~
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AP X AP' A

C
'

AP X AP
The values of a and c are not affected by a trans-

formation of origin without a change of direction, and there-

fore, since the axes of co-ordinates are supposed parallel to

. _ a .

right lines given in position, — is constant.

(139.) Cor. 1. If the roots of (2) or (8) or both are

equal, the lines ax or ay or both will be tangents, and the

rectangle under the roots is the square of the tangent;

hence the proposition (138) is extended to the squares of

tangents intersecting secants or intersecting each other.

(140.) Cor. % If a ore =
in (2) or (3), the equation in

which this takes place has but

one root, and the secant in-

tersects the curve in but one

point.

(141.) Cor. 8. If c = 0,

the right line ax intersects the

curve but once, in this case

Ap X Ap 1 oc AP,

(142.) Cor. 4, If

a = 0, in like manner

Ap meets the curve

but once, and

ap x AP f

oc Ap.

(143.) Cor. 5. If

a = and c = 0, each

of the lines ax and ay

meets the curve but

once, and ap do Ap.

(144.) Cor. 6. If

when a = 0, or c = 0, b be finite, the curve must be an
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hyperbola., and ay or

ax is parallel to an

asymptot. Hence, in an

hyperbola, if ap be pa-

rallel to an asymptot,

and App1 be a secant

parallel to a line given

in position,

Ap X Ap' 00 AP.

(145.) Cor. 7. But if a = or c = 0, and also b = 0,

the curve must be a parabola
5
and ay or ax a diameter.

Hence a similar inference follows with respect to the dia-

meter of a "parabola, as the parallel to the asymptot of an

hyperbola scil., if ax be the diameter, Ap x Ap' x ap.

(146.) Cor. 8. If a — and c = 0, the curve is an

hyperbola, and the lines ax and ay are parallel to the asym-

ptots. Hence, in this case ap so Ap.

(147.) Cor. 9. By (141) and (144), it appears that a

parallel to the asymptot of an hyperbola and a diameter of

a parabola intersect the curve but once.

(148.) Cor. 10. In central curves the rectangles under

the segments of secants are as the squares of the diameters

to which they are parallel.

(149.) Cor. 11. In central curves the squares of the

ordinates are as the rectangles under the segments of the

diameter to which they are applied,

(150.) Cor. 12. In a parabola the squares of the or-

dinates to any diameter are as the intercepts between them

and the vertex of the diameter to which they are applied.

(151.) Cor. 13. In a circle the rectangle under the seg-

ments of secants and the squares of tangents drawn through

the same point are equal.

(152.) Cor. 14. In central curves intersecting tangents

are as the parallel diameters*
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(153.) Cor. 15. If ap, ap' (fig. to Art. 157) be tangents,

and dce be parallel to ap, then dc : df : »e. For

dc x de : dp2
: : ap'2 : ap2

: : df2
: dp2

.

prop. XLIII.

(154.) To express the equation ofa line joining the points

ofcontact oftwo tangents drawnfrom a given 'point.

In the equation found in (133), let yx be considered con-

stant, and the co-ordinates y
fx' of the point of contact

variable, and their denominations consequently changed, the

equation becomes

(2aj/ -f- bx
1

-f i>)y f (ftcx1 + Bj/
f 4- e)# -f ny+ETf+ 2f= 0,

by considering that the point yx must fulfil the conditions

of the general equation of the curve.

PROP. XLIV.

(155.) The Vinejoining the points ofcontact is an ordinate

to the diameter passing through the point of intersection

of the tangents.

For the equation found in (158) is that of a line parallel

to the line whose equation is found in (9%) 9 as that of the

ordinates of a diameter through y
]xK

PROP. XLV.

(156.) The locus of the intersection oftangents through the

extremities ofa chord parallel to a line given in position

is the diameter to which that chord is an ordinate.

For tangents through the extremities of any ordinate in-

tersect on the diameter to which it is an ordinate.

PROP. XLVI.

(157.) Every secant drawnfrom the point of intersection of

two tangents , and meeting the curve in two points^ is cut

harmonically hy the curve and the linejoining the points

ofcontact*

Suppose the intersection a of the tangents, the origin, and
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the secant (acc'J.,
the axis of

x ; hence,

AC X ac' =
F

and ac + AC' =
E

C
'

In the equation (154) of

the line joining the points of

contact, lety=0, which gives

Qt? <2aC X AC^
ab = , therefore ab = :—r, and hence, ac, ab,

e ? AC+ACf

Ac' are in harmonical progression.

(158.) Cor. If acb intersect the curve in but one point c,

ab will be bisected at c, since in that case ACf
is infinite, and

therefore the ratio of ac to ab is 1:2. This takes place

when ac is the diameter of a parabola or parallel to the

asymptote of an hyperbola.

PROP. XLVIT.

(159.) To Jlnd the locus of the intersection of tangents

through the extremities of a chord passing* through a

given point.

In the equation found in (154), let the variables yx be

changed into constant co-ordinates (j/V) of the given point,

and let the co-ordinates y'xf of the point of intersection of

the tangents be changed into variables yx, and the equation

becomes

(SAy +B^+ D)j/ +(^C^4-By4-E)^4-Dy+Erf -fSF==0.

Hence, the locus sought is a right line parallel to the or-

dinates of the diameter passing through the given point,

and intersects that diameter when the tangents through the

extremities of the ordinate through y
!

ri intersect it.

(160.) Cor. Hence, if the given point be upon the axis

the locus will be a right line perpendicular to the axis,
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PROP. XLVIII.

(161.) The linesjoining the points of contact ofevery pair

of tangents drawnJrom points in any right line intersect

each other at the same point.

For if the diameter be drawn whose ordinates are parallel

to this right line, and from their point of intersection two

tangents be drawn, the point at which the line joining the

points of contact of these tangents intersect the diameter, is

that through which the line joining the points of contact of

every such system of tangents pass.

(162.) Def. Any diameter being axis of #, and a tangent

through its vertex axis of #, the equation is

AJ/
2 + C#2 + E# = 0.

The line representing is called the parameter of the

diameter, which coincides with the axis of x.

To express the equation of the curve in terms of the

parameter p we have

E %Bfz

by which substitution the equation becomes

It appears that theparameter of any diameter of an ellipse

or hyperbola is a third proportional to the diameter itself, and

the diameter conjugate to it.

(163.) Def The parameter of the axis is called the

principal parameter.

(164.) Def A point of the axis> whose ordinate is equal

to half the principal parameter•, is called theJocus.

PROP. XLIX.

Tofind the distance of thefocusfrom the vertex.

Let the equation be

Ay
7

-

-f ex 7,

-\-.?.x = 0.
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E
In this, — — being substituted for j/, the result is

*vA

4ac#2
~f 4ae# 4- e* = 0,

the roots of which are

* = --£{ i+\Arj-
The value of x expressed as a function of the semiaxes

Ar

'B
;

is

X = Af

fl +yl — ^) = A' + VA'*-B' 8
.

If the curve be an ellipse, A,Q and B f* have the same sign,

and therefore the value of x is real only where A f > b'.

Hence, there are wofoci on the lesser axis of an ellipse, and

there are two on the greater axis, equally distant from the

centre, and the square of their distance (c) from the centre

is equal to the difference of the squares of the semiaxes ; i. e*

Cl = Af2 - b'2 .

If a' = b', the distance between the foci vanishes, and

they both coincide with the centre, which takes place when

the ellipse is a circle.

The quantity —j is called the eccentricity of the ellipse,

and therefore a circle is an ellipse whose eccentricity = 0.

If the curve be an hyperbola, a'2 and b'2 have different

signs. In this case, if a12 > and b'
2 < 0, the value of x is

real, and c = */a!
z + b12

; but if A,a < and b'2 > 0, the

value of x is impossible. Hence, in an hyperbola there are

nofoci on the one axis, but two on the other equally distant

from the centre ; and the square of their distance from the

centre is equal to the sum of the squares of the semi-

axes ; i. e.

C2 = Af2 - b'2 .

If the curve be a parabola, c = ; therefore one value of

x becomes infinite, and the other is — — zz ±p}
where p ex-

presses the the principal parameter.

Hence, in a parabola there is but onefocus on the axis at



ALGEBRAIC GEOMETRY. 73

a distance from the vertex equal to a fourth of the principal

parameter.

N
The axis passing through the foci of an ellipse or hyper-

bola is the transverse axis, and the other the conjugate

axis.

(165.) Def. The right line, which is the locus of the in-

tersections of tangents drawn through the extremities of any

chord passing through the focus, is called the directrix.

PROP. L.

(166.) To determine the position of ilie directrix.

The equation related to an axis and a tangent through its

vertex being

Aj/
2 + or2 + ex = 0;

and the co-ordinates of the foci being

the equation of the directrix must be (159)

'-^{v'lr-c- 1 }.-- '

but if c = 0, the equation of the locus is

oc — xf = 0, or x — ^r- = 0.

If the curve be the ellipse or hyperbola, the equation of

the directrix expressed as a function of the axes, is

A*
x = a 4- —

.

A2

Hence the distance of the directrix from the centre is —

.

c

An ellipse or hyperbola has therefore two directrices

equally distant from the centre, and perpendicular to the

transverse axis, and a parabola but one, which is also per-

pendicular to the axis-
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SECTION XII.

The properties of the ellipse and hyperbola,

PROP. LT.

(167.) An ellipse or hyperbola being expressed by an equa-

tion related to its axes as axes of co-ordinates, to express

the lengths ofany semidiameter^ and its semiconjugate, in

terms of the co-ordinates of its vertex.

£ Let y
]x] be the vertex of the

3)
given semidiameter cd = a',

A but by equation of curve

A%/2 + bV2 = a*b2
;

hence,

AsB2 + C8^a
A'* = = b4

-f e*x'\

Where c = a/a2 - B%and e = ~ , the distance of the focus
A

from the centre.

The equation of cd being yx! — yx = 0, that of cf its

conjugate must he, (9$),

A2y^ + B2a?at = 0.

By this equation, and that of the curve, the co-ordinates of

their intersection are.

y
BX*

A ? "~~
B

Therefore, if cf = B f

5

f2 _ BV2 A2ya_A4 — CV2

or b'
2 = a2 — e2#'2 .

In the ellipse a > eat, and in the hyperbola a < exf

;
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hence, in ellipse Af3 and b'
2 are both positive; but in the

hyperbola Bf2
is negative, v &1

is impossible, v in each sys-

tem of conjugate diameters of an hyperbola, one is a trans-

verse diameter,and the other a second diameter.

PROP. LII.

(168.) In an ellipse, the sum of the squares of any system

ofconjugate diameters is equal to the sum of the squares

of the axes ; and, in an hyperbola, the difference of the

squares is equal to the difference of the squares of the

axes.

For, by adding the values of a/2 and b'
2
, in (167), the

result for ellipse is,

A'2 + b'
2 = A 2 + B2

.

And, since in hyperbola b'2 and b2 are both negative,

A'» - B''
2 = A2 - B2

.

(169.) Cor, Hence, if the axes of an hyperbola be equal,

every system of conjugate diameters will be equal : such a

curve is called an equilateral hyperbola.

PROP. LIIT.

(170.) Tofind the relation between the angles, at which any

two conjugate diameters are inclined to the transverse

axis*

By (167) the equa-

tions of on and cf are,

yx ] — y
!x = 0,

a 2j/z/ + b*xKv = 0,

hence,

y b2jt
;

tang, dca = -~r, and tang, fca = — —-,; therefore,

tang, dca x tang, fca = ~

,

5 to As
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In the ellipse, therefore, the product of the tangents is

negative, and therefore they must always have different

signs, v the angles must have different affections. Hence

if cd lies in the angle bca, cf must lie in the angle bce ;

and if cd lie in bce, cf must lie in bca.

In the hyperbola the same product is positive, since b'2 is

negative, and therefore cd and cf lie both in the same

angle.

(171.) Cor. 1. In an ellipse, if a second system of con-

jugate diameters were at right angles, it would be a circle ;

for in this case tang. dca. tang, fca +1 = 0, therefore

b 2 = A2
, therefore the curve would be a circle.

(178.) Cor, 2. In an hyperbola, if b 2 = a2
, tang. dca.

tang, fca = 1, hence in an equilateral hyperbola, the con-

jugate diameters make complemental angles with the trans-

verse axis.

PROP. LIV.

(173.) To express the polar equation ofan ellipse, or hyper-

bola, the centre being the pole, and the angle being

measuredfrom the transverse axis.

By (167) a'2 = b2 + e*x2
, for a} substitute z, and for x

z cos. w, and the equation will become z* = =- ———

,

^ 1 — eQ cos.2 w

which is the equation required.

PROP. LV.

(174.) Diameters which make equal angles with the trans-

verse axis are equal.

For z in the last Prop, is a function of cos.2 w, and if two

iiameters make equal angles, the angles which they form,

when measured in the same direction, are supplemental : the

squares of their cosines are equal.
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PROP. LVI.

(175.) Tofind the greatest and least diameters.

The value of z in the polar equation is a maximum, when

e cos. a; is a maximum. In the ellipse e < 1, v e cos. cv < 1,

v 1 — e cos. tv is a minimum, when cos. to a maximum, i. e*

when w = 0. Also # is a minimum, when cos. w a mini-

mum, 2. e. when w = — . Hence, in an ellipse, the greatest

diameter is the transverse axis, and the least the conjugate

axis.

In the hyperbola, z will be infinite when cos. 2 w =1a2
.— -~

m Between this value of cos. w
9 and cos. (a = 0,

A2 + B 2

the values of s are impossible, and between it and unity

they are continually diminishing.

Hence, if a line be drawn through the centre, represented

by the equation y — tang, w . x = 0, or Ay >— bx ~ 0, all

the diameters between this line and the transverse axis meet

the curve, and all between it and the conjugate are second

diameters. Hence the least transverse diameter of an hy-

perbola is the transverse axis.

(176.) Cor. 1. The line represented by the equation,

Ay — bx = 0,

is an asymptote (105) for similar reasons: the other is,

at/ + bx = 0.

PROP. LVII.

(177.) The asymptots of an hyperbola make equal angles

with the transverse axis, and are the diagonals ofa recU

angle,formed by lines drawn through the vertices of each

parallel to the other.

For the tangents of the angles which they make with the
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transverse axis measured

in the same direction, are

H 3 and — —, which are
A A

therefore supplemental, and

therefore the angles hca,

HfCE are equal, •.• ch, ch ;

are the asymptots.

PROP, lviii.

(178.) Tofind whether any and what system of conjugate

diameters in an ellipse are equal.

In order to be equal they must, by (174), make equal

angles with the axis, v tang, dca — tang, fca, but

tang, dca . tang, fca == — ' tang, dca -, and

tang, fca = — the equation of the equal conjugate

diameters are,

Ay — b# = 0, Ay + bx = 0.

(179.) Cor. 1. The equal conjugate diameters are the

diagonals of the rectangle, formed by tangents through the

extremities of the axes, and are in that respect analogous to

the asymptots of an hyperbola.

(180.) Cor. % If an ellipse and hyperbola have the same

axes, the equal conjugate diameters of the ellipse are the

asymptots of the hyperbola.

(181.) Cor. 3. The equation of the ellipse, referred to

equal conjugate diameters as axes of co-ordinates, is

y% -j~ x* = Af% being analogous to that of the circle.

(182,) Cor. 4. The co-ordinates of the vertices of equal

conjugate diameters are found from the equations

Ay - bx =. 0, and a 2
?/
2

-f bV = a2b2
„
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They are, therefore,

(183.) Cor. 5. IfArbe one of the equal conjugate diameters,

A -
a -

(184.) Cor. 6. The value of x in the cor. 4. being inde-

pendent of b, and that of?/ independent of a, shows, that if

one axis of an ellipse is given the locus of the extremities of

equal conjugate diameters are parallel lines,

PROP. LIX,

(185.) To find when the rectangle, under a system ofcon-

jugate diameters, is a maximum and minimum.

By (167), a!* = b* + e*x\ b ?s = a2 ~-e*x°~, v a^ =
(a* - e*x*) (Ba + e*x*).

For the ellipse, the factors of this product have the

same sign, v their sum is constant, v the product is a maxi-

mum when they are equal ; hence, the major limit is the

equal conjugate diameters.

It is evident, also, the product is a minimum when they

are most unequal, i. e. when x is a maximum, v x = a ;

hence the minor limit is the axes.

For the hyperbola, the factors have different signs, there-

fore their difference is given, consequently there is no major

limit. The minor limit is found by taking x a minimum,

.L e. x = a, v the minor limit is the axes.

PE-OP. LX.

(186.) To find the limits of the sum and difference of a

system ofconjugate diameters.

Let s2 = a'2 + b'
2 + 2a'b', and d2 = a'2 + b'2 — 2a'b'.

In an ellipse, a'2 + b ,z
is a given magnitude, v s is a
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maximum or minimum at the same time with a'b' ; hence,

the major limit is the equal conjugate diameters, and the

minor the axes.

For the same reason the major limit of d is the difference

of the axes, and it has no minor limit.

In the hyperbola, Afa — b'2 is constant, and v since a' in-

creases without limit, b' must also increase without limit, and

v s must increase without limit.

Also, since sd = a'
2 — B ri

, and s increases without limit,

d must diminish without limit.

Also s is a minimum where a' and B f are so ; i. e. where

they are the axes. It is evident that d is at the same time

a maximum.

prop. Lxr.

(187.) A system of conjugate diameters being axes of co-

ordinates, to Jlnd the equation of a tangent through a

given point*

The given point being y
]x\ the equation sought by sub-

stituting for Af2

j/
2 + b2

ie'
3
, its value a,2

b'2 is,

Al2

y
!

y + b'V# = a,2
b'2 .

PROP. LXIX.

(188.) To express the subtangent and subnormal of an

ellipse and hyperbola related to a system of conjugate

diameters as axes of co-ordinates*

Let s = subtangent, s = the subnormal, and Q = the

angle under the conjugate diameters.

By the formula, in (136), s = ~r, S— —T-, ,—r—

—

J
'

v h
B fV ' A'y - BV COS. 0"

¥m the ellipse Af2y'2 = b'
2(a'2 - xf2

) v s =— - xK And
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if Af

, b'
;
be the axes of the curve s = - BV

For the

hyperbola a/2
«/

2 = b'
2(#'2 — a'2),

a', b' be the axes of the curve s =

s = x1 — —j-; and if

it*

(189.) Cor. 1. Since in ellipse

a'2

a!

ch = #' + s = —, and in hyperbola

It follows that,CH a?') — s = -

in an ellipse or hyperbola, if a tangent

and ordinate be drawn from any point

d to meet the same diameter, the

semidiameter is a mean

proportional between

the parts of the dia-

meter intercepted be-

tween them and the

centre.

(190.) Cor. 2. The

value of s, being independent of B f

, is the same for any num-

ber of ellipses or hyperbolas described on 2a' as diameter,

and having the conjugate diameters coincident with cf.

prop. LXIII.

(191.) To express the magnitude of the normal related to

the axes, as axes ofco-ordinates.

If s be the subnormal, and y
]x] the point on the curve, n

being the normal, n2 = s2 -f- y
H

; but by the last Prop.

bV2

s" =-
L+ '

Ay2 + bV2

But A2
*/

2 = A2B2 ~~ B2#'2
, V A4

J/
/2 + BV = B 2(A4 C2^2

)

A2 V y
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PROP. LXIV.

(19&) Any semidiameter is a mean proportional between the

parts of the tangent which is parallel to it, intercepted be-

tween the point of contact, and any system of conjugate

diameters*

Let the semidiameter cd

through the point of con-

tact, and its conjugate cf

be the axes ofco-ordinates,

and let cd', and cf' be any

other system of conjugate

diameters.

The point d' being #y, the

equation of cd' is

yaf — y
]x = 0,

and that of cf' is

A,2

y
fy + B fV# = 0.

In each of these, let a' be sub-

stituted for #, and the cor-

responding values of y are.,

aV -. .
^od

dt = -^-, and bt = — —7-7.
x A'y'

Hence, dt x dt' = — B f

2.

The sign being negative for the ellipse, and positive for the

hyperbola, shows that they are at different sides of cd in the

one, and on the same in the other.

PROP. LXV.

(193.) The trianglesformed by ordinates to any diameter cd

from the extremities of a system qf conjugate diameters',

and the intercepts between them and the centre are equal.

For if the point v! be y
fx\ the co-ordinates yx of the point
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B'X'

IT''

Ay
f' are by (167), y = -j, oc =

b ,

Since the angles y#', and j/a? are supplemental, their sines

are equal, therefore the area of the one triangle is

y'x1 sin. yx

2
, and of the other is

yx sin. yx b !x ! A f

y
! sin. yx ylaf sin. yx

PROP. LXVI.

(194.) Ifon the axes ofan ellipse as diameters circles be de-

scribed, that on the transverse axis will be entirely outside

the ellipse, touching it at tlie extremities ofthis axis ; that

on the conjugate will be entirely within the ellipse, touch-

ing at the extremities ofits conjugate axis.

Let A be the semi-

transverse axis, and b the

semiconjugate ; let y be

the ordinate of the large

circle on a,

y z = az — x 1
;

but in the ellipse

and since a2 > b2
, y > y, therefore every part of the circle

must be outside the ellipse.

In like manner, let x be the ordinate of the diameter 2b

of the other circle.

X 2 = B 2 */3
;

A2 A ;

but in the ellipse x 1 = ~(Ba—y%
) = —; x And since

b* x
•" ' B 2,

b < a
?
x < x, therefore every part of the circle lies within

the ellipse.

It is obvious that they touch as stated above.

a 2
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Y A
(195.) Cor. —=— , all ordinates to the diameter ae of

the circle are cut in the same ratio by the ellipse.

PROP. LXVII.

(196.) If a circle be orthographically projected on a plane,

to which it is inclined at an angle (#), its projection will

be an ellipse.

The projection of the diameter of the circle, which is

parallel to the plane, is a line on the plane equal and parallel

to it. Ordinates being supposed to be drawn to this diameter

of the circle, their projections will be perpendicular to the

projection of the diameter, and have to the ordinates them-

selves the ratio of the cosine of angle of projection to radius,

which being a constant ratio, the locus of their extremities

must be an ellipse, by (195.)

PROP. LXVIII.

(197.) The angles in the semiellipse, whose base is the trans-

verse axis, are obtuse; those in the semiellipse^ ivhose base

is its conjugate , are acute.

The proof is obvious from (194), and the angle in the

semicircle being right.

PROP. LXIX.

(198.) To find the limits of the angle inscribed in a semi-

ellipse on either axis.

Let any point on the ellipse be y
fx!

}
the equation of two

lines passing through the extremities of the axis and that

point are,

y(x]— a) — y\x—h) = 0, y{x}+ a) — y\x +a) — 0.

By the formula, in (31),

tang. IV = - -j; £-—;.



ALGEBRAIC GEOMETRY, 85

But by the equation of curve

If A > b this is negative, therefore the angle being ob-

tuse, is a maximum when its tangent is a minimum, which

is when y = b, since ab 2
is invariable. But if a < b, the

angle being acute must be a minimum in the same case.

Hence in a semiellipse, whose base is a transverse axis,

the greatest angle which can be inscribed is that whose

vertex is at the extremity of the conjugate axis. And in a

semiellipse, whose base is the conjugate axis, the least angle

which can be inscribed is that whose vertex is at the ex-

tremity of the transverse axis.

PROP. LXX.

(199.) Iftwo right lines be drawnfrom the extremities ofa

diameter ofan ellipse or hyperbola to any point oft the

curve, the diameters parallel to these are conjugate.

In order that the two lines through the centre,

y — ax = 0,y — a!jo == 0,

should be conjugate diameters, the conditions ad = 7

must be fulfilled. But if the two right lines connect a point

in the curve with the extremities of a diameter, their equa-

tions related to that diameter, and its conjugate are,

y{xl - a) — y\x - a) = 0, y{p£ + a) — y\x -f a) = 0,

and, in this case, aa] = — % and by the equation of the
0C '—~ A

curved = ? (a- - *»), v-^ = - ^, v ad = - -;

hence lines parallel to these must be conjugate diameters.

(200.) Cor, 1. Hence is obvious a geometrical method of

drawing a diameter conjugate to a given one.
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Let cd be the given dia-

meter, and ae any other;

from e draw a line el paral-

lel to cd, join al, and

through c draw a diameter,

cf, parallel to al; cf is the

semidiameter conjugate to cd.

(201.) Cor. % To find a system of conjugate diameters,

which shall contain a given angle.

On the transverse axis describe a segment ofa circle, which

shall contain the given angle, and join the extremities of the

axis with the point where, this segment intersects the ellipse,

diameters parallel to these lines will be conjugate, and con-

tain the given angle.

(Q02.) Cor. 8. The equal conjugate diameters are parallel

to the lines joining the extremities of the axes.

(203.) Cor. 4<. The property expressed in the proposition

furnishes a geometrical method of drawing a tangent at a

given point. Find, as in Cor. 1, the diameter conjugate to

that through the point, and a line through the point parallel

to this is the tangent.

prop. lxxi.

(204.) Tofind the most oblique conjugate diameters.

Let a perpendicular p be

drawn from the extremity d of

any diameter a'on its conjugate,

sin. dcf(9)=— But the equa-

tion of cf being

AV# + bV# = 0.

= - - But by theequa-
</A4y*+BV*

By formula (50), p
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tion of the curve,

a2b2(a2 - e*ri% v
AB

But, by (167),

b'2 = a2 — eV% v sin. 9 == -7-7.

Hence the sine 8 is a minimum, when a'b ;

is a maximum, z. e«

when Af = B
f

, hence the most oblique conjugate diameters

are those which are equal.

(205.) Cor, Since a tangent through the vertex of any

diameter is parallel to its conjugate, the value of the sine of

the angle under any diameter and the tangent through its

. AB
vertex is, -7-7.

a'b'

prop. LXXII.

(206.) The rectangle under the normal to any point, and

the transverse axis is equal to the rectangle under the

conjugate axis, and the semi-diameter conjugate to that

passing through the point.

For, by (191), n = — a/a2 - e*r8
, and by (167),

b' = */a 2 - e'W v 2an = 2bb'.

PROP. LXXIII.

(207.) Tojind the magnitude qfa parallelogramformed by

tangents through the vertices of a system qf conjugate

diameters.

Since the sides of the parallelogram are parallel respec-

tively to the conjugate diameters 2a', 2b', they must be equal

to them, and inclined at the same angle 0. Hence the area

of the parallelogram is 4»a'b' sin. 0, which, by (204?), is equal
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4ab. Hence, all parallelograms formed by tangents through

the vertices of a system of conjugate diameters are equal

the rectangle under the axes.

PROP. LXXIV.

(£08.) To find the distance ofany point in an ellipse or

hyperbolafrom thefocus.

The axes of the

curve being assumed

as axes of co-or-

dinates, the equa-

tion is,

a2
«/
2 + b¥ = a2bV

Let d be the distance sought, x>
2 = ?/

2 + (x — c) 2
,

V A9D2 = A9
j/

2 + A%X — cy = A2Ba - B 2
tf

a + A2
(ff — c) 9

;

in which substituting c* its value,

and taking the square root of the

result, ad = + (a2 — cx\

c . ,VD = ± (A #)= ±(A—•<?#),
A

where e expresses the eccentricity.

For the same value of #, there are, therefore, two equal

values of d, which is what should be expected ; if was

eliminated, which has two equal roots ±_y9
and the two

values of d correspond to these. The two values of d are

represented in the figures by fp and FP f

.

If c be taken negatively 3 the distance d' will be that of

the point from the focus F r on the negative side of the

centre. Hence,

i>
f = ± (A +

—

x ) = ± (A + ex )-
A

In an ellipse d and d' must have the same sign, for c and x

being both less than a, —x must be less than it also.
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But in a hyperbola, since c and x are both greater than

a,— must also be greater than a ; v in an hyperbola d and

D f have different signs. By the solution of the equation,

A9
y

2 + B*#2 = A2B2
;

and from the consideration that b2 > in the ellipse, and

b 2 < in the hyperbola, it is obvious that any value of

x > a in the ellipse, and < a in the hyperbola, would

render y impossible.

PROP. LXXV.

(209. ) In an ellipse the sum of the distances of any point

from thefoci, and in an hyperbola the difference of those

distances, are respectively equal to the transverse axis.

For adding the values of d and jJ in the last Prop.

d + d' = 2a,

D f being positive for the ellipse, and negative for the hy-

perbola.

(210.) Cor. 1. Hence, an ellipse is the locus of the vertex

of a triangle, of which the base and sum of the sides are

given; and an hyperbola is the locus, when the base and

difference of the sides is given.

PROP. LXXVI.

(311.) To describe an ellipse and hyperbola mechanically.

1°. Let the extremities of a cord be fixed to two points, a

pencil looped in the cord, moved so as continually to keep

the cord stretched, will describe an ellipse of which the

points are the foci, and the length of the cord the transverse

axis.

2°. Let one extremity a of a straight ruler be fixed, so

that the ruler can move round it ; in the same plane, to

another point b let the extremity of a cord be fixed. The
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ruler being turned so

as to pass through the

point b, let the cord

pass through a ring

attached to the ruler

at p, and capable of

sliding upon it, and

be fastened to it at any distant point c. The ruler being

moved in the same plane round the point a, a pencil at-

tached to the sliding ring at the point p will describe an

hyperbola.

PROP. LXXVII.

(212.) To express the polar equation, thefocus being the

pole, and the transverse axis the axis from which the

angles are measured.

For the value of d found in (208), let z be substituted,

and % cos. w + c for x ; the result after reduction is

a(1-^)
% =

or since (1 — e2) = —-,

1 + 0COS. W

Ba p

2

P
~~

2(l-f-*cos.o;)'

If the angle w be measured from any right line making with

the transverse axis an angle <p 9

a(1-<?2
) p

% =
2{1 + ecos. (p— w)} 2{l + £cos. (p— «>)}"

PROP. LXXVIII.

(213.) The rectangle under the distances ofany pointfrom

thefoci is equal to the square of the semidiameter con-

jugate to that passing through the point.

For from (208) dd' = a2 - e*x% and by (167),
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PROP. LXXIX.

(214}.) To find the length of a perpendicular ^from the

focus on a tangent through any point (y
!xf

)

The equation of a tangent being

^y ]y + b2^ — a2b2 = o,

the value of p f

is found by (50),

a2— cx }

P f = - B ft
. : .

(Ay24-BVa
y«

But by the equation of the curve,, it appears that

A4yfz + B*xiz = P2A2(A ^ _ eva
). Hence,

— /a— g^
r

\4

If e be taken negatively, the length of the perpendicular

p" from the other focus on the tangent is,

*» = - b(^V.
\&—ex J

/

PROP. LXXX.

(215.) 7%e rectangle under the perpendiculars from the

foci on a tangent through any point is equal to the square

ofthesemiconjugate axis.

For by the last Prop.

p'p" = b2
.

PROP. LXXXI.

(216.) Theperpendicularsfrom thefoci on a tangent through

any point are as the distances of that pointfrom the

focus*

For, from (214),

p' a— eod r>

p"
~~

A + ex1
""

Dr
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PROP. LXXXIX.

(217.) The lines connecting any point with the foci are

equally inclined to the tangent.

For the angles at which d and vf are inclined to the

tangent being Q and fl
;

,

sm. = — and sin. 0' =

but by last Prop.

n/»-

p'

(218.) Cor. 1. Sin.
2
$ =

and dd' = Bf2 by (213)

;

p'p"

sm. = sin.

but by (215), PP" = B*

(219.) Cor. 8.

focal distances.

Sin. (7 = —r.

The normal bisects the angle under the

(220.) Cor. 8. The

property expressed in the

Prop, points out a geo-

metrical method of draw-

ing a tangent to a point

on the curve.

For let lines df, df',

be drawn from the point to the foci, and if the curve be an

ellipse df ; produced, the line

which bisects the angle FD/*is a

tangent. If the curve be an

hyperbola, the line which bi-

sects fdf' is the tangent.

(221.) Cor. 4 Ifoneofthe

foci be a point from which rays emerge, which obey the

same law of reflection as those of light, and that the curve
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be a reflecting substance, the reflected rays, if the curve be

an ellipse, will converge to the other focus ; and if it be an

hyperbola, they will diverge from it. It is from this pro-

perty that the foci have received their name.

PROP. LXXXIII.

(£82.) A line being drawn from thejbcus to the point of

contact of a tangent, and a linefrom the centre parallel

to it, tofind the length of the latter intercepted between

the centre and the tangent.

Let the line sought be z, and the angle it makes with the

tangent = 0, and the perpendicular from centre on the

tangent = p.

P AB
Hence, z = ^- ; but p = ~^~ by (808), and by (818),

B
sin. 8 = —r, V Z = A.

Hence, the locus of the intersection of this line with the

tangent is the periphery of a circle described on the trans-

verse axis as diameter.

PROP. LXXXlV.

(823.) Tofind the locus of the intersection of a tangent and

a right line perpendicular to it passing through the

focus.

The equation of the tangent is

A*t/y + b 2x!w = A*B2
.

The equation of the perpendicular is

A2
y

!x — b*a!y = Acy1
.

Eliminating yW, observing the condition,

A2y2 + B*rf2
_- A2B 2

9

and arranging the terms according to the dimensions ofy9

we have
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?/
4+ (2#*—2c#~B%2+ (#

4~ %CXZ- B2#2 + 2a2C,T~AQC2)= 0,

which resolved, gives

~2^+2c^ + b2 ±(2c^-!-b2 -~2a2
)^ = . ,

which gives the two equations,

y
% + (x - cf = 0,

«/
2 + ^2 = A2

.

The first is satisfied only by y = 0, x = c, which are the co-

ordinates of the one extremity of the perpendicular ; the

latter is the equation of the circle described on the transverse

axis as diameter, which is therefore the locus sought.

PROP. LXXXV.

(224.) In an ellipse or hyperbola the semitransverse axis is

a mean proportional between the distances of thefocus and

directrixfrom the centre.

A2

For the distance of the directrix from the centre is— by

(166.)

(225.) Cor. 1. Hence, in an ellipse the vertex lies be-

tween the centre and directrix ; but in the hyperbola, the

directrix lies between the centre and the vertex ; for

A2

C > A, V A > —

.

C

(226.) Cor. % The perpendicular distance of any point

y#f in the curve from the directrix is

A2

]

A2— CX !

c .

~~
~~ c

PROP. LXXXVI.

(227.) The distance ofany point in an ellipse or hyperbola

from thefocus has a constant ratio to the perpendicular

distance of the same pointfrom the directrix.

For by (208) d = — , and by the last Prop., the
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distance from directrix is — , the ratio of which c : a,
c

is independent of the co-ordinates of the point.

This is a ratio of minor inequality for the ellipse, and of

major inequality for the hyperbola.

PROP. LXXXVII.

(228.) A line being drawnJrom the Jbcus to any point in

the curve
9
tofind the locus of the intersection ofa perpen-

dicular to this line drawn through the Jbcus with the

tangent

The equation of the line drawn from the focus to the

point y
fx f being

(x ! -~ c)y — y'x +y fc ~ 0.

The equation of perpendicular to it is

y'y + (#' -— c)x -f c(c — x 1

) = 0.

If «/' be eliminated by means of this equation^ and that of

the tangent through y
fx, the result after reduction is

A2

Hence the locus sought is the directrix.

PROP. LXXXVIII.

(229.) The asymptol of the hyperbola is the limit of the

position of the tangent, the distance of the point ofcontact

Jrom the centre being indefinitely increased.

Let the point of contact be y
]x]

: the equation of the

tangent solved for r/9
and the value of y

f being substituted

in it, gives

_ BX 1 AB — B
y = + — x + — • x +* A AAr,a --A2 ^ ft -As

A 4/l-—
AB

V^2 ~-A2
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As rf is indefinitely increased, the value of y approaches

x as a limit ; but y = + —- is the equation of the

asymptots.

(280.) Cor. 1. Hence, it appears that the asymptots are

the diagonals of a parallelogram formed by tangents through

the vertices of every system of conjugate diameters.

(231.) Cor. 2. If a line be drawn connecting the ex-

tremities of any pair of conjugate diameters, it will be

bisected by one asymptot, and parallel to the other : for

these extremities are the points of bisection of the sides of

the parallelograms., of which the asymptots are the diagonals.

PROP. LXXXIX.

(282.) To find the equation of the asymptots related to any

system of conjugate diameters.

The equation of the tangent related to any system of

conjugate diameters aV is

kHy
ly + ^x'x = AfftB fft

,

,

/I 1^
,

a'«b'
orA'n/ --^r + B*=—

•

The limit of this when od is indefinitely increased is the

equation of the asymptots, Af

y ± b'x i= 0, which is the same

form as when related to the axes.

prop, xc,

(288.) The intercept of a tangent to an hyperbola between

the two asymptots is equal to the diameter to which it is

parallel^ and is bisected at the point ofcontact.

The diameter through the point of contact and its con-

jugate being axes of co-ordinates, the equation of the asym-

ptots is

Afy + n fx = 0.
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If in this x = Af

, y = + Bf

, hence the proposition is

manifest.

PROP* XCL

(234.) Ifany right line intersect an hyperbola, and be pro-

duced to meet both asymptots, the two intercepts between

the curve and asymptots are equal.

The diameter parallel to the right line and that to which

it is an ordinate being taken as axes of co-ordinates3
the

equation of the hyperbola is

the equation of asymptots,

A!y + six = 0.

From the form of these equations, it is evident that the

axis of x bisects the part of the line intercepted between the

two asymptots, as the two values ofy are equal with opposite

signs. It also bisects the part intercepted within the curve

;

and hence it follows that the two intercepts between the curve

and the asymptots are equal.

PROP. xcn.

(235.) A right line bping intercepted betzoeen the asymptots?

the rectangle under the segments of it made by the curve

is equal to the square of the parallel semidiameter*

The axes of co-ordinates being as in the last Proposition,

the segments are

V W —

—

-_#' — —- v^'a— a'2
,

a' a

a! a1 v

being the sum and difference of the values ofy for the curve

and asymptot, which, when multiplied, give b'
2

.

h
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PROP, XCIII.

(236.) Tofind the intercept of a parallel to an asymptot

between the curve and the directrix.

Let the point where the parallel meets the curve be y
fxf

;

the perpendicular distance of the point from the directrix is

Af2— Gcct

by (226)3
;— ; and tne sine of the angle at which the

parallel to the asymptot is inclined to the directrix is —

•

Hence, the intercept of the parallel required is

Af* ~ QOd

A >

and therefore the distance of any point in the curve from

the focus (208), is equal to a parallel to the asymptot drawn

from the same point to the directrix.

prop. xciv.

(237.) The asymptots of an equilateral hyperbola intersect

at right angles.

For their equation is 3/ + x = 0, v each is inclined to

the transverse axis at half a right angle, and therefore they

make with each other a right angle.

prop, xcv,

(238.) Iffrom any point in an hyperbola, parallels to each

asymptot be drawn to meet the other, the parallelogram

under these is of a constant magnitude, and equal to a

fourth part of the parallelogramformed by linesjoining

the extremities of the axes*

The equation of hyperbola related to its asymptots is
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The line joining the vertices of the axes is equal to c; and

since it is parallel to one asymptot, and bisected by the other,

wheny— \ c, x=i of other diagonal of rectangle under axes,

F C
z C2

v x=~c ; hence = -r- , "." yx = — . And as the paral-

lelogram under yx is equiangular with that whose side is c,

they are equal.

PROP.XCVI.

(239.) The subtangent ofan hyperbola related to its asymp-

tots, as axes of co-ordinates, is equal to the intercept of

the asymptot between the ordinate of the "point and the

centre.

Since the point of the tangent intercepted between the

asymptots is bisected at the point of contact, the ordinate

parallel to each asymptot from the point of contact, must

bisect the parts of the other intercepted between the tangent

and the centre.

SECTION XIII.

Of the parabola.

PROP. XCVIT.

(£40.) A parabola is the limit of an ellipse or hyperbola, the

parameter of which being given, the transverse axis is

increased without limit.

For the equation of an ellipse or hyperbola, the origin

being at the vertex, is (181),

Ay -1- bV - 2ab% = ;

the parameter being p,

AP _ z
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making this substitution, and dividing by A*, the equation

becomes

If a be supposed to be increased without limit, p remaining

unvaried* the second term disappears, and the equation be-

comes

which is that of a parabola.

PROP. XCVIII.

(241.) Tofind the equations ofa tangent and normal of a

parabola*

The equation of the parabola related to a diameter and a

tangent, through its vertex as axes of co-ordinates, is

3/
2 — p

]x = 0,

jp
f being the parameter of that diameter (162). The equa-

tion of the tangent is, therefore, (133),

%y\y - #') - Pix - #f

) = ;

or since y* — pfat = 0,

9nfy — p(x + %>) = 0.

The equation of the normal is therefore

(p
1+ %/ cos. j/^) (# — y) -f (%/ + y cos. yx) (x - a?

;

) = ;

and if the axis of x be that of the curve, it becomes

p\y — y) + %'(# - x !

) = 0.

PROP. XCIX.

(&42.) To j^wd tffte subtangent and subnormal of the

parabola.

The subtangent being s, and subnormal s, their values

by the formulae (136), (137), become

s = %oc\

f
y +%/ cos. yx
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If the axis of x be that of the curve, the value of the sub-

normal becomes

Hence, in a parabola the subtangent is bisected by the curve,

and the subnormal relative to the axis is constant, and equal

to half the principal parameter.

prop. c.

(243.) To find, the distance of a point in a parabolafrom

thefocus.

Let the sought distance be z
9
and j/#

f the point. The

P
co-ordinates of the focus being y = 0, x = -j-, v

V £ = X 1 + ~r.

PROP. CI.

(244.) To find the polar equation of a parabola^ thejbcus

being the pole.

Let <p be the angle which the axis of the parabola makes

with the fixed axis from which the values of w are measured,

P
Ifyx be any point on the curve, by (243) % = x + ~ ; but

(# — -£~) = s cos* (w — p). Hence,

P%~% cos* (»-?) + -g-,

v 2 ... __' ,

"£{1— cos. (« — <?)}'

or, since 4 sin.
2
£ (o> - p) = 2(1 — cos. (w - <?)},
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„ P
~~

4 sin.
2, i (w — p)

'

and if the angle w be measured from the axis <p = 0, there-

fore the polar equation is

z = *
..

4 sin.
2 iw

If (v be measured on the negative side of the focus, these

equations become

r „ P_
Z ~~

2(1 + cos. a>)
9

x = £_.
4 cos. 2

-|w

(245.) Cor. Hence the equation

52 =
2(1 +e cos. o>)

?

includes all three species of lines of the second degree. It

represents an ellipse if e < 1, a parabola if # = 1, and an

hyperbola if # > 1

.

prop. en.

(246.) J. rigAf Zm<? 6^i^ drawn through thefocus of any

line of the second degree', and terminated in the curve, to

find the relation between the parts intercepted between the

focus and the curve.

By the polar equation the intercepts z
9 .z

] are,

x=s S-
2(1 -h e cos. oj)

3

z< = P = ... P
2{ 1 + e cos. (it + w) } 2(1 — e cos. w)°

Hence follow, by multiplication and addition^

£2' =
4(1— e* cos.

2 w)
9

* + y =—-^
I—£a cos. 9 w 9
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and therefore 4#3f = p{% + sf

).

That is, the rectangle under the sum of the segments and the

principal parameter, is equal to four times the rectangle

under the segments.

(247.) Cor. 1. The rectangle under the segments varies

as the whole intercept.

(248.) Cor. 2. Half the principal parameter is an harmoni-

cal mean between the segments.

prop* cm.

(249.) The distance of any point in a parabola from the

focus is equal to the perpendicular distance of the same

pointfrom the directrix.

By (166), the perpendicular distance of the directrix from

a tangent through the vertex is —, therefore the perpen-

dicular distance of a point in the curve from the directrix is

x "*~ a > "3Ut ^is ^ (^^) *s tne distance of the same point

from the focus*

prop. civ.

(250.) To describe a parabola mechanically.

Let F be the focus, and v

the vertex of the proposed

parabola. Take bv = fv,

and bc perpendicular to ab

will be the directrix. Let

a square abc be applied to

the right angle under the

axis and the directrix. The

extremity of a cord being B *V 3s

" ~ A,

fastened to any distant point on the side ba of the square,
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and being passed round a sliding pin at v, let it be fixed to

the point f. If the square thus adjusted be moved in the

direction bc parallel to itself, the point m will describe a

parabola, since b'm always equals mf.

prop. cv.

(251.) Tofind the length ofa perpendicularfrom thefocus

on a tangent.

The equation of the tangent being

%&!

y ~~ pi®
1 + ^} = ;

and the co-ordinates of the focus,

The perpendicular required is

(V + P
8)*"*

'

*

PROP, CVI.

(25%) The perpendicular on the tangent through any point
9

is a mean proportional between the distances of that point

and the vertexfrom thefocus.

For, by (243), the distance from the focus is x + -, and

the distance of the vertex from the focus is —-, therefore,

by (251), the perpendicular is a mean proportional between

these.

prop. CVII.

(253,) Tofind the locus of the point of intersection of the

perpendicularfrom thefocus ofa parabola, with the tan-

gent.

The equations of the tangent and the perpendicular are^
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%fy — p(a! + oo) = 0,

%py + 4n/x — ^y = 3

Eliminating y
]x ] by means of these equations, and the equa-

tion of the parabola, the result, after reduction, is

*{i6jf + (p~^xy\ =0,

which gives

*? = <>,

1%Z + (p - 4a?)
a = 0.

The locus of the first is the axis of y9
and the latter can

only be fulfilled by the conditions.

0, x -JLy — v
9

*, — ^ ,

which are the co-ordinates of the focus.

Thus, one of the results gives the co-ordinates of the point

from which the perpendicular is let fall, and the other shows

that the locus of the extremity which meets the tangent, is

the tangent to the curve which passes through the vertex.

PROP. CVIII.

(254.) The part of the axis ofaparabola intercepted between

a tangent and thefocus', is equal to the distance ofthepoint

ofcontactfrom thefocus.

For, by (243), the dis-

tance fp from the focus

is,

z = x + P

and since the subtangent

is bisected by the vertex

(£42), the intercept of the axis between the tangent and

vertex is x, and therefore the intercept between the tangent

and focus is % + -7-, . FP = FSo
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PROP. CIX.

(%55.) A tangent to any point ofa parabola being drawn, a

diameter, and a line through the focus from the same

pointy are equally inclined to the tangent.

For, by the last proposition, the line pf, from the focus,

being equal to the intercept fs of the axis between the focus

and tangent, the tangent must be equally inclined to pf and

the axis ; but, since all diameters of a parabola are parallel

to the axis (93), the diameter pd and pf are also equally in-

clined to the tangent.

(£56.) Cor. If any rays, which obey the law of equality

of incidence and reflection, move in right lines parallel to

the axis of a reflecting surface, generated by the revolution

of a parabola round its axis, the reflected rays will all con-

verge to the focus ; or if they diverge from a lucid point placed

at the focus., they will be reflected parallel.

prop. ex.

(257.) The distance of any point in a parabolafrom the

focus, is equal to a perpendicular to the axis passing

through the same point, intercepted between the axis and

thefocal tangent.

In the general equation of a tangent through any point

P P
2/W, substitute —- for x\ and —- for y\ and the equation

becomes

V
y = x +—

,

that of the focal tangent; but this value ofy is the same as

that of % in (843).
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PROP. CXI.

(858.) Tofind the relation between the principal parameter^

and the parameter of a diameter passing through any

given point.

The equation of the parabola related to the axis, and a

tangent through the vertex, -as axes of co-ordinates, is

y* = par,

p being the principal parameter. Let the co-ordinates of

the point through which the diameter passes be y-x\ The

axes of co-ordinates being removed to this diameter as axis

of x9 and a tangent through its vertex as axis of y. The

transformed equation, by the formulae (74), becomes

j/
2 sin.

2
tec -\- (%/ sin. tx — p cos. tx)y — px -fy'

a —'px1 = 0.

Since the sin. x !x = 0, and cos. wfx = 1, the new axis of

a being parallel to the former, and expressing by too the

angle under the tangent and diameter, which is the same

with y
}x in the formula.

Also, since the point y
fx!

is on the curve,

ya — prf — Qe

And since tang, tx = -^-7, (241), v

Qy
1

sin. tx — p cos. tx = 0.

Hence the transformed equation becomes

y
% —

( p -j- 4<r
f)^ = y#,

1>

la?
robserving; that sin,

2 tx = —r-r-° jp+4^

Hence the parameter^' of the diameter, through the point

y#f

, is equal to four times the distance of the point from the

focus, since the distance from the focus is x + ±p.

P
(259.) Cor. Sin.2 tx = -—

-. Hence the parameters of

diameters of a parabola are inversely as the sines of the

angles at which these diameters are inclined to their or-

dinates*
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SECTION XIV,

Problems relative to lines of the second degree, illustrative

of the application ofthe preceding principles.

prop. cxn.

(260.) Given the base (ab), and vertical angle ofa triangle,

tofind the locus ofa vertex.

The base (ab) being

assumed as axes of #,

and a perpendicular (ay)

through its extremity (a),

as axis of y9 let the co-

ordinates of c be yx3 let

ab = b
9
and acb = 9, v

tang.A-|,tang.B=^

tang.c^^
1^^^^^ yh

-bx1— tang.Atang.B ™«/2+#2
•

Hence the equation sought is,

t/
2, + x* —- cot. . b .y — bx = 0,

which (130) is the equation of a circle, the co-ordinates of

whose centre are,

y = \ cot. fl . 6, #' = ^#.

If « = -£-, cot. 0, v «/ = 0, which shows that in this

case the centre is at the point of bisection of the base*

Cot. 8 is positive or negative, according as c is acute or

obtuse; v the centre is above the base in the former case,

and below it in the latter. From these results may be in-

ferred,

1st, That all angles in the same segment of a circle are

equal.
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2d, That the angle contained in a semicircle is right.

3d, That the angle contained in a segment, greater than

a semicircle, is acute.

4th, That the angle contained in a segment, less than a

semicircle, is obtuse.

PROP. CXIII.

(261.) Given the base (ab) of a triangle, and the ratio of

the sides, tofind the locus of the vertex (c).

The axis of co-or-

dinates being placed as

before, let ac = a3 and

cb = c ; and let

a = nc, v a 7, = wV,
but A B

a2 = y* \- #2
,

c2 = y
2 +. (5 — a?)

2
.

The equation of the locus sought is, v
&?i2 , w ft6a

#
a + a* +- .6a? — = 0,1— 7l«" 1—W2 '

which is the equation of a circle, the co-ordinates of whose

centre are

n*b
^ n2 — 1

The points where the circle intersects the base are found by

supposing y = 0, which gives

no

W-f 1

which values show that the circle cuts the base internally

and externally in the given ratio, and the part intercepted

between these points is the diameter of the circle.

prop, cxiv.

(262.) Given the base (ab) ofa triangle, and the sum of the

squares of the sides, tofind the locus of the vertex.

Let the point of bisection (d) of the base be taken as
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origin, the base as axis ofx
9
and the

perpendicular through d as axis of

y. Let ad = b, and let the given

sum of the squares of the sides be s
a

.

EC2 =
j/

2 + (x — b)%

V ^ _|_ ^2 =:|.s2-. £2
,

which is the equation of a circle, whose centre is at the

origin, and whose radius is Vi& z — &*•

prop. exv.

(£63.) Given the base and vertical angle of a triangle, to

find the locus ofthe intersection oftlieperpendicularsJrom

the angles on the opposite sides.

The axis of co-ordinates being

placed as in Prop, cxii., and the sig-

nifications of the symbols being re-

tained, the co-ordinates of the inter-

section of the perpendiculars are

(b— x)x
Y =

y

and from these the values of y and x being found, and

substituted in the equation for the locus of the vertex found

in (53), the result is,

Y2 + x2 + cot. . #Y - bx = 0.

This is the equation of a circle ; and since it differs from the

equation in (£60), which gives the locus of the vertex, only

by the sign of cot. 9, the locus sought is a segment of a

circle, containing an angle supplemental to 0.

PROP. CXVT.

(£64) Given the base (ab), and vertical angle (g), tofind the

locus of the intersection of the bisectors of the sides.

By (54) the co-ordinates of the intersection of the bi-
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sectors are

1L
8'

x-\-b

substituting the values ofy and x in

these equations in that of the locus

of the vertex in (260) , the result is

y* -i- x2—
-J- cotJbx — bx -f f6

2 = 0,

which is the equation of a circle, the co-ordinates of whose

centre are

f

b cot. Q.b
x =

IT 5
y] = ~6~"'

To find the points where this circle meets the base, let

Y = in the above equation, and the corresponding values

of x are,

which shows that the circle intersects the base at the points

of trisection.

Let <p be the angle contained in the segment of this circle,

whose chord is one-third of the base,

x ! ~±b
Tang. <p = —p- = tang. L

y
Hence this segment contains an angle equal to the vertical

angle of the triangle.

prop. cxvu.

(%65.) Given the base and vertical angle ofa triangle tofind

the locus of the centre of the inscribed circle.

The lines bisecting the base angles intersect at the centre

of the inscribed circle (59)? v the sum of the angles which

they form with the base is
2

being the vertical angle ;

if + t

and v the angle formed by the two bisectors is —^-. This
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being a given angle, the locus sought is the segment of the

circle which contains it.

PROP. CXVXII.

(268.) To express the circle by a polar equation.

The general equation of the circle related to rectangular

co-ordinates., is

(y - y)2 + (X
- _ rfy = rQ

-.

Let the distance of any point in the circle from the pole

be &, and the angle it makes with the axis of x be (p
!

9
sind the

distance of the centre be &'', and the angle it makes with the

axis of x, <p'. By substituting % sin. <p, .s'sin. <p
!

9
£cos. 0,

& f
cos.-0', for y 9 y\ x

9
x\ respectively, and observing the con-

ditions,

sin. 2 + cos.2 = 1, cos. cos. f

-f ^n - 1 sin.
? =

cos. (0 -— 0'),

the equation becomes

23 + z
!* - 2%% ! cos. (0 — f

) = rC2

o

If the pole be on the curve z1 = r 9 and the equation becomes

z — 2r cos. (0 — 7

) = 0,

and if, at the same time, the axis from which is measured

passes through the centre, <p
f = 0, and the equation is

z —
. 2r cos. 0=0.

PROP, CXIX.

(£67.) A right line being drawnfrom a given point (p) to

a given circle, tofind the locus of the point at which it is

divided in a given ratio.

Let the intercept between the given point, and the poinj

whose locus is sought, be z", and let nzu =..s. By this sub-

stitution in the polar equation of the circle, we find

z
fl2 + -— - %Z!I — COS. (0 - dj) = -4-.
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Hence the locus sought is a circle, whose centre is found by

dividing the line connecting the given point with the centre

of the given circle in the given ratio, and whose radius is to

that of the given circle as 1 : n,

prop. cxx.

(268.) Tofind the locus of'a point, from which lines being

drawn to several given points, the sum of their squares

shall be ofa given magnitude.

Let the given points be y
]x\ y

]]x ]]

, yV .... y
(n)x (n)

, and

the point whose locus is sought yx. The squares of the

lines respectively are

{y-y'f +-(*-*')s
,

(y ~ t/i)* + (* - *")*,

(y ™y ,l!T + (#—y")s

which being added, and their sum expressed by s
2
, and the

result divided by n, give

V*-f*2 3^ T.fr Tff ,y g
T

^& n J n

+ . „ —— - °>

which is the equation of a circle, whose centre is the Centre

of Gravity of the figure formed by lines joining the given

points (70).

prop, cxx I.

(&69.) Tofind the locus ofa point,from which lines being

drawn at given angles to the sides of a given rectilinear

figure, the sum of their squares shall have a given mag-

nitude.

The equations of the sides of the figure being respectively
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Ay + bx + c = 5

Afy 4- B'\r + c =
?

A,!y + b"x+ c"=0,

A^jH-BKr-f c^= 0.

Let the angles the lines make with the sides he <p 9
<p'

9

the squares of the lines are respectively,,

(at/ + bx + c) 2

(a2 + B^mTo'
(a'# + six 4- c f

)
2

(a'
8 + *'*¥ sin. 2

/5

(A^jZ+B^^+ C^) 8

which being added together, and their sum equated with a

constant quantity, give a complete equation of the second

degree^ which is that of the locus sought,

PROP. CXXII.

(270.) Tofind the locus of a point,from which two right

lines being drawn at given angles to two given right

lines, the rectangle under them shall have a given mag-

nitude.

Let the equations of the two lines be

Ay + bx + c = 0,

A!y + b !x -f o f = 0.

The lines making given angles with these from the point

yx, are

Ay Jr bx + e

A/Aa + B®sin.

A!y-\-B !x+ d

^/a'2 + b'2 sin. ?'
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These being multiplied, and their product equated with a

constant magnitude,, the result is a complete equation of the

second degree, which is that of the locus sought,

PROP. CXXIII,

(271.) Given the base ofa triangle, and the difference be-

tween the base angles , tofind the locus of the vertex.

The middle point d of the

base being assumed as origin,,

and the base as axis of #, let

the co-ordinates of the vertex

be yx> and ad = &, and the

difference of the angles = 0.

tang, a — tai
Tans:,

1 -f tang, a tang, b y
2— x* -f h

%

Hence the equation of the sought locus is

of — 3 cot. yx ~ a?
a + bz = 0.

This is manifestly the equation of an hyperbola, since

b* — 4ac = 4(cot.
a + 1) = 4 cosec* > ; its centre

is the origin. The position of the diameter conjugate

to ab may be determined by the equation found in (167),

which becomes in this case

y _=: — tango 9 . .r,

v the diameter conjugate to ab is inclined to it at an angle

= 8.

The axis ofy being transformed from its present position

to coincidence with the conjugate diameter through the

point Dp by substituting y . sin. for ?/, and x — y cos. for

x3
which are what the formulae (74) become in this case, the

transformed equation is

t - & = - i s
,

which shows that the hyperbola is equilateral, and that its

semiaxis squared is 59 sin, (189).

(272.) Cor. 1. Hence it follows, that in an equilateral

i 2
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hyperbola, if lines be drawn from the vertices of any dia-

meter to any point in the curve, the difference of the angles

which they form with the diameter is equal to the angle

under that diameter and its conjugate.

(273.) Cor. 2. If the difference of the angles be a right

angle, the base is the transverse axis, and vice versa,

prop, cxxiv.

(274») Given the base ofa triangle, and the product of the

tangents of the base angles, tofind the locus of the vertex.

The axes of co-ordinates being placed as in the last Pro-

position, let the product of the tangents be m, v

if -f mx9
' - mb z = 0,

which is the equation of the locus sought. This locus is

therefore an ellipse if m > 0, and an hyperbola of m < 0,

the base being the transverse axis.

prop, ex xv.

(275.) Given the base of a triangle, and the sum of the

tangents of the base angles, tofind the locus of the vertex.

The axes of co-ordinates being placed as before, let the

given sum be m, v
c2by

o l — xz

hence the equation of the locus is

ma:* 4- 2% — mb 2, = 0.

This equation being put under the form

26 mb .

m x ^ 2 "

shows that if the origin be removed to a point in the axis

fjfjfib

of y9 whose distance from the present origin is —~—-, the

equation becomes
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2b
x 1 = y.

117

Hence the locus sought is a parabola, whose axis is a per-

pendicular through the middle point of the base, and whose

vertex is at a perpendicular distance from the base equal to

m& j i • • •. .26-q-
9 and whose principal parameter is — .

PROP. CXXVI.

(276.) Given the base of a triangle, and the difference of

the tangents of the angles at the base, tofind the locus of

the vertex.

The axes of co-ordinates being placed as before, let the

given difference be m, v
-\~

c2yx
m = 7-

:

oa—xl

the equation sought is v
9yx -f mx* — mb2 = 0.

This is the equation of an hyperbola (124), the axis o£y
being an asymptote, and the origin at the centre (119) ; the

base of the triangle is therefore a diameter, the equation of

the diameter conjugate to which is

y 4- nix = 0.

Hence the tangent of the angle (0), at which this conjugate

diameter is inclined to the base, is equal to the difference of

the tangents of the angles at the base.

The axis of y being transformed to coincidence with the

conjugate diameter by substituting y sin. for y, and

x -\-y cos. for x, and — tan. for m, the equation becomes

cos. 2
. y

z - %2 + b2 = 0.

Hence, the square of the semi-second diameter conj ugate to

the base is — b
z
sec.

2
0.
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PROP. CXXV1I.

(277.) Tofind the locus ofa point (-p) 9Jrom which perpen-

diculars drawn to the sides ofa given angle (xay), shall

contain a quadrilateral ofa given area,

The sides of the given angle

(0) being assumed as axes of

co-ordinates,, and the co-or-

dinates of the point r being yx9

the area of pma is

\y sin. 0{# -|- y cos, fl),

and that of vm& is

i# sin. $(3/ -f # cos, 0).

Let the magnitude of the quadrilateral be m2

, the equation

of the locus sought is

g/
3 -1- 2 sec. fl . yx -f ^a — S^3 sec. cosee, 9 = 0.

Since b3 - 4ac = 4(sec.2 - 1) = 4tan. a
8 > 0, the

locus is an hyperbola, of which the vertex of the angle is

the centre (119).

PliOP. c XXVIII,

(278.) Tofind the locus of the centre ofa circle touching a

given right line, and passing through a given point.

The locus must be a parabola, of which the given point is

the focus, and the given line the directrix, as is evident

from (249).
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PROP. CXXIX.

(2
f

79.) Tofind the locus of* the centre of a circle touching a

given right line and a given circle.

Let p be the centre

whose locos is sought,

and c the centre of the

given circle ; pd= pw.

Let vm be produced,

so that mm!~CD
9 and

through rn! parallel to -

the given line let an-

other right line be

drawn, v vm1 = pc ; v the locus is a parabola whose focus

is c, and whose directrix is m'o.

PROP. CXXXo

(280.) Tofind the locus of the centre ofa circle which

touches two given circles.

This is equivalent to being given the base and difference

of the sides of a triangle to find the locus of the vertex.

The locus is therefore an hyperbola whose foci are the

centres of the two given circles, and whose transverse axis is

the difference of their radii.

peop. cxxxi.

(281.) Tofind the locus of the intersection oftangents to a

given parabola which intersect at a given angle.

Let the points of contact be y
]x\ yV, the point of in-

tersection yx
9
the given angle 0, and the equation of the

given parabola y
9, = vx. The equations of the tangents

through the given points are
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%jy - px - y2 = (1),

2fy - px - y
!!* = (2).

The tangents of the angles which these make with the axis

V P
of the parabola being ^—

t

and ^r

,

4^ ^
t».» = ^fe& (8).

Jp
2+4yy

Subtracting (2) from (1), and dividing the result by («/'—#'),

we find % — y = z/'. Substituting this value in (3), and

multiplying by the denominator^

Stan. Q .i/y — 4p#—4tan. fl . s/a + tan. .£>2 + 4/?y == 0.

Multiplying (1) by 4tan. 0, and subtracting it from this3

the result divided by p is

4tan. . x -f tan. . p -f- 4y — 4y = ;

and hence,

y
! = y — i.tan. Q . p ~ tan. 5 . #,

which substituted in (1) gives

?/- tan/2 . jt
2 -_p(l + i-tan. 2

fl) a? - T^tan.
2

. p* = 0,

which is the equation of the locus sought. This must be an

hyperbola, since (b^ — 4ac) = 4tan.s > 0.

The co-ordinates of the centre are

y rr. 0^ ^ = — |p (cot. 2 . + i) ;

the origin being removed to this point, the equation becomes

p2

y* - tan.2 §x°~ = — -^-cosec2
0,

which shows that the squares of the semiaxes are

p
z COS.*

4 * sin.4 !

-, b2 = — ^p2 cosea2

In this investigation the tan.2 includes +tan, and

— tan. 0, i. £. tan. and tan. (tf — 0), which shows that the

process includes the locus of the intersection of tangents,

which contain an angle supplemental to 0. Of the opposite

branches of the hyperbola
3
one is the locus of the intersection
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of tangents containing the angle 0, and the other of tangents

containing its supplement.

If = -—

-

?
the equation after division by tan.2 0, becomes

* + £ = *

which is the equation of the directrix of the given parabola,

Hence, if tangents to a parabola intersect at right angles*

the locus of their intersection is the directrix.

prop, ex XXII.

(282.) Tofind the locus of the intersection oftangents to an

ellipse or hyperbola, which shall be inclined to the trans-

verse axis at angles, the product of whose tangents

is given.

Let the equations of two right lines meeting the curve be

y + ax + b = (1),

y + dx + V=0 (2) ;

the equation of the curve being Ae
yz + srx* = a2b 2

.

Eliminating y by this, and each of the equations of the right

lines, and finding the value of x in the resulting equation
5

and equating the radical in each with
;
we find

A°~a2 + b* - bz =
5

AV + b q - #2 = 0.'

The values of b and b ] in (1) and (2) being substituted, and

the equations arranged by the dimensions of a and a\

2xy b 2 — y z

a2 _ —z-a + \ = 0,
A2— X z A2 —

#

2

rf. _ -f^ 4-^=0.A—X2 A^ — X-

The values of a and a' being the roots of either of these

equations, let ad = wi 5 v
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B 2— if

A2— X~

Hence, the equation of the locus sought is

y% _ mx* 4- mAz ~ b2= ;

the locus is therefore an ellipse or hyperbola, according as

m < or > 0.

Let the semiaxes of this curve be a', b',

mA z— b 2

-

,

Bf2 = — ?M3 + b2
;m

hence a/z
: b/2

: : 1 : m.

If the curve be an hyperbola, and m < 0, the locus is

B2

impossible when niA% < b% orwz<— , which shows that in

this curve the product of the tangents of the angles, which

two tangents make with the axis, cannot be less than the

product of the tangents of the angles, which the asymptotes

make with it (176).

PROP. CXXXIII.

(283.) Tofind the locus of the intersection oftwo tangents

to an ellipse which intersect at a right angle.

In the last Proposition, ifm = ~ 1, the tangents will

intersect perpendicularly, the equation of the locus is

therefore

if 4- x°~ = A" -f B%

which is the equation of a circle concentrical with the ellipse,

and whose radius equals the line joining the extremities of

the axes.

prop, cxxxiv.

(284.) Tofind the locus of the intersection oftwo tangents

to an hyperbola^ zvhich intersect at a right angle.

In this case, in (282), m = — 1 and b" < 0, v the equa-
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tion of the locus is

if + X* = A2 — Ba
,

which is the equation of a circle concentrical with the hyper-

bola, and whose radius equals *J a
2 — b 2

. This equation is

impossible if b > a, which shows that, in an hyperbola of

this kind, two tangents cannot intersect at a right angle.

Pitop. ex xxv.

(285.) Tofind the locus of the intersection of two tangents

to an ellipse or hyperbola, which make angles with the

transverse axis, which, measured in the same direction,

are together equal to a right angle.

In this case, in (282) 5
m= 1, v the equation of the locus

is ?/ — x* = — (a2 + £ 2
)?

which is the equation of an equilateral hyperbola, whose

axis is the distance between the foci of the given ellipse or

hyperbola.

prop, ex XXVI.

(286.) Tofind the locus qf the intersection oftangents to an

ellipse, which are parallel to conjugate diameters.

In this case, m ~ (170), v the equation of the

locus sought is

A l

y
z + b-x 1 = 2a2

b'~\

which is the equation of an ellipse, whose semiaxes are

a/2 .a, v £ . b, and which is therefore similar to the given

ellipse.

This is obviously equivalent to finding the locus of the

vertices of the angles of parallelograms circumscribed round

systems of conjugate diameters,
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PROP. CXXXVII.

(287.) Tofind the locus of the intersection of tangents to an

hyperbola, which areparallel to conjugate diameters.

In this case, m = —~ (170), •.• the equation of the locus
A

is a2
#
2 — bV = 0,

which is resolved into Ay + bx = and Ay — b# = 0,

which are the equations of the asymptotes, which are the locus

sought.

PROP. CXXXVIII.

(288.) To find the locus of the intersection qftangents to an

ellipse, whichmake angles with the transverse axis, the pro-

B 2

duct qfwhose tangents is
A*

q2B*
In (282), if m~—-, the equation of the locus is

Ay — B ft#2 = 0,

which is resolved, as before, into Ay -f bx = 0, aj/— B«r = 0,

which are the diagonals of the rectangle formed by tangents

through the vertices of the axes, and which are therefore the

locus sought.

prop, exXX IX.

(289.) To find the locus ofthe intersection oftwo tangents to

a parabola, which are inclined to its axis at angles, the

product qf whose tangents is constant.

Let the equations of two right lines meeting the para-

bola be

y — ax — b = (1),

y ~ a!x - V = (2).

By these and the equation of the curve finding values for
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#, and equating the radical in each with 0, we find

4<ab = p, 4ta!V = p;
eliminating b and V by means of these and (1), (2), the

results are

a2 - a .
— + ¥- ~ 0,
oo 4tx

y

x 4x '

the values aal being the roots of either of these equations,

and the given product being expressed by m5
we have

m = -f — , or &mx — p = 0,

which is the equation of a right line perpendicular to the

axis, and meeting it at a point whose distance from the

V
vertex is + f—

»

If the tangents intersect at right angles, m = — 1, and

the locus is the directrix,

PROP. CXL„

(290.) Two lines being drawnfrom thefoci ofan ellipse to

any point in the curve
9
tofind the locus ofthe centre of the

circle which touches these and the transverse axis.

1. Let the circle touch the

three lines as in the figure,, Let

the co-ordinates of the point (p)

on the ellipse be jjx\ and those

of the centre (c) yoc. The area

of the triangle fpf' = i/c
9
where c is the distance of the

focus from the centre. Also the area of the same triangle

=j/(a +c) 9 since a -\~ c is the semiperimeter of the triangle;

v ijc = y{A + c) ;

also, since the line fc bisects the angle pff',
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tan. CFF7 — Slil. PFF'

1 -f cos. pff'
'

but sin. pff' = — , and cos. PFF f = , and also
z %

y ^ y
c— x' c—x z-\-c — xv

tan. cFF f = -, hence

cx>
Now by (208) z = a —

- —, which being substituted, the

values of ifx
] resulting from this and the first equation are

A-fe
y

=

y c

AX

Substituting these values in the equation aYH^V^a^2'

the result after reduction is

(A + C)Y + 11*X
2 = B2C%

this is the equation of the sought locus, which is therefore

an ellipse whose axes coincide with those of the given ellipse,,

Let the semiaxes be a', b', v
a/ = c,

A + C

JLVX^x & Let the circle touch the three

^C ) *ines as in this figure. In this

case, if fp = s, f'p = %\ we have

V
]c = yip + -|z' — * z) ;

but by (208), *' — £ ; = -—, hence Ay = (a + x\y ; also

tan. cfp = tan, ~{rt — pff'), v tan. cfp

but also tan. cfp

— C-f-X'

,1

-^~
, hence -^— =—^—

x— e x—c z— c+x'

Eliminating y by this and the former equation, the result

after reduction is

x — a = 0,
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which shows that the locus in this case is the tangent to the

ellipse passing through the vertex.

3. Should the circle touch

the three lines as in this

figure, retaining the same

symbols,

fpf'=^(a --c)=yc (1).

Also, since

tan. i(tf - PFF f

)
=

sin. pff'

1— cos pff'

AlJ

(a— c) {a+x 1)'

) fc bisects th

tan. |(tf — pff')

And, since fc bisects the angle below the base,

y

c—x
; hence9

c ~x (a— c) (a-\~wj

)

Bv this and the equation (1) we find

y c

A.X

c

Substituting these in the equation of the ellipse, the result

after reduction is

(a — e) 2
j/

2 + b 2
,x*

which is the equation of an ellipse,, whose semiaxes a1

, 3
f

s

are

Be

A — C
CU
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PROP. CXLI.

(291.) Lines being drawn connecting any point in an hy-

perbola with the foci, tofind the locus of the centre of a

circle, which shall touch these lines and the axis.

1. Let the circle

touch, as in this

figure. The same

symbols being used

as in the last Pro-

position
,

fpf' = y(z -f- A + c) = y'c,

tang. cff'

but cff' = -I-pff',
".•

y
C— • X

sin. pff' y
tariff. CFF' = zr ,= - r-—° 1 + COS. PFF' Z—W+C

Hence, since z =

y

ex-

Mf
c-oc ~"(c—a) (a+ X1)'

The co-ordinates y'a;' being eliminated by this and the first

equation, we find

# — a = 0,

which is the equation of the tangent through the vertex of

the hyperbola, and which is therefore the locus of the centre

in this case.

2. If the circle

touch, as in this figure,

FPF-'= y(c+ A)==yc.

The tang, cff' having

a similar value as

above, a similar equa-
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tion follows, which gives

y(c + A) AX
* c ' c

Making these substitutions in the equation

Aya _ BVa = — A2B2
5

the result after reduction is

(c Hh a) 3
j/

2 - b 2^2 = - b 2c2,

which is the equation of an hyperbola, whose semiaxes are co-

incident with those of the given hyperbola, and whose values

are

bc —

-

A1 = C} B f = ; V— 1.
A + C

3, Let the circle touch, as

in this figure,

fpf' =y(z+ a—c) =yf

c,

Also
5
-^—= tang. 4(tf—-pff'),

but

sin. pff' ^
tang. ^(*-pffo =nr^r-^=^^="c -

Eliminating a by * = a, and the values ofy\ x' being

eliminated as before, we find

x + a = 0,

which shows that the locus is the tangent through the vertex

of the opposite hyperbola.

PROP, CXLII,

(292.) Tofind the locus of the vertex ofa parabola, having

a given point asfocus, and touching a given right line.

Let f be the given focus, and lt/ the given right line,

K
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v the vertex, and fp a perpen-
r

i dicular from the focus on the right

line — a.

By Prop. (cvi), fl x fv = a?.

Let fv = z, and the angle

PFV = W, V
z = a cos. w»

If fp and PL f be taken as axes

of co-ordinates.

and cos,

yy+ (a—xf
a—x

hence the equation of the locus sought is

which is the equation of a circle passing through the points

F and p, and whose diameter is fp.

PROPe CXLIII.

(298.) Tofind the locus of the focus of a parabola, which

has a given vertex, and "which touches a given right line.

Let v be the vertex, f the focus, ap the

given line, and va a perpendicular to it.

This perpendicular being taken as axes of

X-p x, and a parallel to ap through v as axis of

j/5 let the co-ordinates of f be yx. By
*V~\^ (252), FV . FP = FBQ

5
but FV a = if + x\

fb = a -f x, av being expressed by $, and

FV
fp = fb . — . Hence the equation of the locus of f is,

after reduction,

f — ax ~ 0.

The locus is therefore a parabola, whose vertex is the point

v, whose axis coincides with 'av, and whose parameter is av,
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PROP. CXLIV.

(294.) Given a diameter ofa parabola, the point where the

curve intersects it, and its parameter, tofnd the locus of

thefocus.

The distance of the vertex of any diameter of a parabola

from the focus is a fourth part of the parameter of that dia-

meter. This being given, the locus sought is a circle, of

which the point, where the curve meets its diameter, is the

centre, and a fourth part of the parameter the radius.

PROP. CXLV.

(295.) Given the point where a parabola intersects a given

diameter, and also the parameter of that diameter, tofind

the locus of the vertex ofthe curve*

Let the given diameter and a perpendicular through its

vertex be assumed as axes of co-ordinates. The equation

of the parabola related to a diameter, and a tangent through

its vertex as axes of co-ordinates being y
1 — px — 0, if the

angle under the tangent and diameter be 8, and the axis of

?/ changed to a perpendicular to the diameter, the equation

becomes

y% j^ ±.p sin. 20 . y — sin.
2

. px = 0.

The co-ordinates y
,lxn of the vertex are

y =—. _Lp sin. 25, x 1 = — JL/p cos. 2 L

Eliminating from these equations the angle 0, we find

y,s + 4#f/z + px" = o,

which is the equation of an ellipse, whose transverse axis co-

v
incides with the given diameter, and is equal to -^-, and

whose conjugate axis equals —

.
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.

PROP. CXLVI.

(298.) Given the diameter of a parabola, and a tangent

through its vertex, tofind the locus ofthe vertex.

The axes of co-ordinates being placed as before, letp be

eliminated by the values of the co-ordinates of the vertex.

The result

y — 2 tang. 9 . # = 0,

shows that the locus is a right line,

PROP. CXLVII.

(297.) On the same conditions tofind the locus ofthefocus.

The axes of co-ordinates remaining thevsame, the co-

ordinates \jx ] of the focus are

y = — \p sin. 20, x 1 = — %p cos. 29.

Eliminating p from these, the result is

y — tang. 29 . x! = 0,

which shows that the locus sought is a right line.

PROP. CXLVIII.

(298.) A right line ofa given length is terminated in the

sides ofa given angle, tofind the locus of a point which

divides it in a given ratio.

Let the sides of the given angle

bac = 9 be taken as axes of co-

ordinates, and the co-ordinates of

_ . _ bp m
p being yx, and—=—

,

° * cp n

AB

AC =

;

n~^~>

(m + n)x
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But ab 2, + ac2 — Sab . ac . cos. i = bc2
« Hence, after

reduction

m2y^ — 2mn cos. . yx + rfx* = mzn2
,

which is the equation of an ellipse, since

b* — 4ac = 4m2w2
(cos.

z
8 - 1) = — 4mVsin.2 < 0.

it

If 9 = —
5
the equation becomes

my + nW =. mV,
which is the equation of an ellipse, whose axes are equal to

the segments of the given line, and coincide with the sides of

the given angle.

Ifm = n the locus is a circle in this case.

PROP. CXLIX.

(S99.) A right line passes through a given point, and is

terminated in the sides of a given angle3 tofind the locus

ofthe point which divides it in a given ratio.

Let the sides of the given angle

bac be taken as axes of co-or-

dinates, and let the co-ordinates

of the given point d be tjx\ those

of the point p be yx9 the equa-

tion of bc is

a(j/— 3/) + b(# - x') = 0.

In this, ify and x be successively supposed = 0, we find

Alf -f b^ aw' + BX f

AC — -U. AB=~ —

.

B A

Let the ratio of the segments bp, pc be m : w,

y n x m
A%~~m-\-ri

> Ac~~m-\-n

Dividing the first by the second, and substituting for

AC . . A— its value —-,
ab b
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.

ky n a nx

bx m 9
b my 5

hence the equation of the locus sought is

{m + n)xy— mx fy — nifx = 0.

This is the equation of an hyperbola, the axes of co-ordinates

being parallel to the asymptotes (128).

The co-ordinates of the centre being

mr
x = y-

ny1

m +n J a m+ n'

show that if the co-ordinates of the given point be divided

each in the given ratio, parallels to the sides of the given

angle drawn through the points where they are divided

thus, are the asymptotes.

PROP, CL.

(300.) Given in position a right line (ab), and a point (p)

outside it, a right line(pm) is drawn intersecting thegiven

right line; from the extremity m ofwhich, aperpendicular

to the given right line intercepts qd ofagiven magnitude

(a), tofind the locus of the point m.

3 By the conditions of the

question, if pa be perpen-

M dicular to ab,

md__pa

CD ~~°AC°

Now, if p be the origin of rect-

angular co-ordinates, parallel

and perpendicular to ab, this

condition is expressed by

b

A
"EI*

a x—a
where b = pa* Hence the equation of the locus is

yx — ay —- bx = 0.

The curve is therefore an equilateral hyperbola.
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To find the centre, substitute in the formulae (94) the

values of the terms in this case, and we find

7 _y
Hence if ae = a, e is the centre, and eb and eb' are the

asymptotes.

PROP. CXI,

(301.) From a given point a a right line af is drawn, in-

tersecting two right lines bc and cd given in position, and

apart ap is assumed on this linefrom the given point a,

always equal to the pari ef intercepted between the given

right lines bc and cr>
?

it is required to find the locus of

the point p.

Let the origin of

co-ordinates be as-

sumed at a, and lines

parallel and perpen-

dicular to cd be as-

sumed as axes of co-

ordinates. LetAG— «r
?

,

and the equation of bc

and af be respectively

AJZ-hBtf-f C= 0,.(1),

A!y -f b'x ~ 0, (2).

Eliminating y from these equations, we find the value of x

for the point e,

ca'

and therefore

AB = —

HO = #f +
;

CA'

BA'

but by the conditions of the question, if yx be the co-or-

dinates of p, x = hg ; hence
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CA'
X = X + -

-B rA

By this and (2) —-- being eliminated, the equation of the
A

locus sought is

kyx -f sx2— Ax !y — (bx! + c)x = 0,

or since A?/ = — (bx 1

-f c), where y
1 = gc,

Ayos + bx'
1— &x]y + Ay'x = ;

and since ——= cot. <p9
where <p is the angle bcd,

yx — cot. <p . x2— x'y + y
]x = 0.

The locus sought is therefore an hyperbola.

The co-ordinates of the centre are

x == x]

\ y = % cot. <p . x! —y

.

The origin of co-ordinates being removed to this point, the

equation becomes

yx— cot. <p . a?— # ;(cot, <p . xf — y
f

) = 0.

Hence (l&l) the line cg is an asymptote, and the other

asymptote is a right line, related (105) to the latter system of

co-ordinates by the equation

y = cot. <p . x.

Hence if Ag = ag, and gi be drawn parallel to bc, and

gk = ic, the point k is the centre of the hyperbola, and a

line through k parallel to bc is one asymptote, and cg the

other.

prop. clii.

(30£.) If through the vertices of two similar lines of the

second degree, whose axes coincide', two right lines be

drawn intersecting fhevn9 they will be cut 'proportionally

by those curves.

Let the equations of the two curves be
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B 2 B'2

Since a = —- = --—, these curves are similar. Let they A2 A'2

equation of a right line intersecting them be y = ax, which,

being substituted in each of the equations, gives

Px = -~—
,

«2—
q

and dividing the one by the other,

x p

x1 p1

'

Hence the intercepts of the intersecting right line between

the origin and the points where it meets the curves are pro-

portional to the principal parameters, and therefore the ratio

is independent of the inclination of the secant to the axis.

Cor, This question applied to the circle will furnish

solutions for the following problems

:

1°. To describe a circle passing through two given points

and touching a given circle.

2°. To describe a circle passing through agiven point and

touching two given circles,

3°. To describe a circle touching three given circles. See

Puissant Propositions de Geometrie, pp. 119?
180.

—

Re-

creations Mathematiques of Ozanam, torn. i. p. 377.—

No. 6, Correspondence sur I'Ecole Polytechnique.
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PROP. CL1II.

(303.) Let two similar ellipses or hyperbolas have a common

centre and coincident axes, and through the vertex of the

smaller let a tangent be drawn intersecting the other;

any two chords of the greater passing through the point

where this tangent meets it, and equally inclined to this

tangent, are together equal to two chords of the smaller

ellipse parallel to them, and passing through the vertex.

Let the equation of the smaller be

A2
?/
2 + B2#2 — 2b2ajt = 0,

the origin being at the vertex; this changed into a polar

equation, gives

(a2 sin, 2 cv + b2 cos.2 w)r — 2b2a cos. oj = ;

or if e be the eccentricity,

(1 — e
2 cos.2 w)r —- p cos. w = ;

and hence

p cos. OJ

1

—

e2 cos.2 oo

Let the equation of the greater curve, the origin being at

the centre, be

a'2j/
2 + b'2.t2 = a'V2

.

If the origin be removed to the point where the tangent

intersects it, and whose co-ordinates are therefore

x •=— A, and y = —j ^/a'2 — a2
,

the equation will be

Since the ellipses are similar, their eccentricities are equal,,

and therefore this equation becomes, by dividing by AfQ
, and

Bfa

observing that —-^ = 1 — e% and 2(1 - £2)a = p,

y* + (1 - e
2)x* +2 v'l - e* s/a!" - a2

. y ~- px= 0.
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This changed into a polar equation, and solved for r\

pcos. w — 2a/1 — e2 a/
a'2—

a

2 sin. cv

y z=z - . — •

.1— 0*COS.2 W

The two values of rf

, which make equal angles with the axis

of y^ differ only in the sign of sin. w, and therefore repre-

senting them by rf and r/;

,

j + ji^JP^JL-.T l—^cos/w'
hence rf -}~ r" = %\

Cor. This proposition will apply also to two parabolas

if they be equal.

This proposition is given by Clairaut in his Theorie de

la Terre, and is the principle by which he proceeds in his

investigation of the figure of the planets, when they are

supposed to be homogeneous.

PROP. CLIV.

(304.) Three unequal circles beinggiven9 if to every two of

them common tangents be drawn, the three points of in-

tersection of the tangents to each pair ofcircles will lie in

the same straight line,

Let c, c
f

, cv, be the centres of the circles, p5
p', p" the

three points of intersection of the tangents, r, r!

, r'
!

}
the

three radii, and let the lines p fp" and pc be taken as axes

of co-ordinates. Let pV = y
n
9
and let the co-ordinates of

the centre d be y'x1
. The ratio y'!

: y
! may be considered

as compounded of y
,!

: p r

c, or r'
1

: r, and of p rc : y, or

r : r', therefore y
n

: y
1

: : rfl

: r}

; but c"p : c'p : : rn : r\

Hence p is on the axis of x.
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PROP. CLV.

(305.) Two circles being given in magnitude and position,

let a tangent to one ofthem intersect the othery tofind the

locus of the intersection oftangents to the second passing

through the points where the tangent to the first meets it.

Let the centres be c, c7, the radii r, r', p the point of

contact of the tangent to the first, and p the point whose

locus is sought. Let cc' be the axis of #, and a perpen-

dicular to it through c, the axis ofy : let the co-ordinates of

p be y
]x] and c fp = r, cd-=af^ and the angle pc'x = w*

Since the equation of the tangent through p is

yy
] + ocx 1 = r2

;

and c fp is perpendicular to the tangent, therefore the portion

of cfp between d and the tangent, (6), is

a?V-R2

R '

r'2

but r = —7- , and x1 = R cos. w, therefore

Rf2

R— x" COS. CO

This is the polar equation of a line of the second degree, the

pole being the focus, and the values of cv measured from

the axis. The parameter and eccentricity are given by the

equations,

2r'2

The locus is therefore a parabola, ellipse, or hyperbola, ac-

cording as x 11 == r, V < R, or x'! > R.

If the locus be an ellipse or hyperbola, the axes are

determined by the equations,

B2 _ r'*

A ~~ R 5
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Hence it follows that

A2— B 2 JIQ

A2 R2 "

B2 = r'
4

R2—X]l**

A =
rr'2

R*-#"a '

the ratio of the axes are therefore */ r2— x112
: r2

.

The locus will be a circle if #" = 0, scil. if the two circles

are concentrical.

If the centre of the second circle be within the first, the

locus is the ellipse; if it be on its circumference, it is the

parabola; and if it be outside it, it is the hyperbola.

PROP. CLVI.

(306.) Tofind the equation of a line of the second degree,

touching the three sides ofa given triangle.

Let the sides of the given triangle be represented by the

equations

ay + bx + c — ^

a!y + Vx + d — Ma),

avy + b"x + c'
1 = J

Let y be eliminated by each of these equations and the

general equation of the second degree, and the results ar-

ranged by the dimensions ofx
y
are

(aZ^ — Bab -f ca?)x2-{-(%Abc— bcic— Dab -f e#2
)#

+ ac2— nac + Faz=
(a//2- bcW -f caf2

)^2
-f (SAftV- Bad - daW+ e tf2)a?

+Acf2- Wc' + Fa ffl=
(a6"2- Brf'fi" + caf'V + (2aW - bA"-W6" +W2

)*?

+ Ac r
'2-DaV+ Faf/a=

That the three sides of the triangle may be tangents,

the roots of each of these equations must be real and equal,

which furnishes the conditions

:

00.
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(b9— 4ac)cq+ (d2 ~ 4af)62 + (es - 4cf> 2 -

2(BD — ^AE)6c—S(BE—2CD)aC-S(DE—2BF)a5 --0,

(b3- 4ac)c'2 + (d2 - 4af)&'2+ (e* - 4cfWz -
2(bd - 2ae)6V- 2(BE-2cp)aV— 2(de - 2BF)a'&'= 0,

(b*- 4ac)c"2 + (d
2—4af)&"2 + (e2--4cfK2—

\

2(bd-2ae)W'—2(be—2cd)«V'—2(DE--2BF)flffy'==oJ

These three equations are sufficient to eliminate three of the

coefficients of the general equation, and the remaining ones

continue indeterminate.

If the two sides of the triangle represented by the second

and third equations in (a) be taken as axes of co-ordinates,

these equations must become respectively y = and x = 0,

and therefore V = 0, d — 0, d] = 0, c7 = 0, and hence the

conditions (c) become in this case

(b2 - 4ac)c2 - 2(bd - 2ae)5c — 2(be — %ci>)ac

- £(de - 2bf)«6 = 0,

E a — 4CF — 0,

d 2 — 4af = 0.

The co-ordinates of the points where the curve touches

the axes of co-ordinates, are in this case

PROP. CLVII.

(307.) Tofind the equation of the locus of the centre of a

line of the second degree, which touches the sides of a

given angle in two given points.

Let the sides of the given angle be assumed as axes of

co ordinates, and let the distances of the points of contact

from the origin be respectively ?/ and x\ If the equation of

the curve be

Alf + BXy -f CX2 + D«/ -f- 'EX -\- F == 0.
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The conditions of the question give the equations,

d2 - 4af = 0,

e2 — 4cf = 0,

y ~ 2a'

f „ _ _E

* "~
2c'

The co-ordinates of the centre are

bd~2ae
~~

b 2— 4ac 5

_^
BE— 2CD

y - ~~
b2—4ac

•

The quantities c, d, e, f, being eliminated from these by

means of the former equations, the results are

_ 2aj/2

y ~ 2aj/ +~~BX
P

~~
2Aj/-}--B#;r

The equation therefore of the locus sought is found by

eliminating b and a from these, which is clone by dividing

the one by the other, and gives

yx } — xy! = 0.

The locus is therefore a right line passing through the

vertex of the given angle5 and bisecting the line joining the

points of contact. Since

b* _ 4ac = —f- . ^ J
,

*
,Xu X 1

the curve is an ellipse or hyperbola, according as y
] < 2//?

or > %/', and it is a parabola if the centre be at an infinite

distance. The species of the curve therefore depends on

the side of the line joining the points of contact at which the

centre is assumed ; if it be at the same side with the vertex

of the given angle it is an hyperbola, and if at a different

side an ellipse.
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Ify = x\ the locus is the bisector of the given angle,

which is the common axis of all the curves.

PROP. CLVIII.

(308,) To inscribe an ellipse or hyperbola in a triangle so as

to touch its base at the point of bisection, and also to touch

one of the sides in a givenpoint.

By the last Proposition, the centre must be upon the line

through the point of bisection of the base, and the vertex of

the opposite angle. And the line joining the points of con-

tact of the other two sides must be parallel to the base;

hence may be found the point of contact with the other side,

and the solution of the problem is evident ; if the given

point of contact with the side be in the production of the

side, the curve is an hyperbola, if otherwise., an ellipse.

PROP. CLIX.

(309.) To find the locus of the centre of ellipses or hyper-

bolas which touch the three sides of a triangle, and touch

one in a given point.

Let two sides c, c', of the triangle be assumed as axes of

co-ordinates, and the equation of the third side (c
f/

) is

dy + ex — cd = 0o

The condition of contact with the axes of co-ordinates and

this line are

E2 — 4CF = 0,

D2 _ 4CF = ;

TCD-2AE BE-2CD , DE-2UF__
cc ~ 2

"^=4lc
C ~ 3

b^4a"c
C ~ 2i7-31a7 -

0.

Let the distance of the point of contact with the axis of x

E
from the origin be rf, v #'= — —.
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The co-ordinates of the centre being

B£ — 4ac'

BD-—&AE

b2 — 4ac

We find, after elimination, the equation of the locus sought*,

c2(d - af)y + to — cc? = 0,

which, proves the locus sought to he a right line.

c x c
Ify = ;

x zz —
3 and if a: = ~rr-9

7/ = — . Hence it ap«

pears, that if a right line be drawn connecting the given

point of contact with the vertex of the opposite angle, the

right line which is the locus sought bisects this line, and the

side of the triangle on which the given point of contact lies,

PROP. CLX.

(310.) To find the locus of the vertex of a triangle con-

structed on a given base, one of whose base angles is

double the other.

The extremity of the base being taken as origin, and the

base as axis of x
9
let one base angle be a, and the other 2a,

and the co-ordinates of the vertex yx. By trigonometry,.

&tan. a
tan. 2a = T—7-—— ;

1 — tan.* a
'

but tan. a = ---., and tan. %a = -~—
, where x ]

is the base,
x

'

x' — X

Hence, after reduction, the equation of the curve sought is

'if — &r2 + %x?x = 0,

which is the equation of an hyperbola, whose transverse axis

is two-thirds of the base,
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PROP, CLXX,

(SO.) Given in magnitude and position the vertical angle

of a triangle, whose area is also given, to find the locus

ofappoint which divides the opposite side in a given ratio.

Let the sides of the given angle be assumed as axes of

co-ordinates* The co-ordinates of the point, whose locus is

sought, being yx9
the equation furnished by the conditions

of the question, after the requisite reduction, is

2a m , n
,y '

sin. ' {m + n)^

where <p = the given angle, a the given area, and m : n the

given ratio.

The locus is therefore an hyperbola, whose asymptotes are

the sides of the given angle,

PROP. CLXIL

(3 IS.) Tofind the locus of the extremity of a 'portion, as-

turned upon the sine qfan arc^ equal to the sum or dif-

ference of its chord and versed sine.

By the conditions expressed, the equation of the sought

locus is

y = JK/%rx ± X,

where r is the radius ; which, when disengaged from the

radical, becomes

if + %yx + #3 ~ %ros = 0,-

which is the equation of a parabola.

It is evident that the axis of the parabola is inclined at an

angle of 45° to the diameter of the circle,
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PEOP. CLXJII.

(813,) The ordinate to the axis of a line of the second de-

gree being produced to until the part produced equals the

distance of the point where it meets the curvefrom the

focusjojind the locus ofthe extremity oftheproducedpari*

A. Gr If

Let the ordinate pm be produced until Mm equals fm, f

being the focus of the proposed curve : the object is to find

the locus of the point m.

The polar equation of a line of the second degree is

"~ 2(l—e cos, to)
9

which represents an ellipse, hyperbola, or parabola, ac-

cording as e < 1, > 1, or = 1.

Let im be drawn. By the conditions of the question

wn = 2r cos. tofm = 2r sin. wfp.

I£yx be the rectangular co-ordinates of the point m, related

to fy and fx, as axes of co-ordinates,

sin, wifp

and since mfp = 00°

y
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p y
A y

(1 —- 2# sin„ wfp cos. mFp) * Vyz+x*

•which reduced becomes

j/
a — 9xyoo i- ac* — pj/ ~ 0?

which is the equation of an ellipse, hyperbola^ or parabola
9

according as e < 1, > 1, or = 1. The locus sought is

therefore a line of the second degree of the same species as

the proposed.

The solution of the equation for x shows that the curve

touches the axis of x at f.

If the equation be solved for y, the roots are

y = ex + ip ± a/(^
z— 1)#* + F^ + -J/?

2
*

To find the values ofy, which touch the curve, let the values

of %, which render the radical — 0, be found, and the cor-

responding values of y are those sought. These values of

x are

V
2(1 + e)

9

P

and the corresponding values of y are equal to these re-

spectively. These being the distances of the vertices of the

proposed curve from the focus, indicate the following cir-

cumstances with respect to the position of the proposed

locus.

If a perpendicular to ax, the transverse axis of the pro-

posed curve, be drawn through its vertex a, and ab = af^

the locus sought touches ay and ax at b and f.

If bf be drawn, and bisected at e
5 a right line passing

through a and e is the axis of the locus. The line bh5 the

focal tangent of the proposed curve,, is a diameter of the

locus whose ordinates are parallel to ay.

The axes of the locus are inclined at an angle of 45° to

those of the proposed curve.
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If the proposed curve be a parabola, e will be the focus,

and bf the parameter of the locus.

If cd be drawn through the centre of the proposed curve

perpendicular to Ax, and intersecting ae in d, d is the centre

of the locus*

If the proposed curve be a parabola, whose parameter is

jp9
the parameter of the locus = -~>

If the proposed curve be an ellipse or hyperbola, let its

semiaxes.be a and &, v ad = u */%,.. And since the tan-

gents af and ab are at right angles, ad = ^/dl

-f V2
, a! and

V being the semiaxes of the locus; also ad . de = a,2

3
and

be = co . s/% = —

—

7=r~. Hence it follows that

T a + c

v a(a + c) = rf
2
,

v a(a— c) = V2
.

It will appear by Sect. XVIII. that the areas of the two

curves are equal

PROP. CLXIV.

(314,) Tofind the locus of the point of bisection of the nor-

mal to a line of the second degree.

Let the equation of the line related to its axis and vertical

tangent as axes of co-ordinates be

Aya + B2^ - 2B2A<r f = 0.

Let the co-ordinates of the point of bisection of the normal

be yx. By the conditions of the question

y - %
,

b2(a~~0

B 2(A— X')

since the subnormal is equal to

The co-ordinates y
]x] being eliminated by xneans of these

A-
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equations, and the result arranged according to the dimen-

sions of «/ and x, we lied

(Ba ' - &Aft

)
2
J/

2
\- BaA2#2 — 2b*As# - £B4(B ft - 4

A

2
) = 0,

the equation of the locus, which is therefore a line of the

second degree, of the same kind as the given one.

If the given curve be a parabola, the equation of the

locus (since a is infinite), becomes 1%2 — 4p# +i>
a = 0,

which is the equation of a parabola, whose vertex passes

through the focus of the given one, and whose parameter is

equal to a fourth of the parameter of the given parabola.

If the given curve be an ellipse or hyperbola, let the

origin of co-ordinates be removed to the centre, and the

equation of the locus becomes

(2A2 — B*)Y + A SB 2#2 = JLB a(&Aa - B a
)
s

.

Hence the semiaxes a', b / of the locus are

B
4

A' = A ~

B' = i,B.

FitOP. CLXV.

(315.) A right line (bm) being related by its equation to

rectangular co-ordinates^ ifa right lime be drawnfrom the

origin (a), meeting the ordinate of the proposed right line

at (q), so thai aq = pm
;

tofind the hens of the point (q).

Let aq -- -r, and

qap = w; let the

equation of the

right line .be

y — ax —
- h = 0.

Since by hypo-

thesis r = y}
and

x = r cos. a;, the

equation of the
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(I — a cos* w)°

The locus is therefore a line of the second degree, whose

parameter is 2b$ and eccentricity = a. It is obvious also

that the right line bm is the focal tangent.

PROP. CLXVI.

(316.) Iffrom the centre (c) of an ellipse a line (co) he in-

fected on the ordinate (pm) to the axis, so that cq = pm,

tofind the locus of the point a.

Let the equation of the given ellipse be

Afy~ + -r'
3.^2B,a#' s = A'*B'\

and let the co-ordinates of

the point a be y%. By
the conditions of the ques-

tion
5

the equation of the

locus is

// Jr ** = ^(A'« - X%

*>» R ta

which reduced becomes

A/2

j/
3 + (a's + B'

s)#2 = A'*B"-

Hence the locus is an ellipse, whose axes coincide with those

of the given one. Let the semiaxes of the locus be a
?
B

f

V Af2 +B,a
'

Hence, if the angle bca be bisected by c», and m be drawn

perpendicular to ca
?
ce = a.
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SECTION XV.

Of the application of the differential and integral calculus

to curves.

Of'tangents? normals, fyc*

(317.) The differential and integral calculus is peculiarly

adapted to the analytical investigation of the properties of

curves ; and the application of that science to this purpose

cannot but be considered as one of the most interesting and

useful parts ofJlgebraic Geometry. We shall therefore in the

present section proceed to apply the calculus to the discovery

of those properties to which it is particularly adapted, and

in which the principles of common algebra, used in the pre-

ceding sections, are either inadequate or incommodious.

PitOP, CLXVII.

(318.) To determine the position of a tangent passing

through a given point (

y

!x !

) on a curve, whose equation

is ^{yx) = 0,

Let the equation of

the tangent sought -be

(#—y)—«(#—#0=G,

sin. la.

-. Letwhere «, — --. -.
sin. ly

v be the given point, and

Pp = ± AX3

then by., Taylor's theo- /
rem.

n.rJ
dy

dx

AX a^y

1 ^ dx2

If a
'dx pp

J! _
' d£

AX"

A PC

cPy

dx3

AX*
5CC
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, ,,
(T-y Ax'1 cPy ax 3

In this series such a value may be assigned to Ax as will

render the first term greater than the remainder of the series,

and the same term will be greater than the remainder of the

series for all values ofA# between that and zero. Hence

if Ax = vp render the first term greater than the remainder,

p
!

p
!l = pp -- pp

,f will have the same sign with "-y^ 5
since

Ax2 is positive whatever be the sign of Ax
9
and the same

will be true for all points between p and <p. Hence it fol-

lows, that at each side of the point p the curve lies at the

same side of the right line, and that it lies above or below it

according as -— and y have the same or different simis. The

case in which ~~ ----- shall be considered hereafter. The
dxQ

-e ffiy -

curve is v convex towards the axis ot oo
9 it ~r— has the

Hxz

same sign with y9
and concave if they have different signs,

Any other right line passing through the point p must inter-

sect the curve ; for let its equation be

(y -»»?/) — a !(x — x') ;:™ Oj

/ pp" =: a! , Ax9

cly

ax

this series

- of)

such

Ax
(

ay

. a value ni

Ax-1

' 172 :

ay be s

'" dx 3
"

issignee

Ace 3

p
]

p
]

In '

1.2,

i to A#?

, 8

as will

render the first term equal to the remainder of the series, and

therefore if the sign ofAx be in that case different from that

of the remainder of the series, the value of p
!

p
j! will vanish,

and the right line will meet the curve at that point, and for

every point between that and p the right line will lie within

the curve*
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Hence the equation of the tangent through the point

y#f

is

chlK

(319.) Cor. 1. A point can be found on a curve, through

which a tangent shall be parallel to a right line given in po-

sition. Let the equation of the right line be

mj -Y bx + c = 0.

The co-ordinates of the point of contact may be found by

the equations

dy 1 b

dad a ?

ittya!) = 5

the latter being the equation of the curve.

(320.) Cor, 2. If -yj = 0, the tangent is parallel to the

axis of oc
9
and vice versa.

7-

(821.) Cor, o. If ~j~ = cc
?
the tangent is parallel to

the axis ofy 9
and we versa,

(322.) Cor. 4. The equation of a tangent to a given point

on a line of the second degree, may be found by differen-

tiating the equation

aj/2 4* sxy + Co;
4

-j- DJ/ + E# ~f *' = 0,

which gives

^ 2or + EJ/ -4- E

dx ~~
9>K.y + b*' -f d'

and therefore the equation of the tangent is

(gAy+BA-'+D) (#—y) + (Sc^'+uy+E) (x-rf) = o,

which is the same with the result of (133),
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PUOP. CLXVIII.

(823.) Tofind the subtangent to a given point on a curve.

In the equation of the tangent let y = 0, and the value

of the subtangent s is x ] — oc
9
v

y . dxf

and, in like manner, the value of the subtangent measured

on the axis ofy9
is

~~"
dx } '

(3M.) Cor. If the length of the tangent be t,

- ya(y + d*'z+ %dydxf cos, ^r)
T " '"• %'*

-"-'

it

which, when yx — -£-, becomes

riiop. clxix.

(825.) To find the equation of the normal and the sub-

normal.

The equation of a line perpendicular to the tangent is,

by (39),

dtf di/
{cos.yx+jg) (y - f) + (-— cos.^ + 1) (a; - ^) = 0,

which, when yx =—, becomes

The subnormal, taken relatively to each axis of co-or-

dinates, may be found by supposing y and x successively

= in these equations, which gives
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, dy!
-\-cos. yx . dx

^ ' dx j + cos. yx . dyj
5

,
dx ! + cos.yqs . dyf

~~
.

* ' dy 1 + cos.yx ufon

if

which, when y^ = — , become

s
'

= " "*/

•

PROP. CLXX,

(326.) To transform any expression involving the co-or-

donates yx o/* am/ point, and their differentials, into one

involving the polar co-ordinates z, w
9 and their dif-

ferentials,

The angle yx may in this case be taken as a right angle,

to avoid the complexity of the expressions which would re-

sult from any other supposition. Any formula related to

oblique angled co-ordinates may be transformed first to rect-

angular, and then to polar co-ordinates.

The angle yx being a right angle, the point y'x ! the pole,

and the angle cv being measured from a line which makes

with the axis of x an angle «/',

y ~ z sin. (w + a/),

so = z cos, [oo + a/),

dy = 2; cos. (w + oJ)dw + sin. (w + vJ)dz9

dx = cos. (a; -j- «/)&; — 2sin. (w + a/)^,

rf# cfe — tan. (w -f w j)zdw

di2y~sm>(tv + w^2 ^ 4- 2 cos. (w + w !)dzd<a—z sin. (w+w')iy
5^™ cos. (a> f w')ds2 — g sin. (w -f vJ)dzdw ~ # cos. ( w+ oo

!)dw
LK

By these formulae any .expression involving^ and their
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first and second differentials, can be converted into an ex-

pression involving srw, and their first and second differentials

;

and in like manner, by continuing the process, the substitu-

tion necessary for the differentials of higher orders may be

found.

PROP.- CLXXI.

(327.) To express the angle under the radius vector of a

curve, whose equation is z = f(w), and a tangent through

any point zw„

Let the angle under the radius vector and fixed axis be

zx9
and that under the tangent and the same tx

9
and the

angle under the tangent and radius vector tz. Now,

tan. tx — tan. rx
tan. tz

1 -f tan. tx . tan. rx 9

but

hence

y du
tan. £#= ~, tan. tec = -~

;

x ax

ydx — xdy
tan. tz =—

cedx -\~ ydy

Substituting in this expression for y, x
9
dy

9
dx9 the values

found in (326), the result is

z°~dw{ sin.2 (w + w').+ cos.2 (w + w ;

)
|

tan, te

jz;&| sin.3 (w + a/) + cos. 2 (w + «0
j

v tan. tz -——-, r
dz

hence also

zdw
.sin. tz =

(s ft
rfca* + <fe

8)'5
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PROP. CLXXl.

(828.) Given the polar equation % = f(w) of a curve, .to

express the polar suhtangent*

Let the polar subtangent be p
?
v p = z tan. tz, v

z*dw
p = ——

.

Of'rectification and quadrature,

PROP. CLXXII.

(329^) The equation qf\i mrve beinggiven* to find the length

ofany arc of it*

1

.

If the equation be related to fixed axes of co-ordinates

yx9 let A be the arc, and it is plain that

i

dh. = (dy" + J#2 + 2% dr cos. yxf- ?

v a =f(dy2 + fl?#
2 4- ^% do? cos. $y#)

T + c
?

in which the value of the constant c is determined by the

co-ordinates of the extremities of the arc sought.

Ifyr
=:-J,

a ^/{df + dx*Y + c.

2. If the curve be expressed by a polar equation ^=f(w),

let the values of dk/ and dsc (326) be substituted in the pre-

ceding equation, and the result is

a =y'(*adiw ft + dz*y + c,

where c is determined by the values of % and w for the ex-

tremities of the proposed arc.

The determination of the length of an arc is usually called

the rectification of the curve.



ALOEBRAIC GEOMETRY.

PROP. CLXXIII.

(380.) To find the area included by two values of y, the

curve and the axis ofx, or by two radii vectores, ifthe

curve be expressed by a polar equation,

L Let the equation be v(yx) = 0, and a' the sought

area*

da! = ydx . sin. ycc.
y

v a/ z=zfijdx . sin.yx J
r c

;

and if the co-ordinates be rectangular,

a7 -fydx '+ c;

where c is determined by the values of y, which include the

area.

2. If the curve be expressed by a polar equation,

dA1 = -*-sin. tz . zdx
9

i

where dA = (fdw
1 + dz*)

%
(329), and

zdw
sm, tz

(z
%d*?+dz*)\

dA! = ^z
9
'dctJ

9

V a' = 4y2
ftrfw + C,

where c, as before, is determined by the values of z
3
which

include the proposed area,

The determination of the area is usually called the qua-

drature of the curve.

Of osculating circles and evolutes.

(SSL) The principles on which the investigation of a line

touching a curve is founded being generalised, produce some

results of considerable importance in the analysis of curves.

The object sought in that case, was a right line meeting the

curve in such manner, that no other right line passing

through the same point could pass between it and the curve,

but must pass at the same side of both . Now a circle may
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be sought fulfilling similar conditions, scil. so meeting the

curve, that no other circle through the same point can pass

between it and the curve. Let the equation of the curve

and that of the sought circle be

(y ~~ y'f + (
lV - riy ~ R2 = (2),

where y
!xf are the co-ordinates of the centre of the circle, and

r is the radius. In order to limit the circle to touch the

curve at the point yx, it is necessary that the first differential

coefficient in the two equations be equal to each other, for,

in that case,, the same right line shall touch them both at the

point p. By differentiating the equation of the circle, the

result is

(y ~~y !)dy + (x - x !)dx = (3).

Qrtl

The value of -~ resulting from equation (1) being sub-

stituted in thisj and y
!x f being supposed variable, and yx

constant, it is the equation of the locus of the centre of a

circle touching the curve at the point, and shows that the

centres of all such circles are on the normal (39). The

question then is, among those circles- to determine that

between which and the curve none of the others pass. For

this purpose, if the equation (3) be differentiated,

{y - y')d\tj + (x — x')d2x + dy\ + dxz = (4)

;

this and (3) will determine the centre of the sought circle.

-w- i n dy d2y d3
y n .

Let the values of —*> —£, -7 *> &c, for the equation

¥(yx) = of the curve pp be a', Af/

, a"', &c, 5 and their

values for the circle (pp
f

) determined by {9)3 (8), (4), be

Bf

, b"9 b !,!

3 Sec. ; and the values for any other circle vp" be

c f

, c", c'", &c.

Let pp' = A x9 v'p = aj/.?
v[p

J = &y\ v'p'
1 =; a/; then

by Taylor's theorem,
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Atf:

Ay=B f

Ay=c f

AX „ A<2T

1
+

1.2

A# „A^ a

1
+ E

1.2

+ A»
, A%°

1,2,3
s

+ B 1

A#
+ c"

,
A« B

+ c

A3T

TJs

, ax3

&c\

&c.

,&c.
1.2

l ~ 1.2.3
5

Now, since a' = b' = c', and a" = b", by the conditions

already laid down, v

Ay - Af = (A" - d')~ + (A«< - c"')^, &C.

A% z AX°
Ay - Ay" = (b" - c»)~ + (b"' - c"')^, &c.

The value of ax may be taken so small, that the first term

of each of these series shall surpass the value of the sum of

the remaining terms, and therefore the sign of the whole

series will be that of the first term in each; but since

a" = b", v a" — c" = b" — c", hence the signs of Ay— A?/",

and Az/ — Ay11 are the same, and therefore the point p
tf

cannot lie between the points p and p\ that is to say, the

part of the circle pp
ff flowing immediately from the point p,

must lie at the same side of the curve vp and the circle pp'.

(332.) Def. The circle thus determined, is called the

osculating circle to the point p.

m
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PROP, CLXX1V.

(333,) To express the co-ordinates of the centre and the

radius of the osculating circle.

Let the values of y
!x ! and R be determined by the equa-

tions (&), (3), (4) ; whence,

f— (dy2+ dx*)dx
y ~y *'d*ydx—d*xdij.

,_ (dy*+dx*)dy
X ~~X+

d2xdy~d2ydx>

ldy*+dx*)T
R = + V ^

~ d*y dx—

d

2x dy°

The value of r being a square root, is susceptible of two

signs : which we should employ is conventional. If the con-

cavity of the curve be turned towards the axis of w, the

radius of the circle which passes through the point of contact

will also be in that direction. If the radius thus situate

be considered positive, the value of r given above must in

that case be taken with a negative sign, because d%
y will in

that case be negative (3 1 8) , ?/ being supposed positive. We
shall therefore consider the value of R to have the negative

sign prefixed.

(334.) In the preceding investigation we have considered

both dy and dx as variable, for the sake of generality, and

also because it preserves more symmetry in the expressions*

If doc, however, be considered constant, dPx = ?
and the

expressions therefore become

f _ „.
dy*+dx*

y=y +
&y 7

dzy doc
9

~~
d2y dx

(335.) The osculating circle is known by the name of the
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circle of curvature, and its radius is called the radius of

curvature. It received this name probably from the sup-

position that it has the same curvature with the curve at the

point of contact ; but this is not strictly the case, as there

are an infinite number of other curves which may pass

between it and the given curve, and whose curvatures there-

fore approach nearer to that of the curve than the curvature

of the osculating circle^, as will be shown hereafter. The

curvature of this circle, however, approaches nearer to

that of the curve than the curvature of any other circle, and

in this sense the name of the circle of curvature may not be

inapplicable.

PROP. CLXXV.

(836.) A curve being expressed by a polar equation^

z = f(w), tofind the radius ofthe osculating circle.

In the value of R in the equation

(dy2
-f dx

zY
dPydoc—dPxdy*

let the values of dy, doc, d2
y, d2x, be substituted, and the

result is

__ (fd^+d&Y
(z

%du*+%dz*--zdlz)du

(337.) Def The osculating circle varying its position

and magnitude for the different points of the curve, the

locus of its centre is a line whose nature and properties

depend on, and are derivable from, those of the given curve,

This locus is called the evolute of the curve, and the curve

is its involute.

M &
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PROP, CLXXVr,

(338.) The equation of a curve ~$(yx) = being given,

tofind that of its evolute.

By the equations

•3/ = '

(dif + dx^dy

tdy*+doc*)dx
If'

—» y ~ ——

—

* y dly dx— oJ'X dy*

x =
dlx dy— d9y dx y

united with that of the curve and its first and second dif-

ferentials, the quantities y9 x, dy, dx, dx

y, and d2x, may be

eliminated, and an equation will be thence found expressing

the relation between y
!x!

, the co-ordinates of the centre of

the osculating circle, and the constants of the equation

v(yx) = of the curve. This relation is independent of

the values ofy and x since they were eliminated, and there-

fore expresses a relation between y
1 and x ] common to all

the points of the curve, and is therefore the equation of the

locus of the centre of curvature.

(339.) The principle here used is one of the most ex-

tensive power and utility in analytical and geometrical

investigationSe The elimination of several variables by

several equations always gives an equation or equations

which express the relation between those which remain, and

which, being independent of any particular values of those

which have been eliminated, is common to all values of

them. We cannot advance a step in analytical investiga-

tions without being sensible of the power with which this

invests us,
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PROP. CLXXVII.

(340.) 71

o find the equation of a tangent to the evolute

drawnfrom a point (yx) on the curve.

By (318) the equation is

/

dtff f \

^ ^
=
^' ( );

dy f

the object is therefore to express ^-
;
as a function of yx*

Let the equation

(y —* y
!

)^y + (# — x*)dx = o

be differentiated, j/V being considered variable; the re-

sult is

(?/~y
}

}&
z

y+ (x—-x*)d2x + dy* + dx z—dy dy 1— da? d#'= 0,

which being subtracted from

(^ —y^y + (# — ^)ds
a? + </y* + dr* = 0,

gives

dy f dx

dx] dy*

Hence the equation of the tangent sought is

(y ~* y)d% + («^
f — &)dy = o.

(341.) Con Hence (325) the tangent to the evolute drawn

from any point in the curve coincides with the normal of

the curve through the same point, and therefore (337), the

centre of the osculating circle is the point of contact ; and

the length of the tangent, from the point on the curve to

the point of contact; is the radius of the osculating circle.

PROP. CLXXVIII.

(342.) Tofind the length ofan arc of the evolute to a given

curve.

If the equation



166 ALGEBRAIC GEOMETRY.

be differentiated, considering .j/af and it as variables, the

result is

(y - y
1

) (dy - dy]

) + (x - x 1

) (dx — dx') = r^r ;

but since («/ — yjc^/ + (x — #')& =
5
v

-~(y — y]

)ty
] — (# — #')<^f = RC^R?

by this and the equations

{y - yJ + (* - O* = rs

(j/ — y)<ir
f — (.r — ^r

)^y ^ 0,

the quantities (y — «/) and (po — #') being eliminated, we

find

{d*y = dy2 + dw«,

cZr = (dy*- + <&'»)*

;

the latter ~member of this equation being the differential of

the arc of the evolute, it follows that this arc and the radius

of curvature increase by equal differences. Let vv' be the

evolute of the curve mm', and v the centre of the osculating

circle corresponding to the point m ; the line mv therefore

touches the evolute at the point v. In like manner, let

mV be the radius of the osculating circle at the point M!

touching the evolute at V. By what has been proved, the

arc vv' of the evolute is equal to the difference between the

lines mv and mV. Hence it follows, that if mv be supposed

a flexible string wrapped upon the curve \y! as it unwinds

itself from off vv' its extremity m will trace out the curve

mm'.

(343.) The analogy between this manner of conceiving

the involute to be described, and the description of a circle

is manifest. The evolute may be conceived to act as centre^

and the radius, instead of being a constant length, to be

Variable.

(344.) Cor. It follows also, that if the involute be an

algebraic curve, the evolute is rectijiable. For any arc of it

is equal to the difference between the radii of the osculating
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circles at the points of the involute corresponding to the ex-

tremities of the arc of the evolute.

Of asymptotes.

(345.) Two lines are said to be asymptotes to each other

when extending indefinitely they continually approach each

other, and approximate closer than any assignable distance,

and yet never intersect or touch. Thus, if two curves be

represented by the equations T?{y%) = and F f

(y
!
a!) = 0,

and for the same value of % the value of (y — y') di~

minishes without limit as x increases, but that condition

y — yf = can only be fulfilled by supposing x infinite,

the curves are said to be asymptotes to each other.

PROP. CLXXIX.

(346.) Tojind a right line which is an asymptote to a curve,

whose equation is v(yx) == 0.

This problem may be solved by considering the limit of

the position of a tangent when the point of contact is re-

moved to an infinite distance. The equation of a tangent

through a point y
f

x' is

(</-y) = |(*-*').

If in this equation y = 0, the corresponding value of x

will be

rfdy—y'dx
AB =
—

—

;

and if a? =0, the corresponding value of?/ will be

y
]dx—x]dy

AC — 7 e

ax

If when xf

is increased without limit, these quantities have

limits, the curve has asymptotes, and they will be determined

by these limiting values of ab and ac.
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If ab have a limit, but ac none, the asymptote is parallel

to ax ; and if ab have a limit, but ac none, the asymptote is

parallel to ay.

If neither have a limit, the curve has no asymptote ; or it

may be conceived to have asymptotes infinitely removed.

If the limits be impossible, the curve has no asymptotes.

If the limit of ab= 0, the axis ofy is an asymptote ; and

if the limit of AC = 0, the axis of x is an asymptote. If

both limits = 0, the asymptotes pass through the origin,

and their direction may be found by the limiting value of

dy

doc
;, as x is indefinitely increased.,

SECTION XVI.

Of the general principles ofcontact and osculation,

(347.) The principles which have been already explained

relative to the contact of right lines and circles with curves^

and also those on which the osculation of the circle with a

curve has been founded, may be considei-ably generalised

by the powers which the diiferential and integral calculus

gives us.

Let three curves

(Mm, mW, Mm")

having a common point

m, be represented by the

equations^

F(yx) = 0,

™~~
^(j/V) = 0,

Let vp = mm = &w
9

and M;m™ aj/3mW= a^
and mW = Ay. Hence by Taylor's theorem,

P £
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_<ty Ax dh/ Ax*_ dty Ax3 d'y
m

Ax*

^"dx* T+
dx*' 1. 2

+^3 ' 1.2.3
+

cfc* 1.8.3.4'

&c. (1),

dy' Ax d*y f Ax^ dfy &x3 dSj
#

Ax*

^-taf' T+d^' +
dtf 3 ' l.».2

+
dx*' 1.2.8.4'

&c. (2),

di/! Ax d^y" ax* <%" A^3 #g/'
^

A a?
4

hjP~W ' T + <W % ' T72+ 3a?3 "

ITliS
4"^* ' T72.3.45

&c. (3).

If in (1) and (2)^=~9 these two curves Mm and mW

will have a common rectilinear tangent at m and any other

curve urn!1 not fulfilling the same condition, must lie at the

same side of the two curves Mm, Mm\ so touching at m, and

cannot pass between them. This has been already esta-

blished (318).

If in (1), (2), and (3),

dy
___

dy 1 dyu

dx~~ dx'~~ dx!t
'

the three curves touch at m ; but if also the condition

d*y_d?y'

llx^drf*

the curve mw' must pass between Mm and irf.

For by subtracting (3) from (1) and (2),

Such a value vp may be assigned to Ax as will render the

first terms of these series greater than the sum of the re-

maining terms, and the same condition will hold good for

all values of Ax between vp and zero ; therefore the sign of

the entire series will be in each case that of the coefficient of

Ax2

z-—7T in the first term, which coefficients being equal by the
J. • &
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condition ~=-j^, the terms Aj/ — Ay" and Ay! — Ay" will

have the same sign. Hence the arc Mrf, intercepted be-

tween pm and pm'!

, must lie at the same side of the curves

urn and miw', and therefore the contact of these two must be

more intimate than that ofMmt! with either of them.

(348.) From what has been said, it appears that curves

may have with each other different degrees of contact, and

the principles on which the theory of contacts, in its most ge-

neral form is founded, are embraced in the following theorem*

PROP. CLXXX.

(349.) Let three curves (Mm, Mm', Mm,,

) ) having a common

point (m), be represented by the equations F(yx) = 0,

F^y'x') = 0, F7
(y

r/x") — 0, and let the successive differential

coefficients of these equations,from the 1st to the ipth, be

equal each to each ; and also let the successive differential

coefficients of thefirst two equations
,from the ipth to the

nth, be equal each to each. Under these conditions the

part of the curve um!1 next the point m, must lie at the

same side of the two curves mm and u.m\

For, by hypothesis, the terms of the three series (1), (&),

(3), as far as the.pth term, are equal each to each ; therefore^

if (3) be subtracted from (1) and (2), the result is

„_§ dp+1y dp+ly
f,

J
Axp+i

(dp+2y dp+2y" 1 Axp+2

Sd?+ *y dp+*y»1 Axp+S
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4y ~ Â - £^i-^H 3 i .i.(?+i)

yd*+y #>+y | a^+3
+

i dx^'d^dxT̂ 3 t . 2...(p -f 3)'

By hypothesis, the sum of the first (71 — p) terms of these

series are equal : let this sum be (s), therefore

yiW-f I

ff_ j d
n+1y dn+ly

!l 1 Axn

C dn+ 2y dn+y I
A#n+2

+ t^ 2̂~ Ja? f'w+a 3 1.2...(w + 2)

(*^ d»+y ^ a^+ 3

+
1 dxn+*~dx^3 3 1.2... (^ + 3?

c cf
n+y ^n+y 7 A^n+2

+ 1 gwm+ 2 ~ &"w+"2 3 rr^..(w+2)

^ i flte'»+
8 <&"»+* 31.2... (rc +8)

?

The succeeding terms of the series being supposed to be

finite, such a value (mm') can be assigned to Ax as will ren-

der (s) greater than the sum of the remaining terms ofeither

of these series, and therefore Ay — At/,! and Ay1 — Ay 11 will

both have the sign of (s), and Ay and Ayf will be both greater

or both less than Ay]

\ for this and every value of Ax be-

tween mm' and zero. Hence all the corresponding points of

the curve irf lie above both Mm and Mm', or below both, ac-

cording as (s) is negative or positive, and therefore the curve

Mm" can in no case lie between Mm and irf.

(350.) Cor. 1. Hence, in general, if any two curves have

a common point (m), and the co-ordinates of that point being

substituted for yx in the successive differential coefficients,
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beginning from the first, render them respectively equal

each to each, no curve in which the same equality takes

place for a less number of differential coefficients can pass

between them at the point (m), and every curve in which

the same equality takes place for a greater number of dif-

ferential coefficients, must pass between them at that point.

(851.) Cor. 2. The greater the number of differential co-

efficients of the equations of two curves are equal the more

intimate the contact,

(352.) Def The contact involved in the conditions

y~-y> dx dx*

is called contact of the first order. That involved in the

conditions

f ^y„^y d*y __d\i/
y^V* t~x~~~dx* d^~d& 9

is called contact of the second order. And in general the

contact involved in the conditions

__ f

dy jdif dhj^dhj dny_dn
y*

V ~~y> dx~dx~p ~dx'~~dx^ ' ' * d^~daft*

is called contact of the nth order.

PROP. CLXXXI.

(353.) To find that curve of a given species F f(y'x r

) = 0,

which has the highest order of contact witJi a given curve

p(xy) = 0.

Let the number of constants in the equation F f(j/V) =
be n. The equations being differentiated n~\ times, and the

values of the constants of the equation ~$\y]x]

) = found

from the equations

__ f

dy dy ! d2
y _jfrij dn+1y ___dn

~ l
y}

y- y > dx^d^" dx*~dof* dxn+1^l^-^
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being substituted in that equation, will give the equation of

the curve sought. For the number of constants being by

hypothesis n, will be sufficient to fulfil these conditions,

and therefore the contact may be of the (n — l)th order

;

but it cannot be of a higher order, as n constants could not

fulfil more than n equations.

(354.) Def. Of all curves of a given species, touching a

given curve at a given point, that whose contact is of the

highest order, is called the osculating curve of that species,

and the contact is distinguished from the contact of other

curves of the same kind by the name osculation. If the

number of constants in the equation of the osculating curve

be n, the osculation is said to be of the (n —• l)th order.

(355.) When we speak of different degrees of contact and

osculation, it should not be understood that the curve, which

is said to touch another in a greater or less degree^ is more

or less coincident with the curve it is said to touch. The

fact is, there is only one point of actual coincidence, namely,

the point fulfilling the conditions x = x\ y = y\ But the

portions of the curve flowing from this common point may

be more or less distant from each other. Thus, as has been

proved, a curve of a given species, meeting another in a

given point, may be so situate that no curve of the same

species can pass between them ; but by this it is not at all

to be imagined that any coincidence takes place between any

arc of the one curve, and any arc of the other, how small

soever these arcs may be supposed. Nay, so far from any

such coincidence taking place, it follows from what has been

already proved, that how high soever the order of contact of

two curves may be, another curve can be found, whose con-

tact, being of a higher order, will pass between them.

(356.) It appears also that the higher the degree of the

equation of a curve is, the higher the order of its oscula-
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tion, since it contains a greater number of constants; and

that since the number of points necessary to determine a

curve is always equal to the number of constants in its equa-

tion, as will appear by Sect. XXL, the order of its oscula-

tion is always one less than the number of points necessary

to determine it.

(357.) The osculation of curves is sometimes explained by

supposing the osculating curve first to intersect the given

curve in n points, and then supposing these points to be

united in one. But as the principles can be more clearly

explained without this supposition^ and as it is only calcu-

lated to mislead the student, and produce wrong ideas of

what are called contact and osculation, we have rejected it.

(358.) From what has been said, it appears that the con-

tact of a right line with a curve is both contact and osculation

of the first order. For the equation of a right line

y — ax — # = 0,

involves but two constants, and therefore the highest order

of contact of which it is susceptible is the first, and the equa-

tion of the osculating right line is, as has been already

found,

{y — y
])dx — (x — x l)dy = 0,

yfx 1 being the point common to it and the curve.

(359.) The equation of the circle

(y - y)
2 + (* - O 2 = »%

involves three constants, the co-ordinates of the centre, and

the radius. The highest order of contact of which this is

susceptible is the second, and therefore the osculation of a

circle is of the second order.
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SECTION .XVII.

Of the singular points of curves*

(360.) Def. Those points of a curve which possess any

remarkable properties, which the adjacent points do not

possess, are called singular points. The differential calculus

enables us to discover these points, and in general to dis-

cover the figure of any curve whose equation is given.

(361.) The position of the tangent being determined by

the equation

if the co-ordinates of P satisfy the equation -~r = 0, the

tangent at the point p must be parallel to the axis of oc> for

the equation of the tangent becomes in that case

(362.) In like manner, if •— = §-, the equation of the

tangent becomes

x — xf =
3

and is therefore parallel to the axis of y»

(363.) If~ = 0, the series in (318) gives

f f
__ d

3y Ax3 d*y Ax*

„d6
y Ax5

A value vp of Ax being taken so small that the first term

shall surpass the remainder of the series, the sign of
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pp
n — pp\ resulting from + Ax^ will be different from that

which results from — Ax ; and the same being true for all

values of Ax between pp and zero, it follows that the parts

of the curve on either side of p lie at different sides of the

tangent, and consequently that as the curve passes the point

p, it changes the direction of its curvature. Such a point is

called & point of contraryJlexure, or a point ofinflexion.

(864.) The principle is however more general. If several

successive differential coefficients after the first vanish, when

the co-ordinates ofthe point p are substituted for the variables

in their expressions, let the first differential coefficient, which

• u i

dnv
does not vanish, be -y~-;

7 axn

1„ If n be an even number.

__ d n
y Axn

rJI — «W -

^_dn+1y ^
Axn+l dn+2

y Axn+2
+d^ ' i.2.3...{n+i)~dx»+* * T7K7^iT%y

As the sign of Ax does not affect that of Axn
, such a value

pp may be assigned to Ax as will give pp* — pp
!l the sign of

dny
-i~-, both for + Ax and — Ax, and the same is true for

every value between pp and zero. Hence the concavity is

dn
y

turned towards or from the axis of #, according; as —~ is' & dxn

< or > 0.

8. If n be an odd number,

_dn y Axn

PP ~~ PP = + * " —
dxn 1 . 2.. .n

dn+hj Axn+1 d n+2
y Axn+2

<ta
w+1 1 .2...(^ + l)

+^ w+2 1.2...(ro + 2)'

By reasoning similar to that used before, it may be shown
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that the parts of the curve at either side of the point p lie at

different sides of the tangent, and that therefore the point

P is a point ofinflexion.

(365.) In these cases the curve touches the tangent with

a contact of the (n — l)th order; for the first differential

coefficients of the equations of the curve and tangent are

equal; and the succeeding differential coefficients of the

equation of the tangent being respectively equal to zero^

must be equal to the corresponding differential coefficients of

the equation of the curve for the point p, as far as the

(n — l)th differential coefficient, therefore the contact must

be of the (n — l)th order,

dh/
(366,) It should be observed, that when ~

2
= 0, the ra-

dius of the osculating circle becomes infinite (333) , which

shows that at such a point no circle can be described between

which and the curve another may not pass,

(367.) If, at the same time that the conditions

1& - °'
<fo*

- °' dx* ~ ' - doc- " u>

are fulfilled, the condition Jf- is also fulfilled, in addition
3 ax

to the circumstances already proved, the tangent through

the point p will be parallel to the axis of a?
5
and if dy = 0, it

will be parallel to the axis ofy*

(368.) It may happen that the co-ordinates of the

point p may be such that -j- may have two or more

unequal values. This happens whenever the value of #, for

the point p, causes a radical to vanish in the value ofyk and
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o

yet does not cause the same radical to vanish in -jo When-

ever this takes place, there are always as many tangents to

the same point of the curve as there are different values of

-T-,, and therefore as many branches of the curve must inter-

sect at that point.

(889.) If the values of -7- be equal, and y^ have two or

more unequal values^ the curve will consist of as many dif-

ferent branches, which have a common tangent at that point,

(370,) Points where several branches of a curve meet are

called multiple points. If two branches meet, they are

called double points ; if three, triple, &c.

(871.) The direction of the curvature of the different

branches may be found, as was shown before, from the sign

of the second differential coefficient.

(872.) If two branches have, at the same point, a common

tangent, that point is called a cusp. It is said to be a cusp

of thefirst hind if they lie at different sides of the tangent,

and a cusp ofthe second hind if they lie at the same side,

(873.) The principle just laid down may be expressed

more generally. If, for the values ofyx corresponding to

the point p, the wth differential coefficient have two or more

values, the preceding coefficients having each but one, then

two branches of the curve touch at the point p with the

(n-l)th order of contact, and the species of cusp is the

first, since -^ is the same for both branches,

(874) If the value of any differential coefficient be im-

possible for the co-ordinates of the point p, that point can

neither be preceded nor followed immediately by another.
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and is an insulated point not continuously connected with

the curve itself, Such are called conjugate 'points. They

being thus detached from the curve, can only be con-

sidered algebraically to belong to it, because their co-or-

dinates fulfil its equation. But considered geometrically,

they do not belong to the curve.

SECTION XVIII.

Of the rectification, quadrature^ and curvature of lines of"

the second degree.

PROP. CLXXXII,

(375.) Of the rectification ofthe circle,

First method.

If x be any arc of a circle whose radius is unity, by ex-

pressing co in a series of powers of sin. x by M'Clauriu's

theorem,

sin* x sin, 3 x 32 sin.5 x 32
. 5 Z

sin.7 so

x _ „^_+__ + ___ +____
&&\T sin* x

If x = 30° =
-J-,

v sin, x = J,

* ~ b
' I 2" + 8 ' 1.2.3

+ 32 ' 1.2.3.4,5

A. 315C 7

+
128 1.2.3.4

."".

. T 3

n£
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This series was used by Newton for the calculation of the

circumference of the circle,? but does not converge with

sufficient rapidity.

Second method.

By expressing x in a series of the powers of tan. x by the

same theorem, we find

tan. x tan. 3 x tan. 5 x tan.7 x
* = — 3- +—5 r~'

&c -

If x = -7-5 tan. x = 1
9T

This series will also give the value of if, but is inconvenient

for calculation, owing to its want of sufficiently rapid con-

vergence.

This may be remedied thus

:

fin CL

let tan. a = 4» '•* tan. %a = =——-~-~~ = -y^U and therefore

. 2 tan. 8a
, o TT

tan. 4a =
t
——

-T7T = 4r§- Hence,
1-— tan. a 2«

tan. (4« -
J")

= dr«

Hence we find

ft __ 1 1 _1 1

4
~~

239 8.(289) s + 5.(239) 5 7 (239f
;

but since tan, a = ^

a ~ 5 8.5s + 5.5* 7.5?
+ '

&c "

therefore.
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1 1

%.- as5+ &6*~ 7^ +> &c -)

1 1 1

\L.S89 8.(289)3 + 5.(239)5
>

c,;)

This series converges with sufficient rapidity to afford great

facility in calculating the value of v.

Let r be the radius of a circle whose circumference is c „

since the circumferences of circles are as their radii,

r : 1 : : c : 2tf;

hence c = Qrit; v the circumference of a circle is equal to

the diameter multiplied by the value of tt found by the

means above stated.

PROP. CLXXXIII.

(376.) Of the quadrature ofthe circle.

By the general formula for the quadrature of curves in

(330), the area is

»>r
%
doj

/L
but r%

is in this case constant and integrating between the

limits «/ = and w = %tf
9 the whole area of the circle is

(377.) Cor. Since the semicircumference of the circle is

nc, the area of the circle is equal to the rectangle under the

radius and semicircumference.

PUOP. CLXXXIV.

(378.) Tofind the area ofan ellipse.

The equation of the ellipse related to its axes being solved

for y, gives

B
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/^____
-<r^JJ

y>f^
1

F At 1

iA

If a circle ACAf be described

on the axis aa' as diameter,

any ordinate y
] to the diameter

of this circle is expressed by

VA2 - aP, v

— y ; hence

tjdx — . jAfe.

Jydx = — .y#'d#

;

but the value oi\fy
!d% is the area of the circle ; no constant

is necessary, as ydx and y'doc begin together. Hence, if a'

be the area of the ellipse,

i
B

A' = . A*7t = BA#,
A

Hence the area of an ellipse is equal to that of a circle de-

scribed with a radius, which is a mean proportional between

its semiaxes.

(379.) Cor. 1. The circle described on the transverse

axis as diameter, the ellipse and the circle described on the

conjugate diameter, are in geometrical progression.

(880.) Cor. 2. The areas of ellipses are as the rectangles

under their axes.

(381.) Cor. 3. If two ellipses have one axis common, the

areas cut off by a common ordinate mpp' are as the other

-n QJ n TC

axes ; for dAf — —fy ]dx and— being the same for both

dA!oc b, v since the corresponding increments of the areas are

in the ratio of the axes, the sum of any number of these will

be in the same ratio.

(382.) Cor. 4. If any point f be taken on the transverse

axis, the area fpa is to the area fp ?a, (p' being on the cir-

cumscribed circle), as the conjugate to the transverse axis*
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PROP. 'CLX XXV.

(883,) Tojind the area intercepted between two ordinate^ to

the asymptote ofan hyperbola.

The equation of an hyperbola related to its asymptotes

aN-b*

being

yx =
4

A2 + B2 dx
ydx sin. yx = - . - . -77 . sm. iy#

x

A'
2 + B2+ B2

. fix Aa+ B* .

4— sin-y^y— = —j— .sin.y^.(log.d?-log.d7)

If the area be supposed to begin when # = 1, the ex-

pression is simplified, and becomes

A =—j—sm. j/a; . log. x.

The coefficient (a
2,

-f b'
2

) is the square of the line joining the

extremities of the axis. Ifhalf this line be taken as the linear

unit, the expression is still farther simplified, and becomes

a' = sm.yx . log. x

;

and if instead of the neperian logarithm, a logarithm whose

modulus is the cosec. yx be used, the expression is

Af = log. x.

Hence, if a series of values of x be measured from the

centre in geometrical progression, the areas intercepted by

ordinates through their extremities will be equal, since the

areas measured from x == 1 must be in arithmetical pro-

gression.

(384.) Cor. 1. If the values of x be taken to represent

a series of numbers related to i x/ a
2+ b2 as unity, the cor-

responding areas measured from the ordinate of the vertex

of the curve will represent a system of logarithms of these

numbers whose modulus is cosec. yx.
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(385.) Cor, % If the hyperbola be equilateral,

it -

yx == — , *.• cosec. yx = 1

;

therefore, the logarithms will be in this case neperian loga-

rithms. It is for this reason that the neperian are sometimes

called hyperbolic logarithm s.

PROP. CLXXXVI.

(386.) Tofind the area included hy an arc ofa parabola*

a diameter through one extremity, and an ordinate to

that diameter through the other.

The diameter being axis of x^ and a tangent through its

vertex axis ofy, the equation is

y
Q~ =i px„

\*y = Vpi\

.sin. yx . ydx = */px . dx sin. yx$

Ar= Vp/'Vx . da? sin. «/o; — |- Vp • #* sin. «/# = \yx sin. 3/^%

No constant is added, because the area and y are at the

same time equal to zero.

Hence, the area sought is two-thirds of the parallelogram

fprmed by y and x,

PROP. CLXXXVII.

(387.) Tofind the radius of curvature to any given point

y
fx! in an ellipse or hyperbola.

The equation related to the axes being twice differentiated,

gives

dy B'*xf

dx ±Y

dx %

B4



ALGEBRAIC GEOMETRY. 1 85

Making these substitutions in the formula for the radius of

curvature found in (333) 5
we find, after reduction,

__
(A 4

j/
f2

-f bV9
)
t

but A-y z + B%fi = a2b2(a* — e
%x ]% and a^ - e*a!* = B f2

(167); hence

_ _B^

AB
*

(388.) Cor, L Since the curvature is a maximum when

the radius of curvature is a minimum, and vice verm, the

curvature of an ellipse is least at the extremities of the

conjugate axis, and greatest at the extremities of the

transverse axis. That of an hyperbola is greatest at the

extremity of the transverse axis, and diminishes without

limit. These follow obviously from the above expression

for the radius of curvature.

(389.) Cor. %. The maximum and minimum values of

A2 Ba

the radius of curvature are— and —

.

B A

PROP. CLXXXVIIT.

(3.90, ) Tofind the radius of curvature to a given point in

a parabola.

The equation of the parabola being twice differentiated^

gives

% ^ V
dx %j

OHM — £!_

~dx2
"~ ~~

4j/

3B

By substituting these values in (338), we find

R ^
±'

where p
1 = the parameter of the pointy and p~ the principal

parameter.

(391.) Cor. Hence the point of greatest curvature in a

parabola is the vertex.
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PROP. CLXXXIX.

(892.) Tofind the chord (c) of the osculating circle which

coincides with the diameter through the point ofcontact

in any line ofthe second degree.

Let the angle under the diameter and tangent be Q,

c = 2r sin. (5

;

AB
but in the ellipse and hyperbola sin. (5 —

f /?

, -
t̂J'

p
2-

and in the parabola sin. 3 = —-, v

c = p
f
.

Hence the chord of the osculating circle which coincides

with the diameter of a line of the second degree passing

through the point of contact, is equal to the parameter of

that diameter.

pbop. exc.

(#93.) Tofind the equation of the evolute ofan ellipse or

hyperbola.

The values of— and -y- derived from the equation of
ax ax" x

the curve being substituted in the general formulas found

in (SB3), give

v - y = -— o .
—

5

f

X(K\/ + B4X C2

)
X — X ^^ 2 T i

A4Ba

and, since by the equation of the curve,

A^" -f B%'~ = A y (B'
t

-|- C
2

///" ) ;
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also, since a'
2^* = a~b2 — b~x~; v

A4
j/

2 + ^X* = Ba
(A4 - 0*4?*).

These substitutions being made in the above equations, the

•results, after reduction solved for y and #, give

BTy' 3

c

a 3
x'

A- r

cu

Substituting these values in the equation of the curve, and

dividing the result by
.
A*B*

find

B 3

y
f3 + A 3 X' Z = + C 3

,

where 4- is taken for the ellipse, and — for the hyperbola.

In this equation for the

ellipse, all values of x be-

c2
.

tween x = + -— and v

a

x =
, give real va-

A &

lues of y, and all values

beyond these give impos-

sible values of y. In like manner, all values of y between

c2 c2

y _-
_| an(j «/ = — — give real values of #, and all

beyond these impos-

sible values of x;

hence the evolute

is confined within

these limits. Also,

it appears from the

form of the equa- ^

tion, that the parts of the evolute included between the

C A-\
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four angles formed by the co-ordinates are similar and equal.

The figure of the evolute is represented above. It is ob-

vious, since the axes of an ellipse must be both tangents to

the evolute at the points where it meets them, that the

points aa f

, bb\ are cusps of the first kind. The transverse

axis of the hyperbola must be a tangent at the points aa\

which are cusps of the first kind.

(394.) Cor. 1. The arc ab of the evolute of the ellipse is equal

A2 B 2

to rib—Act (342); but v!b~ —, aci = -— , therefore^

ah =
AB

(395.) Cor. % If a' = ca9
b' = cb, v

ca , cs c2 c
z

A' = , B f = , V A = —T, B = —
.,

A '
B

J
A' B f

'

if the substitutions be made in the equation of the evolute,

and the result multiplied by ——, the result is

cT

A%^ ± jfioF == ± A,TBfT
,

which bears an obvious analogy to the equation of the

curve itself.

proj.\ ex ci.

^396.) Tofind the equation ofthe evolute ofa parabola.

The values of -4-, y^* delved fr°m the equation of

the curve being substituted, as before, in the general

formulas (333), give

y-^tf p~ v
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4r + px — oc
1 = —

.&

Hence we find

Making these substitutions in the equation «/
2 = y,r? and

transforming the origin of co-ordinates to the point 3/,= 0,

x = ±p9 the equation becomes, after reduction,

Hence y
]
is only real for

the values of x1 which

have the same sign as p9

and therefore the curve is

extended indefinitely in

the same direction as the

parabola itself, touching

the axis of the parabola at a point whose distance from the

vertex is half the principal parameter. This point of the

evolute is a cusp of the first kind. The form of the

evolute is represented in the figure.

This curve is called the semicubical parabola*

SECTION XIX.

Of the properties ofthe Logarithmic, Choncoid, Cissoid, and

other curves, both algebraic and transcendental.

Of the logarithmic.

(397.) Def The logarithmic is a curve expressed by

the equation y = ax related to rectangular co-ordinates,



190 ALGEBRAIC GEOMETRY.

PROP. CXCII*

(398.) Perpendiculars intercepting equal parts on the axis

qfx are in geometrical progression.

For in this case x varies in arithmetical progression, and

therefore a%
\ or y must vary in geometrical progression,

(899.) Cor, Hence, if any series of numbers be repre-

sented by the values of x9 the values ofy will represent their

logarithms related to the base a. The curve has received

its name from this property.

PROP. CXCIII.

(400,) The axis of sc is an asymptote,

;-—-

—

——£_ When x= 0, y = I

,

j

/ Therefore if Km! be,

/ assumed to represent

^/' the linear unit, the

'f" curve intersects ay
_1 —^ at m'. Let Ap= A.m\

v pm = #,

1°. If a > 1, the

values of# increase without limit for the increasing positive

values of x
9
and decrease without limit for the increasing

negative values of x. Hence on the negative side of A the

curve is continually approaching ax', and approaches it with-

out limit, and on the positive side of a it is continually re-

ceding from ax, and recedes from it without limit,

2°. If a < 1, the value of y decreases without limit for

the increasing positive values of x9 and increases without

limit for the increasing negative values. Hence it con-

tinually recedes from the line xx' on the negative side of a,,

and continually approaches it, and approaches it without

limit on the positive side of a»

Hence in both cases the line xx1
is an asymptote,

'XT
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PBOP, CXCIV.

(401,) To find the equation of' the tangent to a given point

in the logarithmic.

By taking the logarithms of the equation y = a*, we have

ly = x . la3 which being differentiated is

dv . =— . y . dx 3

m being the modulus. If a be the base la = I, and the

equation is

wdy — ydx = 0»

Hence the equation of a tangent through a point y
fx ! m

m{y — ij) <— y
!(x ~~ x f

) = 0,

PROP. CXCV.

(402.) Tofind the subtangenL

ydoc
By (323) s = ™i— = m* Hence the subtangent for all

points on the same curve is the same, being the modulus of

the logarithms, whose base is a.

prop, cxcvi.

(403.) Tofind the centre and radius of the osculating circle -

The equation y = av being differentiated twice
?
gives

dy y dQy __ y
dx "~ m 9 dx*

~~
m?:

These values being substituted in (383) give

(ms + y
2 )'

yx - 971 ~
in
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PROP. CXCVII.

(404.) Tofind the point ofgreatest curvature.

The point of greatest curvature is that at which the radius

ofcurvature is a minimum. To find this, let the value of r,

found in the last proposition, be differentiated, and equated

with zero. The result, divided by ~ni(m2 + £/*)% is

Syd(y2 -j- m2
)
— %(if +• mz)dy = 0,

which gives

m
%y*> — m\ v y = —=.

Hence the point sought is that whose ordinate is equal to

the side of a square, whose diagonal is the subtangent.

PROP, cxcvin.

(405.) Ofthe quadrature of the logarithmic.

By (328), A z=zjydx, butydx = mdy, v

A my +
To find c, suppose the area to commence from ?/ = v*M

?

v when y = y\ a = 0, v c =-

a = m(y

• my1

. Hence

-y%
that is, the area included

between any two ordi-

nates, pm and p'm', is

equal to the rectangle

under the subtangent,

and the difference be-

tween the ordinates. The

area pmmV = the rect-

angle CFo

(406.) Cor. 1. The area included by the curve mm', ex-

tending indefinitely, and approaching the asymptote, the

3?
M

^M^ C

E

D I
}•

1e
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asymptot and the ordinate pm is equal to the rectangle dm
under the subtangent and the ordinate : for in this case

y = 0, v a = my.

(407.) Cor. %. The area extending from db indefinitely.,

is equal to the space bmf.

On the conchoid ofNicornedes*

(408.)'Def. Aright

line xx f being given in

position, another right

line passing through a

given point p revolves

in the plane passing

through the given right line and the given point. Let bm

and bm' be assumed of a constant magnitude, and the loci of

the points m, M f

is called a conchoid. The locus of m is

called the superior, and that of m f the inferior conchoid.

The line xx' is called the rule of the conchoid.

The line bm is called the modulus of the conchoid.

The point p is called the pole ofthe conchoid.

prop, cxcix.

(409.) Tofind the equation of the conchoid.

Let pm = z 9
bm = m, pa — b, apm ='«. Hence

pb = (z + w)
?
V (% T ni)cos. to — b, (1),

which is the polar equation of the curve. The upper sign

applies to the superior, and the lower to the inferior con-

choid.

The equation related to rectangular co-ordinates, of which

xx' is axis of x and a the origin, may be found ; for

%* = {y -f by + #% and cos.

stitutions we find

y+b
, and by these sub-
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y*xx + (y* — m*) (y + b)* = 0.

This equation includes both superior and inferior conchoids*,

since both -fm and —m are involved in <rri
2
'.

The conchoid is therefore a curve of the fourth degree.

prop. cc.

(410.) Tofind the equation of a tangent to the conchoid.

Let the point on the curve through which the tangent

passes be t/a,
J
9
and the equation being differentiated gives

dy!

__ y*(ma —

y

8 )^"

dx!

""""

y3 + m2b

Hence the equation of the tangent is

(y — y) (y
3

-f- m°~b) + (x - x]

) (m2 - y»)V2 = °-

PROP. CCI.

(41 1.) To investigate thefigure of the conchoid.

1°. Let m > b. Ify ~ ± m, x == 0, and for all values

of y beyond these x is impossible. Therefore, if ad = +m3

ad' = — m, and through the points d, d' parallels to xx' be

drawn, the entire curve will be included between these pa-

rallels. Also, if y = — b, x = 0, v the curve meets the

axis ofy at p the pole.

Since, for y = ± m, -j- ' = 0, the parallels through d, d'

to the axis of # are tangents to the curve at the points d, d'.

And since y == renders x infinite, the axis of x is an

asymptote to both inferior and superior conchoids.

Ify = — 6, -^- = + —— ; therefore the pole is a
dx

(ra2 -62)~2

double point, and the values of -~- for that point evidently

show the geometrical method of determining them.
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2><7" A V^^"^-^.
X 4^^C7^ x

c v~y\ ~y c

On DD f as dia-

meter, let a circle i*' d
be described, and

through the pole p

let ce' be drawn

perpendicular to

dd', and let the XT

lines ac and ac' be drawn. Lines drawn from the point p to

the points of bisection of the lines ac and ac7 are tangents at

b AP
the point p. For ~~ — = — = tan. acp = tan. tpc :

therefore pt is a tangent, and for the same reason pt7
is also

a tangent. The figure of the conchoids is therefore in this

case represented as in the preceding figure.

£. If m = b, as be-

fore, the curve is in-

cluded between the pa-

rallels to the asymptote

through d and p. If

y = + m, ~ == 0, v the parallel through d is a tangent to
dx

dy .

the superior conchoid. Ify = — m, y- is infinite, there-

fore the tangent through the point p is the line pd. This

forms as it were the union of the two tangents, in the last

case the oval PD r being supposed to vanish, by its diameter

m~ b becoming equal to zero. The point p is in this case

a cusp of the first kind. The figure of the conchoids in this

case is represented in the preceding figure.

3. If m < b. The co-ordinates of the pole p satisfy the

equation of the curve, but they render -j- impossible ; hence

o2
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the point p is a conju-

gate point. The points

dd' both give~
° dx

0,v

the tangents through

these points are parallel

to the asymptote. The figure of the conchoids is in this

case represented in the preceding figure.

If b =. 0, the conchoid becomes a circle.

If m = 0j it becomes a right line.

Ofthe cissoid ofDiodes.

(412.) Def. A circle being described

upon a given diameter (ab), and any

chord (am) being drawn from the point

(a), and the ordinate mp being drawn,

let AP f = bp, and the perpendicular p'm'

being drawn to meet the chord, the locus

of the point Mr

is called the cissoid.

prop. ecu.

(413.) Tofind the equation of the cissoid.

Let ab s= 2r, map == w. By the conditions of the de-

finition

am = 2r cos. w,

am! ~ bp sec. w = pm tan. w sec. «/.

But pm = am sin. w, v am1 = am tan.2 cv: hence the equation

sought is

z == 2r tan. w sin. w, (1.)
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If it be related to rectangular co-ordinates, we find, by

the usual substitutions,

y*(2r - x) - x 3 '= 0, (2.)

PROP. CCIII.

(414) Tofind the equation of the tangent to a given point

on ilie cissoid.

By differentiating the equation (£),

dy (8r —x)x^

therefore the equation of the tangent is

(^ — y> (%r - x)y — (x - ^) (
3r - ^^ ^ °-

(415.) Con 1. The diameter ab is a tangent to the curve

at the point a, and since the curve extends above and below

the diameter, the point a is a cusp of the first kind.

(416.) Cor. % As x approaches to equality with 2r,

-T" approaches to infinity ; and when x = £r, y- is infinite;

but at the same time y is infinite, and therefore a perpen-

dicular ab through b is an asymptote

prop. cciv 8

(417.) To investigate thefigure of the cissoid.

Since for each value of x there are two equal values ofy3

with different signs, the branches of the curve on each side

of ab, the diameter of the generating circle, are equal and

similar. Since for every negative value of x, and for all

positive values greater than ab, the value ofy is impossible,

the curve must be included between the parallels, which are

perpendicular to ab through the points a and b,

Since^ by differentiating twice, we find
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&*y 3r2 3r*ys

&T2~ ~ N
* 4.

==
^8 ?

this having always the sign ofy shows that the curve is con-

vex towards the axis ab.

Of the lemniscata*

(418.) Def. The curve, which is the locus' of the inter-

section of a tangent to an equilateral hyperbola with a per-

pendicular from the centre upon it, is called the lemniscata*

prop. ccv.

(419.) Tofind the equation of the lemniscata.

The equation of the equilateral hyperbola, referred to its

axes, is

y» ___ xh = _ az
9

The equations of the tangent, and the perpendicular to it

from the centre, are

jfy — x lx = — a2
.

By these equations jjx ] being eliminated, the result is

( j/
2 - ^2)a2+ ( j/

2 -4- x*f == 0, (1),

which is the equation sought, and the locus is therefore a

curve of the fourth order.

The polar equation may be found by making the neces-

sary substitutions in the above equation, and is

z
z — &a

(cos. 2 w — sin.2 o>) = 0,

or since cos.2 m — sin. 2 w = cos. 2a/,

Z
7, - az

cos. 2a; = 0, (2.)

PROP. CCVI.

(420.) To investigate thefigure ofthe lemniscata.

By the polar equation (2), when 2 = 0, w = j-, cr"T> or



ALGEBRAIC GEOMETRY. 199

-T-, or —r. These values of
4 9 4

w show that the asymptotes

of the equilateral hyperbola

are tangents to the curve at

the centre through which

the curve must pass. Also,

since z is impossible for

Sir
every value of to, except those included between —7- and

—, and between + -7- and 0, the curve must be included
4 .

— 4

between the tangents passing through the centre, as repre-

sented in the foregoing figure.

By differentiating the polar equation, we find

dz

da
= — z tan. %a

Hence by the formula in (327),

tan. tz = cot. 2co, v tz + 2cv =

Hence when w = 0., fe = — , therefore the tangent to the

hyperbola through the vertex is also a tangent to the lem-

niscata.

it

If the tangent be parallel to the axis tz = W, v w = —, v

if from the centre c^ ca be drawn, making acv one third ofa

right angle, the tangent to the curve at a is parallel to cv,

and it is clear that the curve is included within the rectangle

be', one side of which equals the transverse axis (2a)
9

and the other -7=5 or the side of a square, of which the

transverse axis is the diagonal.

It is obvious also that the centre is a double point.
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PROP. CCVII 6

(421.) Tofind the area of the lemniscata*

By (330),

But z*duj = — tt-5 and since cos, 2w = — , therefore
tan. 2w a23

„ (a4 ~ zrf
tan, 2w = r—* .

£2

Hence we find

— z3dz t A A l

2(a4 - *4)*

This integral being extended to the entire curve, gives

A = &£
.

Hence the entire area is equal to the square of the semiaxis*

Ofthe sinusoid, fyc.

(422.) Defi A curve, represented by the equationy= sin.x
9

related to rectangular co-ordinates, is called the curve of

sines, or the sinusoid,

PROP. CCVIII.

(428.) Tofind the equation ofa tangent to a given point.

By differentiating the equation, we find

dy cos. x
dx r

r being the radius of the arc or. Hence the equation of the

tangent is

If x = Qnrtf where n is any integer number, cos. x = 1,

At these points the tangent makes with the axis ofx an angle
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=? 45°, and if x = (£?i + 1 )rtf
9
the tangent is inclined at the

angle 135° to the axis of #, these angles being measured in

the positive direction.

PROP. CCIX3

(424.) To investigate thefigure of the sinusoid.

By differentiating the equation a second time, we find

cPy sin.- a? j/

j^i — ""
r» — •"" "71*

Hence the curve is always concave towards the axis of #.

I{x=znrit
9y= 9

therefore ifaa'= rtf,

AAf/ -2r7T,

AAff'=8nr,&c. *v~

the curve intersects the axis of x at the points A, Af

, A7
', aw

,

&c.

For all values of #, from 5? = to 00 = rtf, y is positive ;

for all values from x = rtf to x = Srtf, «/ is negative, and

so on alternately ; therefore between a and a' the curve lies

above the axis of x, from a' to a" below it, from a" to a1"

above it, Sic.

The maximum positive and negative values of sin. x are

+ r and — r
9
of which + r corresponds to

rtf 5r<7r Qrtf Sit 7#
# = g-j # = "Tjp x = "Tp and — r to a? = ^^==2'? &c.

Hence if a a', a'a", a"a"', be respectively bisected at b, B f

, B
f/

,

&c, and perpendiculars bv, bV, bv", &c. erected equal to

r, and a parallel v, v" to aa" drawn, this parallel touches the

curve at the points vv", &c. ; the same is true of a parallel

through v', and the curve is included between these parallels.

d%y
If x = nrit, -r~i ^ 0, hence the points a, a', a", &c. are
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points of inflection, the tangent through these points inter-

secting the axis of x^ m has been already shown, at an

angle of 45° degrees.

prop, ccx,

(425.) Tofind the area ofthe sinusoid.

By the usual formula,

rydy

yz
&=fydx^-f.

A/72

which being integrated gives

A =— r(ra_y2)» + c .

When a = 0, y — 0, •.• c = r\ hence

a = r(r — a//*
2 ~ y

2
)°

If x = ab, y = r, v A = r% hence the whole area ava' is

equal to twice the square of the radius of the arc x.

(426.) Other trigonometrical curves may be imagined,

with equations analogous to that which we have just de-

scribed. The curvey = cos. x is of the same species, since

it may be expressed y = sin. (^ — x).

prop. ccxi.

(427.) To investigate thefigure ofa curve whose equation

is y = tan. x e

If x =. nrit9 y = P

v the curve must

meet the axis of x at

the points a, a', a",

&c, where a? = 0,

A B " 7E Iff 7 «r = w, w = 2r^

&c.

By differentiating

the equation twice.
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dy_
dx cos.

2 x 5

d^y tan. x

dr2 ~"cos.a x'

If a? = nrit, cos.2 a? = r2 ,
•.• ~ = 1, and tan. x = 0, v

j» = 0. Hence the points a, a', a", &c. are points of in-
(XX

flection, the tangents through them intersecting the axis of

x at an angle of 45°.

(2n + l)rtf dy r2

If # = ^ -^ = —
-, and y = oo . Hence it the

intercepts AAf

, a'a", aV, be bisected at b, B f

, Bf/

, perpen-

diculars through these points are asymptotes.

d%y
Since -~ has always the same sign as yy

the curve is

convex towards the axis of x.

The figure of this curve is therefore as represented in the

preceding figure.

prop. ccxn.

(428.) Tofind the area ofthe curve of tangents.

By the general formula

a =ytan.#. dx.

r sin x
By substituting for tan. x its value —

,

J & cos.^

pr* . d cos. x
^ cos. «r

Hence by integrating

a = — r2 • I . cos. #.

No constant is added, because when a = 0, x = 0, v
cos. x = 1, v log. cos. <a? = 0. Hence the area, included

between the curve and its asymptote, is infinite.
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r(fz -f sin.2 x) sec.
3 x.

PROP. CCXIII.

(429.) To investigate thefigure ofthe curve, whose equation

is y = sec. x.

By differentiating the equation twice,

dy r . sin. x

dx~~ cos.2 # 5

^ c<{ ~"
cos. 3 x

d2v
Since —^ has always the same sign with sec. x or j/, the

curve is every where convex towards the axis of x.

Sec. x is a minimum

when x = nrrf, which

corresponds to ?/= ±r
?

\ • ifaAf=#r5aa"= 2tfr,

aa'"= 3tfr
5 and through

the points a, a', &c.

the perpendiculars

av = r3 aV = — r5

aV = + r, &c. be

drawn parallels to aa'

through the points v

and vf are tangents to the curve at those points, and the

curve extends indefinitely above the one and below the other.

When x = -- , y is infinite, and also -—.
<v cix

Hence5
if the intercepts between aa', a'a", a"aw, be bisected

at b, Bf

5 B f/

, &c, perpendiculars through these points are

asymptotes to the curve. The figure of this curve is there-

fore as represented in the preceding figure.
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Ofspirals.

Of the logarithmic spiral.

(430.) Def The curve, whose polar equation is z = aw9

is called the logarithmic spiral.

prop, ccxiv.

(431.) Radii vectores which make, tvith the axisfrom which

the values ofco are measured, angles in arithmetical pro-

gression, are themselves in geometrical progression.

For let the angle under any two contiguous radii vectores

be ff, then

z = a*, z* = aw + 0f
, z

,f = a* + M!

, &c.

or

z — aw, zf = a<*>a®, z" = a^a2^ &e.

which are in geometrical progression, a? being the common

multiplier.

(432.) Cor. If a be the base of a system of logarithms,

and z represent any number, w will represent its logarithm,

a property from which the spiral has derived its name.

prop. ccxv.

(433.) Tofind the tangent to a given point on the curve.

The equation z = a" differentiated gives

mdz = zdoo,

m representing the modulus of the logarithm, whose base is

a. Hence by the formula (327)

tan. tz = m.

Therefore in the logarithmic spiral the radius vector is in-

clined to the tangent at a constant angle. Hence this curve

is sometimes called the equiangular spiral.

(434.) Cor. The polar subtangent = mz.
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(435.) Def. Similar logarithmic spirals are those in which

the radius vector is equally inclined to the tangent.

prop, ccxvi.

(436) To find the locus of the extremity of the polar

subtangent.

Let the polar subtangent = *'. Hence the equation of

the locus sought is

z1 = mawf = tan. 0$%

the axis from which <J is measured being perpendicular to

that from which w is measured.

Hence the locus is a logarithmic spiral, and since

mdz! == rfdw, it is similar to the given spiral.

prop, ccxvii.

(437.) To find the length ofan arc of the logarithmic

spiral*

By eliminating duo from the equations

mdz = zdcv,

da = (dz* + ^W)"^
the result is

da = (1 + m*)Tdz,

v a = (1 -f mQ)*z -f c.

Let the value of z, corresponding to the extremity from

which the value of a is supposed to commence, be z\ and

supplying thus the constant, we find

a =. (z — z 1

) sec. 0.

Hence, if from one extremity (a) of the arc ab a tangent

be drawn, and a radius vector (cb) from the other, and with
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the centre c, and tlie radius

cb, the circle bd be described,

and from the. point d a tan-

gent to the circle be drawn to

meet the curve at e, the arc

ba is equal to the right line

AE.

Hence, if the pole (c) of a

logarithmic spiral ab be the

centre of a circle intersecting the spiral at any point, b, and

a right line be drawn from the centre, intersecting the

spiral and circle in a and d, and through these points tan-

gents be drawn meeting at E, the tangent ae is equal to the

arc ab of the spiral intercepted between ca and the circle.

If zf = 0, the value of a will be the length of the arc of

the spiral continued to the pole. In this case,

a = % sec. 0.

Hence the intercept of the tangent between the point of con-

tact and the polar subtangent, is equal to the arc of the

spiral continued to the pole.

PROP, CCXVIIl.

(438.) Tofind the area included between two radii vectore$ of

the spiral*

By eliminating dw from the equations^

dA %z*dw9

mdz =s %d^
we find

dA = ~mz dz
3

rnz*

If zf be the value of % when a =
;

- m(^ — *k) _ tan, a .
{z

z - z12

)
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Let cb == z1

, ca = #. With c as centre, and the radius

cb, let a circle be described meeting ca in p, d'. The area

bca is equal to half the area of the triangle d'ea. For

da = s;- z\ v de = tan. 8(z — z!

), and d/a = z + zK

If zf = 0, the corresponding area will be

_ tan . 9 . z2

"~
4 '

In this case d and d' coincide with c, and the area is half the

triangle formed by the radius vector and polar subtangent.

(4390 Cor. 1. If fl =
-J-,

v tan. J=1,va =^ **

4' ' "" *> • *- 4 •

Hence, if a tangent be drawn from a to the circle, the area

is equal to the square of half the tangent.

(440.) Cor. 2. In the same case the area, when z1 =
9

is equal to the square of half the radius vector, at which the

area begins.

prop, ccxix.

(441.) Tofind the radius ofcurvature.

Differentiating the equation of the spiral twice, we find

mdz — zdw
9

m*<Pz = zdw\-

By means of these equations, that of the curve and the ge-

neral equation for the radius of curvature, the quantities

dz9 dw9
and w, may be eliminated, and the result is

r = z . cosec. 0.

(442.) Cor, l e The chord of the osculating circle, which

passes through the centre, is equal to twice the radius vec-

tor. For c = 2r sin. 8 = 2z.

(443.) Cor. % The curvature of the spiral is continually

increasing as it approaches the pole.
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PROP. CCXX.

(444.) Tofind the involute and evolute of the spiral*

Since the pole is the point of bisection of the chord of the

osculating circle, which passes through it, a line zf from it to

the centre of curvature is perpendicular to z9 and v

z1 = r . cos. 6 = z cot. ;

hence the equation of the evolute (the values of w being

measured from a line perpendicular to that from which they

are measured in the original curve)., is

z = cot. . a^.

Hence the involute of the logarithmic spiral is a similar

.one, whose equation is

zj! = tan, a«>9

the axis from which co is measured being perpendicular to

that from which it is measured in the original curve.

Of the spiral ofArchimedes , #c.

(445.) Def A spiral, whose equation is z = aw, is called

the spiral ofArchimedes.

(446.) Cor. a is the value of z, corresponding to w = 1.

prop, ccxxi.

(447.) Ifany number of values gfz be drawn, dividing the

space round the pole of the spiral into equal angles, those

values will be in arithmetical progression.

For, since a is constant, z x w
, and therefore if w varies

arithmetically, z will also vary arithmetically.

p
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PROP. CCXXII.

(448.) To determine the position of the tangent

By differentiating the equation,

dz = adw.

Hence, by the general formula (327),

%
tan. zt = — = w*

a

Hence the angle zt is continually increasing as to increases.

(449.) Cor. 1. If z! = the polar subtangent,

z ! = 2; tan. atf =s 20? = «w2
.

(450.) Cor. 2. The locus of the extremity of the polar

subtangent is a spiral, whose equation is

z
1 = aw2

,

to being measured from an axis, perpendicular to that from

which it is measured in the given spiral.

PROP. CCXXIII.

(451.) Tofind the area of the spiral.

By the general formula

/zHz z3

Let z = z\ when a = 0, v

~~ Ga '

and if the area begin from the pole z! = 0,

- i!
6a'

(452.) The spiral of Archimedes belongs to a class of

spirals included in the general equation z = aw 71

, n being

any positive number. The quadrature of this class of spirals

can be effected ; for, by the general formula,

z^daj aWdw
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Hence, by integration

a*w2n+1

"2(3w + l)

Substituting in this for w its value, derived from the equa-

tion of the curve, and introducing the value of c, by z 1 being

the value of z9
where a = 0,

2n+l 2«+l

Z~n~ — Z j n

A =— —— •

2(ro + l)a n

(453.) By (450) it appears that the locus of the ex-

tremity of the polar subtangent of the spiral of Archimedes

is one of this class,, soil, z = au)n where n ~: % Again, the

locus of the extremity of the polar subtangent of this last

spiral is z = ±aaj 3
; and, in general/ the locus of the ex-

tremity of the polar subtangent of z = aww
5

is

a

n

For by differentiating

Hence, by the general formula,

tan. zt= —
If therefore the polar subtangent be. z\ z

f = #?
tan* ££

5
v

* = ±

which is the equation of the locus of its extremity, the

values of w being measured from an axis at right angles to

that from which it is measured in the equation z = awn
.

In this class of spirals, the angle zt is continually ap-

proximating to 90° as the curve recedes from its pole, but

never becomes actually equal to 90°«

Ofthe hyperbolic spiral, Sfc.

(454.) Def. The spiral, whose equation is zw = a> is

called the hyperbolic spiral
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(455.) Cor. Since

zto is the arc of a cir-

cle, whose radius is

z, subtending the an-

gle w, it follows that

this spiral may be

conceived to [be ge-

nerated by, taking

any portion(am) from

the pole, andj with

the radius am describing a circular arc mp always" equal

to a, the point ? will be always in the spiral.

prop, ccxxiv.

(458.) If through the pole of the spiral ab == a be drawn

perpendicular to thefixed axis, a, parallel to am through

b, is an asymptote to the spiral*

Let vm be a perpendicular from a point of the spiral on

the fixed axis. ?m=s sin. w. Hence

vm a .

Now* as w is diminished without limit, the limit of—— is

unity, therefore the limit of vm is a, scil. ab. Hence the

curve is continually approaching the parallel through b^ but

never meets it.

prop, ccxxv.

(457. ) Tofind the tangent to any point in the hyperbolic

spiral.

By differentiating the equation
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Hence, by the general formula

a
tan. zt = —-.

z

(458.) Cor. 1. Hence follows a geometrical method of

drawing a tangent to this curve.

From the point b on the asymptote take bn = ap, and

draw an; then pt, making the angle apt equal to anb, and

pt will be a tangent

(459.) Coi\ 2. Hence, as the spiral approaches the pole

a, the angle zt approaches 90°.

PROP. CCXXVI.

(460.) To find the polar sabtangent of the hyperbolic spiral.

Let zf be the polar subtangent,

z1 = z tan. zt = a.

Hence the subtangent in this spiral is constant.

(461.) Cor. 1. The locus of the extremity of the polar

subtangent in this spiral is a circle, whose radius is a, and

whose centre is the pole.

(462.) Cor. % If the polar subtangent of a spiral be

constant, it must be the hyperbolic spiral ; for, let z ] be the

polar subtangent,

z^doj
zf = z tan. zt = ' —

n
—

.

dz

Hence we find

zz~~Qdz =— dfc,

and by integrating

— z'z-1 = — OU,

Z! = £0>,

which is the hyperbolic spiral.

prop, ccxxvxi.

(463.) Tofind the area included by two values ofz.

By (457),

dldw = — axlz*
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Hence by the general formula (330),- we find5
after in-

tegration,,

az
A = ~ J + C.

Let z = z! when a = 0,

(z j — z)a
a = '—-~—— e

If the area be measured from the centre5
# = 0, v

A = ¥"'

Hence, if en = ap, and bn ! = ap', app' = ann', and the

area continued from p to the centre,, is equal to the triangle

ABN,

(464.) The hyperbolic spiral is one of a class of spirals

included in the equation z = a«r~
w

o One of the most re-

markable of this class is the lituu-Sy whose equation is

z = fiw~"2 3 or £
aw = a2

.

PROP. CCXXVIIJ*

(465.) If, with any value gfz in the liiuus as radius> a cir-

cular sector be described, whose angle is w, the area of

this sector is invariable.

For, zoo being the arc of the sector, its area is ~z*w
9

which is, by the equation of the lituus, equal to ~a2
.

peop. ccxxix.

(466.) The axisfrom which the values of w are measured

is an asymptote*

For, by the last

proposition, the

a*
arc PM= £ai=—

s

z

which continually

diminishes as z
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increases and as to diminishes., and the condition w, = gives

z = oo
3
and pm = 0.

prop, ccxxx.

(467.) Tofind the position ofa tangent to the Utuus,

By differentiating the equation,

dz z

doo
~~~

2w*

Hence by the general formula,

tan. zt = — = 2w.
z

Hence in this spiral zt continually approaches 90° as the

curve approaches its pole,

(468.) Cor. 1. Hence the polar subtangent z
1 may be

found,

JS

z] = z tan, zt = Saw 2-'.

(469.) Cor. 2. The locus of the extremity of the polar

subtangent is a spiral, whose equation is

z
lz = 4a2w

3

which is called the parabolic spiral, and is one of the class

mentioned in (450).

(470.) Cor. 3. The triangle contained by the polar sub-

tangent and % is equal to a2
, and is therefore constant.

Of Cycloids*

(471.) Def. The curve, traced out by a point (p) in the

plane of a circle, which rolls in a given plane upon a right

line given in position, is called a cycloid.
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If the generating point be within the circle,, the curve

is called the prolate cycloid: if without it, the curtate

cycloid ; and if on it, the common cycloid.

A. M.M D

A. M. D'

PROP, CCXXXI.

(47S.) Tofind the equation of a cycloid.

Let a?

b' be the right line on which the generating circle

is supposed to roll. Let a be the generating point when the

radius caa'
9
passing through it, is perpendicular to the right

line a'b', and through a let a parallel ab to a?

b' be drawn.

Let p be the position of the generating point after the circle

has rolled over any portion a'd', and let cp be produced to

meet the circle at pf

« By the definition a'd' = D fpf

, v
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ad = bV. Let the distance of the generating point from

the centre c be r, and let the circle with this radius be de-

scribed. Let the angle dcp, related to the radius unity, be

a, and the radius of the generating circle mr
9

v t !b ! = vita == ad, md = r sin. a. If ab and AC be taken

as axes of co-ordinates, the preceding conclusions are ex-

pressed in the equations

x = rh?iA — sin. a), (1),

y = r(l — cos, a), (2).

Eliminating A from these equations, we find

y + r cos. —i— -—~ — r =
5 (8).

If m > 1, this is the equation of the prolate cycloid; of the

curtate,, if m < 1 ; and of the common cycloid,, if m = 1

.

(473.) Cor. L To find the point where the cycloid meets

x
the axis of x (ab), let •?/ = 0, v cos. —- = 1, v x = 9

# = %imr^ x = 4?rmr
5
&c. ; and since Stfmr is equal to the

circumference of the generating circle, it is evident that the

curve meets the line ab after every revolution of that circle,

and the intercept ab between two points, where it meets it
;

is called the base of the cycloid, and is equal to the circum-

ference of the generating circle.

(474.) Cor. Q, The ordinate to the middle point of the

base may be found by making a = it in (&), which gives

y = %\ This ordinate is called the axis of the cycloid, and
5

as is manifest from the same equation, is the greatest or-

dinate.

(475.) Cor. 3. If the origin be removed to the middle

point of the base by substituting x -f irmr for x in the equa-

tion (1), and the angle a measured from the vertex v by

substituting it + a for a in (1) and (2), the results are

x = r{mA 4- sin. a), (4),

y = r(l + cos. a), (5),
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from which A being eliminated,

y — r cos.
x— ^/%ry — y9,

mr 0, (6).

(476.) Cor. 4. If the origin be removed to the vertex v
3

by substituting y + 2r for y in the last equation, we find

oo— V — 2ry —y2

y r cos.
mr + r=0, (7).

PROP. CCXXXII.

(477.) -4 circ/tf (vpD) being described on the axis as dia-

meter, and a perpendicidar from any point (a) of the

axis being drawn to meet the cycloid at p, and the circle

at p, then pp = m . _pv.

The origin being assumed at

the centre of the base, the equa-

tion (6) gives

cos."
y — r x — %/ 2ry ~yz

mr

cos; -JL

But by (5)

- r vp

And

Hence,

*/%ry — <if = sin.
VjP

vp =
-pa—jpa^vp

v pp = m. yp.

In the common cycloid therefore pp = vp.

(478.) Cor. Hence, if the ordinate to the diameter of a

circle be produced, until the produced part bear a given

ratio to the arc intercepted between the ordinate and the

extremity of the diameter, the locus of the extremity of the

produced part is a prolate cycloid, if the ratio be of major
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inequality ; a curtate,, if of minor inequality ; and a common

cycloid if it be a ratio of equality.

PROP. CCXXXIIL

(4
r

79.) Tofind the equation ofa tangent to a given point on

a cycloid.

By differentiating the equation (8) of the curve, we find

dx mr—r+y
Hence the equation of the tangent sought is

i

(7/ — y) (mr — r + y
f

) — (x — w!

) (%ry
f — ya

)
T= o

For the common cycloid this equation becomes

(y — y
f

)y
rr — (# — #0 (

gr - V)
T = °>

since in this case mr — r = 0.

prop, ccxxxiv.

(480.) To investigate thefigure ofthe cycloid.

By differentiating the equation a second time5

J2
?/ r(??zr — 'r *—

< ??zj/)

Jo;
2 (mr — r + z/)

s

1. If the curve be the prolate cycloid.

At the vertex v,y~2r, v ~ < 0, v at this point the

curve is concave towards the base.

The value 01 j-^ continues negative, until y = r
5

for which value y~ = ; the point therefore whose or-

dinate is . r
3

is a point of inflection. After passing

through this value j- becomes positive, and then the curve is
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convex towards the base. When 3/=0,^- = 0, v the base
doc

touches the curve. Hence the figure of the prolate cycloid

is as represented in the first figure of page 216.

2. If the curve be the curtate cycloid.

In this case, as before, at the vertex, the curve is concave

d?y
towards the base, and the value of -~ continues negative

from this until it becomes infinite, which it does when

y = r(l — m), that is, at the point where y is equal to the

distance of the generating point from the circumference of

the generating circle. The same value of y also renders

j- infinite, and therefore at this point the tangent is perpen-
(XX

dicular to the base.

Ify = 0, ~ = 0, therefore the base touches the curve.

Hence the figure of the curtate cycloid is as represented

in the second figure of page 21|6,

8. If the curve be the common cycloid.

The value of-— is always negative, except for y = 0,

which renders it infinite. Hence the curve is always con-

cave towards the base and at the points, where it meets the

base, has cusps of the first kind.

The figure of this curve is represented in the third figure

of page 216.

prop, ccxxxv.

(481.) To draw geometrically a tangent to a given point in

a cycloid.

1. If the curve be the prolate cycloid.

Let ab be the base, dv the axis, and dV the diameter of

the generating circle.
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x v

Let pt be a tangent at the point p. By (479)?

(2ry - y^Y
tan, tp# = x—^— ^~L~.

mr — r -f J/

Now jm = (Srj/ — 3/
2
)
T

, «d' = wr — r + y, therefore if jpd'

be drawn, tp$ = ^?r/$ ; therefore if B fp be produced to

meet the generating circle at p
n
, and pV be drawn, p

!l\ !

is

parallel to pt : hence the manner of drawing pt is obvious.

% If the curve be the curtate cycloid,

As before, pa = (2rz/ — j/
2)% aD f = mr — r. + j/, v

£>D
f« = tp#, v jpV is parallel to pt.
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3. If the curve be the common cycloid.

In this case p and p
,! coincide, v the tangent is parallel

to pv.

(482.) Cor. 1. In the prolate cycloid, if a tangent be

drawn from D f to the circle, described upon vd, and from

the point of contact e a parallel to the base be drawn,

meeting the cycloid in i, the points i are the points of in-

flection .

(483.) Cor. 2„ In the curtate cycloid, if a parallel to the

base be drawn through the point vl, meeting the cycloid at

l, the points i are those at which the tangent is perpen-

dicular to the base.

(484.) Cor. 3a The normal of the cycloid for the point

p, is equal to that part of pD ;

, intercepted between p and

the base of the cycloid in all the cycloids. In the common

cycloid the normal is equal to pi>.

(485.) Cor, 4. If tangents be drawn at any two points

p, v\ of a cycloid, and the parallels pp, v'p\ to the base be

drawn, the angle ptp' under the tangents is equal to the

angle in the segment of the generating circle, intercepted

between the line n fp and d^, (produced if necessary.) In

the common cycloid, this angle is the angle contained in the

segment pvp'.

(486.) Cor. 5. If, in the common cycloid, a parallel gg'

to the base be drawn through the vertex, the part of it in-

tercepted between the tangents pt, p
?

t, is equal to the arc

pyp
1

*

PROP. CCXXXVI.

(487.) Tofind the area of the cycloid.

By differentiating (1) in (472), and multiplying the result

by {%
ydx = r2

£ md&— (1 + m)d . sin. A-f cos. d. sin.a >

,

which being integrated, and the integral taken between the
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limits a = and a = 2tf, and observing that

f cos. ad sin. a ~ tt
?

\'fydx = (%m + l)rV.

Hence the area of the cycloid is (2m + 1) times the area of

the circle described upon the axis.

The area of the common cycloid is three times that of the

generating circle.

PROP. CCXXXVIIo

(488.) Tofind the length of an arc of the common cycloid,

By the general formula for the rectification of curves^

a —f^dy* -f- dx
z + c 8

-y'

ijdii
1.

In the common cycloid dx2 = ~—— , therefore

Hence^ by integrating,

d> v
.j3y ~2V%r(2r~y) ?

V%r ~ y
the arc being measured from the vertex^ no constant need be

added ; for when a =0, %r—y == 0.

Since vd = 2r
3 and va = 2r —~y

?
v vd . v« = 2r(j£r — 2/) 5

but vd o va = pv% % e pa = £pv.

(489.) Co?\ Hence vb = 2yb
3
v avb = 4vd

9
that is

9

the circumference of the common cycloid is equal to four

times the diameter of the generating circle,

PROP, CCXXXV1II.

(490.) Tofind the evoluie of the common cycloid.

The values of the first and second differentials, found in

(479) 9 (480) 3
being substituted in the general formulas for

the co-ordinates of the centre of the osculating circle (334)9

aive
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y-tf' = %»
a? — #> = — 2 V^% —

j/
2

.

Hence we find

y ~ — y\oo ~ x ] — % J~~ %ry ! — ys
,

which being substituted in the equation of the cycloid, give

^' - V — &/V
y — r cos. — + r = 0,

which is the equation of a cycloid,

whose generating circle is equal to

that of the given one, and whose

vertex coincides with the extremity

of the base, lying, however, below

the base.

(491 .) Cor o The involute of a cycloid is an equal cycloid,

the extremity of whose base coincides with the vertex of the

given one*

prop, ccxxxix.

(49&) Tofind the radius of curvaturefor any point in a

common cycloid.

The values of the differentials, already found, being sub-

stituted in the general expression for the radius of curvature,

found in (335), give

r2 = 4n/.

Hence the radius of curvature is equal to double the chord

pD, or to twice the normal.

(493.) Cor, 1. Hence, at the extremities of the base the

radius of curvature vanishes, and therefore the curvature at

these points is greater than that of any circle.

(494.) Cor. 2. At the vertex the radius of curvature is

equal to twice the axis.

(495.) Cor. 3. The base is the locus of the point of

bisection of the tangents to the evolute from points in the
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PROP, CCXL.

(496.) A parallel to the base of the common cycloid being

drawn, intersecting it, and the circle described upon the

axis in pp, tofind the locus ofT, the point of intersection

oftangents to the curve and circle at these points.

Since^ by (481), vp is

parallel to TP^vpT—pTP^ -V ^>
and vpa = TPp

5
but

vpa = vp rr
9

V Tp ~ pV — pv e

Hence the locus of the

point t is the involute of the generating circle described

upon the axis*

Of the companion of the cycloid

(497.) Defi If an

ordinate (ap) to the

diameter of a circle

be produced, until it

is equal to the arc

(pv) of the circle in-

tercepted between it and the extremity v of the diameter*

the locus of its extremity p is called the companion of the

cycloid.

PROP, CCXLI.

(498.) Tofind the equation of the companion of the cycloid.

Let the radius cv of the generating circle be r9 the angle

Yep = a, Yp = rA. If jd be taken as origin, dm = ^, and

pm =y, v
y = r{\ + cos. a), (1),

x = rA, (&

)

Q
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Eliminating a from these equations, we find

y — r cos. " r = 0, (3),

which is the equation sought.

(499.) Cor. 1. The base of the curve is equal to the

circumference of the generating circle.

(500.) Cor. % If a common cycloid be described on the

same axis, it will have also the same base, and av being pro-

duced to meet it, ap = pp'.

(501.) Cor. 3. If the origin be at the vertex, the equa-

•
X

r,
tion is y + r cos.— —

- r = 0.

PROP. CCXLIl.

(502.) Tofind the equation ofa tangent to the curve.

By differentiating the equation, we find

dy (%ry —y'1) *

dx~~~ r

Hence the equation sought is

r(y - y
!

) + (2ry ! - y^Y (x - x !

) = 0.

PROP. CCXLIII.

(503.) To investigate thefigure ofthe curve*

Let the equation be differentiated a second time, and the

result is

d2
y __ r ~- y

which being negative for all values ofy between y = 2r and

y = r, shows that, if through the centre ex be drawn parallel

to the base, the curve from v to i is concave towards the

base. If y = r, -~-^ = 0. Hence the point I is a point of
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d2
y

inflection, and from i to b the value of -^ is positive

;

therefore the curve is convex towards the base, and for

du
y=0,~- =

9
which shows that the curve touches the

doc

base at a and b. Hence the figure of the curve is as re-

presented in the preceding figure.

PROP. CCXLIV.

(504,) Tofind the area of the curve.

The equation (2) being differentiated, and the result mul-

tiplied by (1), we find

ydx — r\d.\ + cos. a^a),

which by integration, gives

Jydx = r*(A + sin. a),

no constant being added, as the area is supposed to begin

when a = 0. Now rzA is equal to twice the area of the

sector pev, and r9, sin. a is twice the area of the triangle

pcv ; therefore the area vpmd is equal to twice the sum Oi

the sector and triangle.

If a tangent be drawn through v meeting mp produced in

m\ the area vm'md is equal to 2r3A •.• YM'p-™f2A-r2
sin. a,

v the area vm'p equals twice the difference between the

sector vcp and the triangle vc^
?
which is twice the seg-

ment vp.

The whole area of the curve is equal to twice that of the

generating circle.

It is plain that the semicircle vpn bisects the area dvpb,

and also that the semicycloidal area dvp'b is trisected by the

semicircle and the curve vpb.

If right lines be drawn connecting the vertex with the

extremities of the base, the area of the curve is equal to

that of the triangle avb ; and hence the segments of the
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curve cut off by these lines are equal. It is also plain from

the last proposition, that these lines intersect the curve at

the points of inflection.

From what has been said, it may also be proved that if

ca — caf

5
the area Pf'vp is equal to the rectangle under pa

and the axis.

(505.) All the cycloidal curves which have been treated

of are embraced in the general equation

x-\-n ^Qry— y
2

y + r cos. —— - r = 0.

I£n = m — 1, the curve is the common cycloid.

If n = 1 and m > 1, the curve is the prolate cycloid.

If n = 1 and m < 1, the curve is the curtate cycloid.

If n — and m = 1, the curve is the companion of the

cycloid.

As the other cycloidal curves do not possess any particular

interest, it is sufficient merely to have stated their equations,,

Of epitrochoids, epicycloids, §c.

(506.) Def. The curve traced by a point in the plane of

a circle, which is supposed to roll upon the periphery of a

given circle, and in the same plane with it, is called an

epitrochoid. If the generating point be upon the periphery

of the generating circle, the curve is called an epicycloid.

If the generating circle be supposed to roll upon the

concave part of the given circle, it is called an hypotrochoid.

If in this case the generating point be upon the circum-

ference, the curve is called an hypocycloid.

PROP. CCXLV.

(507.) To
f
find the equation qfan epitrochoid.

Let a be the centre and ab the radius of the base, c

the centre and cb the radius of the generating circle, and

let bdc be the position of the generating circle when the line
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connecting the centres a, c, passes through the generating

point at v. Let a' be the centre of the generating circle

in any other position, and p the generating point; let

ab and ax perpendicular to it be assumed as axes of co-

ordinates. Let cac7 =r. <p and pc' be produced to E.

By the manner in which the curve is generated bb' = b'e.

If ab = r, bc = r\ c'p = d, bb'

b'e r<p

= b'e ; but

b'c'e — —r — ~7° ~ FC 'P * ket C 'G ^e Para"e ' an(* PM Pes>

it r\-r^
pendicular to ax, v pc'g = —• — ——<p

9
v

r-\-r- r-±rf

da = d . sin. ~—r-p
?
and pg == d cos. —7-<p,

gm = (r ~|- /*') cos.
9
am' = (r + r') sin. p.

Hence the equations of the epitrochoid are,

?/ = (r -f r ) cos. <p t- c cos.—- (f

a; = (r + >') sin. <p + c sin. —7-?

>(!)•
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If the curve be the hypotrochoid, ?
J is negative, and these

equations become

y = (r — r') cos. <p + d cos. —y- p I

x •=-- (r — r') sin. (p — d sin. -y-0 |

If the curve be the epicycloid, c = r
f

, and the equations

are

y — (r -f ?•') COS, + '/'' COS. "~t~ «p I

a? = (?• -1 r') sin. <p -f r sin, -—p- |

If the curve be the hypocycioid, the equations ane

r— r
y = (?- ~ 7

J
) cos. <p 4- r' COS.—p (5 i

r
"

f
.(4).

x = (V — rr
) sin. <s —- r 1

sin. —.-
•

r '

(508.) Cor. 1. If with the centre a and the radius ad a

circle be described, and h, h' be the points where the

epitrochoid meets the circumference. To find the angle

dah, let the equations (1) be squared and added, and since

for the points h and H f

, y
%

-\~ x* = ad 2 = (r + r] — d)% V

(r + rfY + d* + Sd{r + r 1

) (cos. cos, ^~0

. r+r'
v+ sin. <p sin.—p-p) = (r -f rf — d)2

.

But by trigonometry,

r + r1

. . r-fr; r
cos. <p cos.—p- 9 -f sin. 9 sin. —j- 9 = cos. —~<p

;

hence after reduction, cos, -y<p = — 1,

r m
T <f>

= 7f, V<p = — ,

The same result applies to the hypotrochoid.
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(500.) Cor, % If in the equations (4) we substitute

%
for rf we find

_
?y== ___ cos^ + __ cos .

__
/;

r— e . r-\-e . r—ex^~- sin. <p ~— sm. — ft

and if in the same equations we substitute —— for r! and

y* ~f" €
= f

, the result is

r— e
,

r+e . r~<?
,^—cos.^— sin . —?'.

r— £ . , r-\-e . r —e .

x = -—- sin. <3' — ~7r— sm. <3
f

.

These equations being the same as the preceding, show

— e r~\-e
that the generating circles, whose radii are —^— and

give the same hypocycloids.

PROP. CCXLVI.

(510.) Tofind the equation ofa tangent to an epitrochoid.

The equations (1) being differentiated, the result after

division is

. . 7 . (r+r!

)

, rsin. <p-f- asm. ——<p

r cos. <p -f a cos. -

f

—
<p

The equation of the tangent to the epitrochoid is there-

fore

r-j-r 1

iy ~- y
}

) (^ cos - <p + d cos
- "~7~^)

r -f- r*

+ (#—-#') (rf sin. <p + d sin. —j-<?) = 0,
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which for the hypotrochoid is

(y — y
!

)
(/' cos. <p

~~ d cos. -—~ 9)

?*— T^

4 (# — aJ) (r!

sin. <p 4- d sin. —p- 9) — 0.

The equations of the tangent to the epicycloid and hy-

pocycloid may be found from these by making c = r! and

observing that

sin. <p -± sin.
f

rr tan.

cos. ^ 4- cos. —-~~<p

Hence the equation of the tangent to the epicycloid is

(y - y) -f- tan. -^7- • ?(# - #) = ^

and that of the hypocycloid is

[y _ y} _ tan. -^rK* - *0 = 0.

(511.) Cor. 1. Hence for the epicycloid the angle

ptm = if — -~™-j— ^, and for the hypocycloid the corre-

v .,
r— 2rf

spondmg angle = —%prh

(512.) Cor. 2. In the epitrochoid and hypotrochoid if

= 0, the equation of the tangent becomes (3/ — y
1

) — 9

therefore at the point v, where the curve meets ay, the

tangent is perpendicular to ay. In the epicycloid and

r±2rf

hypocycloid, in this case tan. —-q-j— = 0.
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PROP. CCXLVII.

(513.) Tofind the length of an arc ofan epicycloid.

By differentiating the equations (3),

r-\-r^
dy = — (r 4- ^) (sin. <p + sin.

—

—<f)d<p9

r-\-rf

dx — (r + r f

) (cos. <p + cos* ~-y~ <p)d$ ;

but by trigonometry

r+rf

r% . r+Qr* r
sin. ^ + sin. -— ^ = 2 sm. ~^r? cos. —

/? ,

t- +7-; ^ r + 2r'
-y~ <p — ^ COS. -^— f ^wa. ^

After making these substitutions, squaring and adding the

above equations, we find

r

cos. <p + cos. -—7- <p = 2 cos. —^rp ? cos "

V%2 + da:
2 = 2(r 4 r f

) cos. —ft . d<p.

Hence by integration,

__ 4^(rH-V) . r
fVatf + dafi =~^—' sm. ^ . 4,

"No constant is necessary, the arc being supposed to begin

from the point where <p = 0.

For the hypocycloid the expression becomes

— 4rf(V~~rf

) . r
fVdy* + d& - —7— sm. ^>.

(514.) Cor. If^ = fc'p = ftr

VP
4r (r + r1

) .p = — -
" - sm. ±6.
r a

If S = tf, the generating point coincides with h, and we

find

V(r4V)
V.PH

r
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PROP. CCXLVIII.

(515.) Tofind the evoluie ofan epicycloid.

By twice differentiating the equations we find

dy r-\~%7J

^=-tan. -^j-o,

d2
?/ _ r+W

dx <l

~~'~' ~~~
, a r-V%r] r

4r'(r + r )cos.* -—- p cos. 7^7?

Substituting these in the general formulae for the co-or-

dinates y
]x ] for the centre of the osculating circle,

a » rs
r+ Qr1 r

4r (r + r ) cos. —77-7— »cos. 77-7-<p

?/ = 2/

# f = X

r^%f
... . r+ 2/ r

4r'(r-fr') sin. -^-pcos. —^

r+ tor1

But by trigonometry
3

r+2rf r r-fr'
2 cos. -77-7- cos. 77-70 = cos.

—

r <p + cos. <p,

r + 2r' ^ . . r-f-r>

2 sin. -^r^ cos-^7? = snL
<P + sin.-rj-p.

And by the equations of the curve itself,

y = (r + r f

) cos. f + r' cos. —7- <p ?

(r -f rf)sin. <p + ?
,r sin,

r

By these substitutions, the equations of the evolute are

r(r + r J

)
rr] r + r

if = -7-7- cos. <p
—

77-, cos. —r—0,^- r + 2r'
r

r + gr' rf
y?

r(r-}-rf

) . ?V . ?' + ^f

w f = —^^ sin# p —

.

• sin, —-.— p,
?' + 2rf r+2r r r?

which are the equations of an epicycloid, the radius of
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whose base is *77~F> anc' tne mc^us °f whose generating

circle is

+ 2r

and since these are in the ratio of r to

the evolute is similar to the epicycloid. It is obvious also^

that the centre of the base of the epicycloid is also the

centre of the base of its evolute.

X

A "i>\

A

J
\

\ \v_
A. /

J
v
\^ _^

To construct the base of the evolute geometrically, let the

circle whose radius equals r + 2r f meet the epicycloid at v
5

and draw av: from v let a tangent to the base be drawn
5

and from the point of contact let kl be drawn perpendicular

to av
9
the circle described with the radius a'c is the base of

the evolute for al = Also LB — AB-~~AL =

C),rrd

r + %r
" ~ "" "" ~ r + 8rr

therefore lb is the diameter of the generating circle of the

evolute., which is represented in the preceding figure.

For the hypocycloid the result is by the same process.

y

(r-

cos. -f

r — r
f _ GXrjJ

*-%rf

sin. <p -f
-2r

cos.

sin.

"ft

-ft

Hence the evolute of an hypocycloid is an hypocycloid, the



236 ALGEBKAIC GEOMETRY.

radius of whose base is ——., and the radius of whose ge-

rr
nerating circle is —

—

5 and since these are in the ratio of

r to r\ the evolute is similar to the hypocycloid. It is ob-

vious also that their bases are concentrical.

Let av = r — 2r\- and

v the point where a circle

with the radius r — 2r'

meets the hypocycloid; let

vk be drawn perpendicular

to av3
and kl touching

the base at k, al is the

radius of the base of the

evolute, and since

BL AL AB r—2r
-

l9
bl is the diameter

of the generating circle of the evolute, which is represented

in the figure.

Of the cardioide.

(516.) The epicycloid, the radii of whose base and gene-

rating circle are equal, is called the cardioide.

(517.) Cor. The hypocycloid corresponding to the car-

dioide is the base itself.

PROP. CCXLIX.

(518.) Tofind the equation of the cardioide.

For this curve the equations (3), after changing x into y
and:y into #, become

x = r (2 cos. <p + cos. &<p)

;

y =s r (2 sin. <p f sin. 2p),
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from which by eliminating <p 2

we find

(f + x2 — r2
)
2 - 4r2(y + (<r + r) 2

) = 0,

If the origin be removed to the point where the curve meets

the base
5
the equation becomes

(f + x* _ %rxy — 4r*(«/2 + #*) = 0o

The polar equation is therefore

2 = 2r(l + cos 8 a;).

The point p being the

pole5
and px the axis from

which w is measured ; the

curve being placed as in

the annexed figure.

PROP, CCLo

(519.) If a line (pm) be drawnfrom the pole to the curve*,

the part m'm intercepted between the curve and circle is

equal to the diameter .of the circle.

For pm ; = 2r cos, w ; but by the polar equation,,

pm — pm' = %r9*
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PROP. CCLI.

(520.) To find the equation ofa tangent tothecardioide*

The polar equation being differentiated, gives

dz = — 2r sin. w , dw.

Hence by the general formula,

z
tan. tz = ——-—- .

%r .- sin. w

(521.) Cor. 1. Hence follows a geometrical construction

for drawing a tangent, bm' = %r sin. w, therefore

- PM
tan. fe =—r.

BM'

Let mc' be assumed on the radius vector equal to bm', and a

perpendicular c fT drawn equal to pm?
tm will be the tangent

to the point m.

(5£2.) Cor. % The tangent at x is perpendicular to px.

(523.) Cor. 3. px is a tangent to the curve at p, and p

is therefore a cusp of the first kind.

(524,) Cor. 4. If a perpendicular to px be drawn

through p meeting the curve in d, the tangent at t> is

inclined to pd at 45°,

PROP. CCLII.

(5%5,) Tofind the area of the cardioide,

By squaring both sides of the polar equation,

z* = 4ra
(1 + cos. o;) Q

3

and multiplying both sides by dcv, and integrating

/zq
~dou—— = 2r2w -h 4r2

sin. w -f ^r^cos. wa sin. w.

Taking this integral between the limits eo = and w = ^tt
5

we find the entire area a, v
a = 4rV -f 2ry°cos. wrf sin. w;

but the last term is manifestly twice the area of the circle,

V A =7. 6r27T;
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that is, the area of the curve is six times the area of the

generating circle,

PROP. CCLIIT.

(526* ) Tofind the length of the arc ofa cardioide.

By substituting in the general formula for rectification

the particular values of the terms, in this case

JXz
%dw* + dz*Y = 2r/{(l -f cos. w)2 + sin.

2 wfidw;

but by trigonometry

9

(1 + cos. w) 2
-f. sin.2 w = 2(1 4- cos. w),

1 + cos. w = 2 cos.2 i-w.

Hence we find,

f{z
l
doo <l + £fe

2)* = 4r/"cos, iw^w.

which by integration is

J\z
2
daj°- + &9)^ = 8r sin. >o

And if this be assumed between the limits oo ~ and

a — it, we find the length of half the curve to be 8r? and

therefore that of the entire curve 16r.

PROP. CCLIV.

(527.) Tofind the evolute of the cardioide.

By (515^ the radius of the base of the evolute is

—
5
which is also the radius of its generating circle. Hence

o

if ce rr -§-cb
9
the cardioide, whose base is the circle with the

radius ce
5
is the evolute sought.

528. Cor. The involute of a cardioide is a cardioide

the radius of whose base is three times that of the base of

the given curve.

Of the quadrairioo qfDinostratus.

Def A right line being supposed to revolve with an

uniform angular motion round a fixed point, and an in-

definite right line at the same moving uniformly parallel tc
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itself meets the former, the locus of their intersection is

called the Quadratrix of Dinostratus.

PROP. CCLV,

(5&9.) To find the equation of the quadratrix9 and de-

termine itsfigure.

Let c be the fixed centre round which the revolving

radius turns. Let ca and ay be the positions of it, and the

parallel where they intersect at right angles, and let these be

the axes of co-ordinates. Let cp and ay be their position

after the revolving line has described the angle pca. Let

ca = r. Aa = x
9
av — y. By the conditions of the question,

pca 2'

The angle pca being expressed in relation to the radius
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unity ; the equation of the curve is therefore

y = (r ~ x) tan.—

.

If x == 0, y = 0, v the curve passes through a.

As x increases from to r5 y continually increases, and

as x passes from r to $r, y continually diminishes, and when

x = 2r . ?/ = Go

The value of?/ corresponding to # = r
9
assumes the form

—, its real value will be found by differentiating both nu~

r
merator and denominator ; by this we find it to be — •

In passing through 5 y changes its sign and becomes

negative, and continues so as x passes from 9/r to 3r, since

in that case the factors ofy have different signs ; and when

x = %r,y is infinite. Hence a perpendicular to the axis of

x at this point is an asymptote.

Similar observations apply to the negative values of x

intercepted between and —-r, and therefore a perpen-

dicular to the axis of x intersecting it at distance = r

on the negative side of the origin is another asymptote.

The values of x between x = 3rt
and x = 4r give positive

values for y, for this case the factors of y have like signs.

For x = 4r, y = 0, and at this point the curve intersects

the axis of x ; and from x = 4r to x = 5r the values ofy
are negative ; and for # = 5r the value of y is infinite,

which points out another asymptote. By continuing this

reasoning, it appears that there exists on either side of the

origin an infinite series of asymptotes, and that the figure

of the curve is as represented in the figure.
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PROP. CCLVI.

(530.) If with the centre c and the radius ca a circle be

described, and the line cp produced until it meets this circle

at p f

, then ap' :Aa::±it:l.

„ TtX TtX
, %

ForAp' = r. -g-="o"
"•" AP : Aa :: i1* 1 L

PROP. CCLVII.

(531.) The ordinate cb : ca : : 1 : \tf.

r
For, by (5®), cb = -7— v cb : r : : 1 : itf.

(532.) Cor. 1. Hence cb is a third proportional to the

quadrant ap'b' and ac For cb : r : : r : irit — cpV.

(533.) Cor* 2. cb : 2ca = AAr
: : the diameter of a circle :

its circumference.

(534) Cor. 3. The area of the circle on AA':4r4
::

JLr : cb. Hence, if this curve could be described geometri-

cally, the quadrature of the circle would be effected, and

from this property the curve has derived its name.

PROP. CCLVIII.

(535.) If with c as centre, and cb as radius, a circle be

described, the arc Dp = Aa.

^ Ttx 2r
For Dp = CB x -£-, CB = —, v Dp = X.

(536.) Cor. The quadrant Dps = ac.

prop. CCLIX.

(537.) Tofind the equation ofa tangent to a givenpoint in

the quadratrix.

By differentiating the equation of the curve, the result m



ALGEBRAIC GEOMETRY. 24S

dy IfX It , H X . TfX
-r* = sec.°- — • — (1 ) — tan.—

.

Hence the equation of a tangent through the point y
]
x* is

y-y< = { sec*^ . T (l --) - tan. — \{x - of).

If x 1 = 0. The equation of the tangent is

and if x f = 2r, it is

Hence, if ce be assumed equal to the quadrant, ab', ae, and

a'e, are tangents at the points a, a', which may be effected

by drawing b'a, and drawing b'e perpendicular to it. For

b'c : ca : ce : : 1 : —

.

Also if xl = 2nr, The equation of the tangent is

it

y = -^-(1 — %7i) (x — 2nr).

At the point f the tangent of the inclination of the tangent

to the axis or x is — r-—
%

And in like manner the tangent of the inclination at F f

is

The position of the tangents at these points is determined

by drawing b'f, bV, perpendiculars to which are the tan-

gents at these points.

The successive hyperbolic branches of the curve therefore

intersect the axis ax at angles continually approaching to a

right angle, and the angles at which branches equidistant

from c on each side intersect it, are supplemental angles.

The subtangents, corresponding to the successive points

r 2
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where the curve intersects ax, and measured upon ay, are

obviously the quadrant ab multiplied by 1, 3, 5, 7, &c.

PROP. CCLX.

(688.) To divide an angle in any number of equal parts hy

the quadratrix.

Let PCAf be the angle, let A*a be divided into the required

number of equal parts, and lines drawn from c to the cor-

responding points of the curve divide the angle into the re-

quired parts.

Of the quadratrix of Tschirnliausen.

(539.) Def. Suppose^ a right line ay, touching a given

circle at a, to move uniformly parallel to itself, until it coin-

cides with cb ; at the same time, suppose the line aa( to

move parallel to itself, so that its intersection with the circle

moves uniformly from a to b, while the former line moves

from a to c. The point p of intersection of these two lines

traces a curve, called the quadratrix of Tschirnliausen,

PROP. CCLXI.

(540). Tofind the equation ofthis quadratrix.

Let ay and ax be the axes of co-ordinates. Let ac = n
By the definition, ad : ab : : am : ac, or
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Tit ItX
ad : — : : x : r v ad = -^

.

m$

Hence the equation of the curve is

TtX

PROP. CCLXII.

(541.) Tofind the equation of a tangent through a given

point.

By differentiating the equation

dy it itx it Vr2 — z/
2

dx~~ 2 ° * 2r~~ %r

The equation of the tangent is therefore

(x — x}

).

PROP. CCLXIII.

(542.) To investigate thefigure of this quadratrix*

If x = 2wr, «/ = 0. The curve therefore meets the axis

of # at intervals, equal to the diameter of the circle, and

continues so to intersect it ad infinitum.

The equations of the tangents to the points x = 9

x = 4r
?
x = 8r, &c. &c. are

J/ = ~£ {* - A
and those to the points x = Sr, # = 6r, x = 10r3 &c. are

Hence the subtangent ct = the quadrant ab. If
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x = (Qn-p l)r, ~ = 0, therefore at the points b
;
b', b", &c.

the tangents are parallel to aa;
.

By differentiating a second time,

d\y 7T
2

. ntx

dx*
~" ~"

4r 2r
"

This is = 0, if # = 2nr, hence a, a', a", &c. are points of

d2
y

inflection ; and since -~ has always the sign opposite to
QjX j*

that ofj/, the curve is always concave towards the axis of x.

PROP. CCLXIV.

(548.) Tofind the area of the quadratrix.

By the formula for quadrature

a =fydx = rfia\.— . dx9

which integrated gives

£r2 ntx
A = COS. -^— -f C.

To determine c, when a = 0, x = 0, v cos. -^- = 1;
2r

2r*
hence c =—5

v

2r* wo?
A = (1 — COS. -77-).

The area acb is found by assuming x = r, and is v

Hence the square of the radius is a mean proportional be-

tween the area apbc and that of the semicircle.
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PROP, CCLXV.

(544.) To divide an angle into any required number of

equal parts by the quadratrix.

Let the angle be acg, and from the point P f the perpen-

dicular p'm; being drawn to aa', let am' be divided into the

required number of equal parts, and the corresponding or-

dinates being drawn, parallels toaa; through their extremities,

divide the arc of the circle into the required parts, as is

evident from the genesis of the curve.

Of the catenary.

(545.) Def A curve such that the arc, intercepted be-

tween two tan-

gents, one of

which passes

through the

vertex, is pro-

portional to^the

tangent of the

angle at which

they are inclin-

ed, is called the

catenary.

Thus if

at == s, and apt = <p 9 s oc tan. f.

*
T

.^

—

± ILs^

/^2> —\i> ^
/>$C/ \P\1 c

-\ ^M.

-~"j}

PROP. CCLXVI.

(546). Tofind the equation ofthe catenary.

By the definition
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J being a constant magnitude, and is called the parameter.

Hence it follows, that

dy* 4- dxl
__ s

,z + s*

dxl
~~

s2

But since df + dxQ = ds*> v
sds

which by integration gives

which is the equation of the curve expressed by x and s as

variables.

By equation (1) it follows in like manner that

dyl+dx7,

_ J*+s*
_

df
"" ^ ;

whence we find

s!ds
dy = —==r5

which by integrating, gives

y== ^.__ (3).

By solving equation (3) for 5, we find

,9-^K'~~. 'i (4),

which is the equation of the curve between the variables

$ and 3/.

By eliminating s by (2) and (3), the result is

, 7
'-x+8'+ Jx*+%ix

which solved for x gives

x = ^ f

I*?
6

' +<T y j - <?' (S),

in which £ is the base of the hyperbolic logarithms, and

which is the equation of the curve between the variable co-

ordinates ocy.
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PROP. CCLXVII.

(547.) To draw a tangent to the catenary.

Let the point of contact be j/W ; by (1) the equation of the

tangent is

sf

and by (2),

hence the equation sought is

w — w' = — (x — cc').

This equation points out the geometrical construction for

drawing a tangent. Let ac = d, and with c as centre and

ac as radius, describe a circle, and draw md touching this

circle, md = y/afi~T %jxf; therefore the tangent tp is

parallel to md.

Hence as t recedes from a, the tangent continually ap-

proaches to parallelism with the axis.

PROP. CCLXVIII.

(548.) To find the length of an arc of the catenary

measuredfrom the vertex*

By equation (2),

s = y^2 + 2sjx;

hence the arc at = md.

(549.) Cor. 1. If with c as centre and ca as semiaxis an

equilateral hyperbola be described, its ordinate MT f

is equal

to the corresponding arc at of the catenary.

(550.) Cor. 2. tt' = at — tm.
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PROP. CCLXIX.

(551.) To find the radius ofcurvature to the catenary.

By substituting for s its value as a function of x and s\

and differentiating equation (1), we find

d*y s\sl -\-x)

d&~ ~ ' ?~~'

and by making the proper substitutions in the general

formula for the radius of curvature, we find

___
{s

!+xY
ft —

;
e

s'

(552.) Cor. 1. Hence a parabola and catenary having

a common vertex and common vertical tangent, will have at

that point the same osculating circle when they have equal

parameters. Hence the catenary near its vertex is nearly

coincident with a parabola.

PROP. CCLXX.

(553.) Tofind the evolute of the catenary.

Let y
!xf be the centre of the osculating circle, and yx the

corresponding point on the curve by (334),

dy*+dx**/-y=--^-,
. dy 9,

-f doc2 dy

dQy ax

Now by what has been already established,

sf
(s! +x) ,

dy = —&x.
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By these substitutions,

s(s' + x)

y - y =

By these and the equations

s* =s x2 + 9,xs\

o

eliminating <s 5 x? and y 9
the result solved for y' is

the equation of the evolute sought

This equation will assume a more simple form by changing

the origin to the point c. In this case s 1 + oi becomes x\

and the equation of the evolute is

PItOP. CCLXXIa

(554,) Tofind the area of the catenary*

By the general formula for quadratures^/^?/ = the area

atm. By equation (5), prop, cclxvi.

fxcly = s
fJ lie

s
'dy + *.e

s
' dy - dy S

which by integration is

/ -T- —

V

1
fxdy ~ s ! 1 JLs\e

s — e
s

) — y I

which by equation (4) is

fxdy = s\s — y\
No constant is added

9
because the area vanishes withj/

and So

The area atm' is therefore equal to the rectangle under
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the parameter, and the difference between the arc and the

ordinate.

The area ATM is y(d + x) - s
]

s. Hence, if through t

and c parallels to cm and ap be drawn, and from M the

tangent md' be drawn to the circle, and through n f a

parallel to cm be drawn, the rectangle bt is equal to the

space atm.

Of the involute of the circle.

PROP. CCLXXII,

(555.) Tofind the equation of the involute.

An x
arc of the circle ap' being supposed to be always

measured from the fixed point a, and through its extremity

pf a tangent pfp drawn equal to the arc ap', the locus of the

point p is the involute.

Let cp=r, ca= #, pca= w,

v p'cp — cos.""1—. Hence
r

, ,
a

PPf = aw + a cos.""1— > and
r

therefore the equation of the

curve is

Vr2—a2 a
cos.""1—

a r

(556.) Con It is obvious that the area of the triangle

CPfp is equal to that of the sector acp;
.

prop, cclxxiii.

(557.) To apply a tangent to the involute.

Let pt be the tangent, and cpt = Q
;

tan. 8 = — -7-.
dr
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By differentiating the equation of the curve, we find

dr ra

and therefore,

tan = - -—

—

a

Hence the angle tpc is supplemental to p'cp, and therefore

the tangent is parallel to the radius cpf

.

(558.) Cor. The radius ca touches the curve at a.

prop. CCLXXXV.

(559.) Of the quadrature of the involute.

By the general formula for the quadrature of curves, if A

be the area of the sector pca,

/r^duj

which, if the value for dw already found be substituted first,

becomes

r V^— a 2, dr
A J 2a

which by integration is

__ (r2 - a*Y
A ~ ~~~6a~~

which is the area of the sector.

(560.) Cor. 1. Hence the area is equal to the third power

of the arc ap' divided by the radius, or may be otherwise ex-

pressed, thus ; let p'ca = <p9

a,
1
?

3

A ~ —7i—

•

6
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PROP. CCLXXV.

(561.) Of the rectification of the involute.

Let A; be an arc of the curve measured from a,

a' =f(r*doo* + dr*Y.

By substituting the value of dw and integrating, we find

a' =
yB

&a
9

the arc of the curve therefore is a third proportional to the

diameter of the circle, and the radius vector of the curve.

PROP. CCLXXVI.

Tofaid the polar subtangent.

Let p be the polar subtangent. By the general formula,

r~duj rVr^— a*
~~

dr ~~ a

(56£.) Cor. 1. The intercept of the tangent between the

point of contact and the polar subtangent is therefore a third

proportional to the radius of the circle and the radius vector

of the curve ; for let this intercept be t,

t2 = P2 + r2 = —

~~
a

'

(563.) Cor. 2. By the last cor. and prop. (cclxxv), it ap-

pears that the arc of the curve is equal to half the tangent.

(564.) Cor. 3. If r1 = a perpendicular on the tangent

from the point of contact, r l = r sin. = vV2 — a2
. This

perpendicular therefore equals the arc ap' of the circle.

(565.) Cor. 4. The intercept of the tangent between

the perpendicular r] and the point of contact is always equal

to the radius of the circle.
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PROP. CCLXXVII.

(566.) To find the locus of the extremity of the perpen-

dicularfrom the pole upon the tangent.

By cor. 4 of the last proposition, if cp = r\

Let Acp —

PCP

VV2 - a2
.

0, Since

cos. *—

5

it . a— + = W + COS.""1 .

2 r r

By means of these equations

and that of the curve, r and

w being eliminated, the result

is

If cy be drawn at right angles to ca, and

it .

Yep = cai = -—
- + <p9

the equation of the locus sought is

The locus is therefore the spiral of Archimedes.

Of the tractrix and equitangential curves.

(567.) Def The tractrix is a curve whose characteristic

property is, that the locus of a point on the tangent, at a

given distance from the point of contact, is a right line ; and

this line is called the directrix of the curve.

PIIOP, CCLXXVIII.

(568.) Tofind the equation of the tractrix.

Let the intercept of the tangent between the directrix
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and the point of contact be a. By the general formula for

the subtangent5

which by integration, gives

y
which is therefore the equation of the curve, and which may

be otherwise expressed thus.

x+ Va i— y'2

a + ^/az— if = ye (3).

PROP. CCLXXIX.

(569.) Tofind the equation of a tangent through a given

point.

Let the given point be \fx\ By (1),

dx t/ef—y*

The equation of the tangent is therefore

(4).

y—y = - {x -x!

) (5).
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The geometrical construction for applying a tangent to this

curve is obviously pointed out by this equation. With the

centre a and the radius a = ab let a circle be described

;

through any point p of the curve let the ordinate pm be

drawn, and pp f parallel to xx'5
and meeting the circle in p',

and let p'a be drawn ; a line pt parallel to p'a is a tangent to

1/
the curve at p* For tan. p'am' = —— .. = tan. ptm.

PROP. CCLXXXo

(570.) To investigate thefigure ofthe tractrix.

By (3), when x = 0, y = + a, therefore if ab == + a 9

ab ! = — a% the curve meets the axis ofy at the points b, b';

and in (5), if y
f = + a, and x1 = 0, the equation becomes

x = 0, which shows that the axis ofy touches the curve at

the points b, b'.

By differentiating (4), the result is

•* {a2 —y2
)

2 J

Therefore d*y and y have always the same sign, and there-

fore the curve is every where convex towards the directrix.

By (2) it appears that for each value of y there are two

equal and opposite values of x
9
and for each value of x there

are two equal and opposite values of y. Therefore the four

branches of the curve, included in the four right angles

round the origin, are perfectly equal and similar, and such

as if placed upon each other would coincide. It also ap-

pears by this equation that, as x increases without limit, y
diminishes without limit, and therefore the directrix is an

asymptote. It also appears, from what has been said, that

the points b, b', are cusps of the first kind.

PROP. CCLXXXI.

(571.) The quadrature of the tractrix.

By (1)

ydx = — A/a2 — y
l

. dy.
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One side of this equation is the differential of the area

abpm, and since - Vdz

-~f = am', the other side is the

differential of the area bp'c, and therefore taking the in-

tegrals BPMA '= Bp'c.

Also, since the triangle p'am' = ptm, the area bpta is

equal to the sector bap'.

It follows also that the whole area included by the four

branches of the tractrix is equal to the area of the circle.

PROP. CCLXXXII.

(5TO.) The rectification ofthe tractrix.

By (1) we find

ady
Vdf + dx*

V
where the negative sign is used

5
because the arc increases as

y diminishes^ and which integrated gives

fVdf + dx* = — aly + c.

To determine c5 let the arc a be supposed to begin at b ?

so that when the arc a = 0, y = a ; hence
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— ala -f- c = 0, v c = ala*, hence we find

a = al—

.

y

Hence it appears that if with the axis of the tractrix,

and — a as subtangent, a logarithmic be drawn, the line

p?ll =s BP.

''"V.

B
?,/ -...&

—-""""""' fft

"

A

PROP. CCLX XXIII,

(573.) Tofind the radius ofcurvature of the tractrix.

By substituting in the general formula for the radius of

curvature the values of the first and second differential co-

efficients, we find

as/

d

l — y~

y

Hence by geometrical construction the radius and centre of

the osculating circle may be found thus : let pc be perpen-

dicular to the tangent at p, and produced to meet a

perpendicular to the directrix at t
3 the intercept pc is the

s2
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radius, and c the centre of the osculating circle; for

pm : pt : : mt : PC, by the similar triangles.

PROP. CCLXXXIVe

(574.) Tofind the evolute of the tractrix*

Let the co-ordinates of the centre of the osculating circle

be y
]xK By substituting in the general formulae for the

values of these the particular values of the differential co-

efficients, the results are

x +

y
a vy2

-

y
By eliminating y and x by means of these equations, and

that of the curve, the result is

a

which is the equation of the evolute. The evolute is there-

fore a catenary, whose parameter is a = ab, whose vertex

is at b, and whose axis is ay.
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Hence, if a string applied to a catenary have its extremity

at the vertex, and be wound off, its extremity p will describe

the tractrix.

(575.) Def. The locus of a point p upon the tangent of

the tractrix at a given distance b from the extremity t of

the tangent is called the syntractrix.

PROP* CCLXXXVe

(5*76.) Tofind the equation of the syntractrix.

Let the co-ordinates of a point on the tractrix be tfx\ and

those of the corresponding point of the syntractrix xy. The

conditions of the definition furnish the equations

ay = fy, ____
(x — x !)a =z(a - b) VaT^y^.

By means of these equations, and that of the tractrix, y
! and

of being eliminated, the result is

b+ ^/b^^p
x = al

y
Vb*~~y\

which is the equation of the syntractrix,.
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PROP. CCLXXXVI.

(577.) To find the equation ofa tangent to the syntractrix.

By differentiating the equation, we find

dy
__

yv&—^
doc ah — y

z '

hence the equation of a tangent through the point y
]x ]

is

PROP. CCLXXXVII.

(578.) To investigate thefigure of the syntractriw.

1°. Let b < a.

By the equation of the curve it appears that when x = 5

y = ± b9 and by that of the tangent that the tangent to this

point is parallel to the directrix. It also follows, as in the

tractrix, that the directrix is an asymptote, and that the

branches or portions of the curve included in each of the

four right angles round the origin are symmetrical.

By differentiating the equation a second time, we find

&y_ h
ah* + y\h - 2a)

dx*~~ y * {ab-~y*f
'

This equals when

and the corresponding value of x is

, +/2a — h + A/a — h
at —

—

_ — / a-b
V 2a-b'v a

Since, by supposition, b < &, these values are real. There

is therefore a point of contrary flexure at the point whose

co-ordinates are the values ofy and x}
found as above.

Let ab = b, and am, am' be the values of x
}
which give

y = b a/ - 7; for all values of x between x = and
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x = am, or am', the second differential ofy is negative, and

therefore the intercept of the curve between the points pp' is

concave towards the axis of #, and beyond these limits on

'O
xl!

-——1 v
"^"^--P^ |

^^^--~

m: A. M

each side it is convex towards the axis of x. The form of

the curve when b < a is therefore represented above.

2°. Let h > a.

In this case, as before, when y = 6 and ^ = 0, the tan-

gent is parallel to the axis of x, and between « = and that

value of x which gives ab=g*
9
the first differential coefficient

is increasing, and becomes infinite under this last condition,

which shows that the tangent is approaching to parallelism

with the axis of x9
and at this point becomes parallel to it.

Also, between these points the second differential ofy is ne-

gative, and therefore the curve is concave towards the axis

of x.

Let the points p, p', be those at which the tangent is

parallel to the axis of y6 The portion pbp' is concave to-

wards the axis. At the points p, v\ the second differential

coefficient passes through infinity, and therefore changes

its sign, and becomes positive, and remains so, and therefore

every other part of the curve is convex towards the axis e

The same reasoning applies to the part of the curve on the

other side of the axis,
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(579.) Equitangential curves in general are those, the

intercept of whose tangent between the point of contact and

any given line of any proposed species is of a given mag-

nitude, and in general that line, of what kind soever it

may be, which is the locus of the extremity of the tangent,

is called the directrix. The consideration of these curves

presents two classes, problems to the analyst. 1°. Given the

nature of the directrix^ the magnitude of the tangent

and its position at any given point of the directrix, to find

the curve oftraction. 2°. Given the nature of the curve of

traction) and the magnitude of the tangent^ to find the di-

rectrix. Those problems which come under the latter class

are much more easily investigated than the former, the solu-

tion of which, except in

a few instances, involves

difficulties almost insur-

mountable. There are one

or two instances, however,

in which the solution is

obvious enough. Thus,

if the directrix be a circle,

and the tangent equal to



ALGEBRAIC GEOMETItY. 265

half the chord with which it coincides in any position
5 the

curve of traction is a concentrical circle, the square of

whose radius is equal to the difference of the squares of the

tangent and radius of the directrix. It appears also (566),

that the involute of the circle is the curve of traction of

which the directrix is the spiral of Archimedes*

SECTION XX,

The nature and properties of the roots of equations illus-

trated by the geometry ofcurves*

(580.) Every algebraical equation ofa degree expressed by

m
}
that is, where m is the index of the highest dimension of

the unknown quantity., after the equation is cleared of surds,

is necessarily included in the general formula

Mm + A.Xm
~l + BXm~2 + CXm

~3
...TO? + V = 0.

Any value whatever being assigned to x, let the cor-

responding value which the first member of this equation

assumes be y, and the result is

y = xm -f AXm~ l + B%m~~2 + cxm-3 ,..* tx + v.

If this equation
5
related to rectangular co-ordinates, be

supposed to represent a curve, the examination of the course

of the locus will point out several important theorems con-

cerning the roots of the proposed equation. But before we

proceed to this investigation, we shall give a method for

constructing the values ofy 9
corresponding to any assumed

value of oc, and thereby constructing the curve which re-

presents the equation.

Since the equation, in the form in which it is given, is not

homogeneous, let n be the linear unit, and this being intro-

duced in such a manner as to render all the terms linear, the

equation becomes
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___
Xm AXm~l B

tx + v =
?

the coefficients a, b, c t, v, being supposed linear.

Let ab == n, AC = %,

and let bd and ce be

parallels to ay : let

Ba = n, and through a

draw A& meeting ce at g,

and draw ^6 parallel to

ax. Let he = a, and

draw ac, meeting ce in

h
9
and draw lid parallel

to ax as before, and take

de = b ; and, as before,

"B X draw a<? meeting the

line ce in i
9
and continue this process to ix, and finally from

the point where the last of the lines, drawn from A, meets

the line ce, take a portion on it equal to v, and the extremity

of this is that of y>

For since ab : ac : : b« : eg, v c^ = x.

Also ab : Ac : : bc : ch3 v ch = bc .

. <# #s A#= (# + A).— =— +—

;

v n n 7i

And ab : Ac : : bc : €^, cz bc .

#? AjT
but Be = Bd + dk = — + -— + b,

n n

AX Z B#
cz +1T+-.

And it is plain that by a similar process the successive

intercepts between c and the lines drawn from A are found

by adding to each former intercept the next coefficient, and
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X
multiplying the result by—, v the successive intercepts will

be

X*

n
+ :

AX

vT'

X 1

+
AX*

1¥ +
BX

x*
+
AX 3

+
bx*

+
ex

n 9

X5

n4 +
AX 1^

n4 +
BX'

+
ex2

+
n '

xm AXm ~-1 BXm~2

•

TX

n

Adding then to the last intercept the line v, the result is

the value of y ; for any negative coefficient, the line repre-

seting it is to be taken in an opposite direction : thus, if a

were negative, be should be taken from b towards a.

Being thus able to construct the values ofy3
correspond-

ing to every value of #, the curve can be constructed by

points. The values of #, corresponding to the points p, F f

,
p",

p9 p
!

,
p"9

when the curve meets the axis ax, are the roots of

the proposed equation.

Since in general the curve cannot pass from one side to

the other of the axis of x without intersecting it, it neces-

sarily follows that, between two points of the curve, situated

at opposite sides of the axis ax, the curve must at least in-

tersect that axis once, and may intersect it an odd number of

times, that is, between two values of x, which give values of

y with opposite signs, there must be an odd number of in-

tersections of the curve with the axis of x
9
and there must

at least be one point of intersection between them. Hence
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•iftwo numbers, substituted for x in any equation
,
produce

results with opposite signs, there must be an odd number of

real roots between them, and at least there must be one.

Y

Between two points of the curve, situate at the same side

of the axis of x, there must be either an even number of

intersections with that axis pr none. That is, if two values

of x give corresponding values of y, affected with the same

sign, between those values of x, there must either be no

intersection of the curve with the axis ax, or an even num-

ber. Hence, iftwo numbers substitutedfor x in any equa-

tion give results affected with the same sign, there must be

either no real root between them or an even number of real

roots.

The intercepts pp', p'p", &c. pp
f

, p
!

p
!l

, &c. between two

consecutive points of intersection of the curve with the axis

of x, are the successive differences between the consecutive

roots of the proposed equation* If two values of x be as-

sumed, whose difference is less than the least of these dif-

ferences, there cannot be more than one point of intersection

between them; for if there were two points of intersection

between them, the intercept between those two points would

be necessarily less than the difference of the assumed values

of x, which is contrary to hypothesis. Hence, if two such

values of x give values of y with different signs, there will

be one and only one point of intersection between them ;

and if they give values of y with the same sign, there will
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be no point of intersection between them. Therefore, if

two numbers, whose difference is less than the least dif-

ference of two consecutive roots of cm equation, substituted

for x in the equation, give results affected with different

signs, one and only one reed root lies between them ; and if

they give results affected with the same sign, no real root

lies between them.

When any of the intercepts pp', pp
!

, &c. equal nothing,

the curve touches the line ax at that point. The intercept

which vanishes, being the difference of two values of x*>

which give y = 3 these values must be equal, and therefore

a point of contact with the axis of x is the indication of

equal roots of the proposed equation. If one of the inter-

cepts pp f vanishes, the curve at each side of the point of

contact lies at the same side of the line ax, and there-

fore two values of x, which intercept between them a point

of contact of this kind, give values of y affected with the

same sign. Hence, iftwo numbers, which include between

them two real and equal roots, be substituted for x in any

equation, they willgive results affected with the same sign.

If two consecutive intercepts pp', pV, both vanish, the

curve also touches the axis of x at that point ; but the parts

of the curve on each side of the point of contact lie at dif-

ferent sides of the axis of x, and therefore the point of

contact is a point of inflection. It appears, as before, that

in this case three points of intersection unite in one5 and

that the values on each side of the point of contact give

values of y with opposite signs. Hence, if two numbers

which include between them three equal and real roots ofan

equation be substituted for x they will give results with

different signs.

In general, if an odd number of consecutive intercepts

pp', p f

p'', &c. vanish, and therefore an even number of points

of intersection unite in one, the curve will touch the
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axis of X) and the parts of the curve on each side of the

point of contact will lie at the same side of the axis of x,

It follows from this, that if two numbers substitutedJbr x

in any equation include between them an even number ofreal

and equal roots, they will give results with the same sign.

If an even number of consecutive intercepts pf', p'p7
, &c«

vanish, and therefore an odd number of points of inter-

section unite in one, the curve also touches the axis of

x ; but in this case the parts of the curve at each side

of the point of contact lie at different sides of the axis

of x, and therefore that point is a point of inflection . The

values of x on each side of the point in this case give values

of y affected with contrary signs. Hence it foliows, that

two numbers which include between them an odd number

of real and equal roots of an equation, substituted in it for

x, will give results affected with opposite signs.

The point of contact corresponding to four real and equal

roots is called a point of simple undulation. If it cor-

responds to six real and equal roots, it is said to be a point

of double undulation.

A point of contact corresponding to three real and equal

roots is called a point of simple inflection ; if it corresponds

to five real and equal roots, triple inflection, &c. The

character of such points is merely algebraical, there being

no visible geometrical distinction.

As in algebraical curves, the number of intersections are in

general the same as the index of the highest dimension of x 9

when the equation is cleared of fractional indices, that num-

ber is finite. The entire of the curve, therefore, which

extends beyond the most distant point of intersection on the

positive side of the origin must lie at the same side of the

axis. And the same inference is applicable for the same

reasons to that part of the curve which lies beyond the

most distant point of intersection on the negative side of
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the origin ; and therefore all values of x greater than that

of the most distant point of intersection give values of y
continually affected with the same sign. Hence, if num-

bers greater than the greatest root of an equation, whether

positive or negative? be substituted for x, they will con-

tinually give results with the same sign.

In any algebraical equation, a value of a may be assigned

to x so great, that the first term shall exceed the sum of all

the others, and its excess above the others will continually

increase with the increase of x. The sign ofy will there-

fore ultimately be the same as that of the highest dimension

of x9 and will continue to be so as x is increased without

limit. Consequently, if the highest dimension of x be even 9

and therefore its sign necessarily positive, whether x itself be

positive or negative, it follows that the sign of y is ultimately

positive on both sides of the origin, and that therefore the

two parts of the curve which extend beyond the last points of

intersection on each side of the origin both lie above the axis

of x, and that therefore either no point of intersection or an

even number of such points must be included between them.

Hence it follows that every equation in "which the index of

the highest poxver qfxis even, has either no real root or an

even number of them; and since the number of roots alto-

gether is the same as the highest index, itfollows that there

must be either an even number of impossible roots or none.

If the index of the highest power of x be odd, the first term

will be positive or negative according as x is positive or nega-

tive, and therefore if continually increasing positive values be

assigned to x, the value ofy will be ultimately positive, and

continue so as the positive values ofx increase without limit

:

and if continually increasing negative values be assigned to

x, the value of y will be ultimately negative, and will con-

tinue so as the negative values of x increase without limit*

These conclusions obviously follow from the same principle

as the former scil., that such a value may be assigned
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to x as will render its highest power greater than all the re-

maining terms of the equation together, The parts of the

curve lying beyond the most distant points of intersection

on each side of the origin therefore lie at different sides of

the axis of x ; that beyond the most distant point of inter-

section on the positive side of the origin lying on the positive

side, and that beyond the most distant point of intersection

on the negative side of the origin lying on the negative side

of the axis of x\ therefore the number of intersections of the

curve with the axis of x is odd, and it follows therefore

that every equation in which the index of the highest power

of x is odd, must have at least one real root, and in general

has an odd number of real roots ; and since the entire number

of roots, being that of the index of the highest dimension of

x, is odd, the number of impossible roots is even, if there be

any such.

It follows therefore in general, that the number of im-

possible roots, if there be any, must be even, and there can

therefore never be less than two.

The absolute term v is the value ofy corresponding to

x = 0, and is therefore the distance between the origin and

the point where the curve meets the axis ofy}
and therefore

the curve intersects that line, above or below the origin, ac-

cording as v is positive or negative* If v = 0, the curve

meets the axis of?/ at the origin.

Hence, if any equation wants the last term, one of its

roots must be equal to nothing. Also since, in case the

index of the highest dimension of the unknown quantity is

even, the curve ultimately extends above the axis^of x on

both sides of the origin ; if the absolute term be negative,

and therefore it intersect the axis ofy below the axis of x*>

it must necessarily intersect the curve at least once on each

side of the origin. Hence, if in any equation whose di-

mension is even the absolute term he negative, it zdll have

at least two real roots, one positive and the other negative,
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By a change of origin on the axis of y, that is, by moving

the axis of x parallel to itself, any of the intercepts pp f

, "pV,

&c. may be made to vanish., and by a further change, the

axis of x will cease to meet the curve at those points ; thus

by changing the axis of x without altering its inclination,

two points of intersection will first approach each other,

then meet, and finally disappear altogether. Also by the

same change of the axis of x
5
it may meet the curve in other

points, where before the change it did not meet it, first

touching it, and then intersecting it. This change in the

axis of x is effected by increasing or diminishing the values

of «/ by any given quantity, which is equivalent to a change

in the magnitude of the absolute term v. Hence it follows,

that by a change in the absolute term, any two real and un-

equal roots may befirst made to become real and equals and

afterwards impossible ; and vice versa, any two impossible

roots may^ by a similar change, be made to becomefirst real

and equal, and afterwards real and unequal. It appears

therefore that the minima values ofy indicate the impossible

roots o£ the equation.

To determine the maxima and minima ofy, or the points

of the curve at which the tangent is parallel to the axis of x
9

let the equation be differentiated, and its differential equated

with zero, the result of which is

mxm~ l + (m~--I)Axm
~-2 + (m--2)Bxm-3

-l~ t= (a).

If the consecutive roots of this equation substituted in the

proposed equation give results with opposite signs, the points

at which the tangent is parallel to ax lie alternately at the

positive and negative sides of ax. Between every pair of

such successive values of x the .curve must intersect the axis

of x, and intersect it but once, because if it intersected it

more than once, there would necessarily be another point at

which the tangent would be parallel to the axis of x between

the two assumed values of x, which is contrary to hy-

pothesis. Hence it appears, that if all the roots of the pro-
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posed equation be real, all the roots of the equation (a) are

also real, and correspond to maxima values of y; and

between every two consective roots of the equation (a), a

root of the proposed equation must be contained ; the roots

of this equation are called limits of the roots of the proposed

equation, and the equation is called the equation of limits of

the proposed.

If three consecutive points of the curve, at which the

tangent is parallel to the axis of x, be situate on the same

side of that line, and the value of y for the second is less

than those for the first and third, there must be two im-

possible roots of the proposed equation intercepted between

those values of oc, which correspond to the first and third

values ofy ; this is plain from what has been already said.

And hence it follows, that if three successive roots of the

equation (a) substituted in the proposed give results with

the same sign, the second being less than the first and third,

there will be two impossible roots of the proposed equation

included between the first and third values of oc.

If an even number of successive points of the curve at

which the tangent is parallel to the axis of x be situated at

the same side of that line, half their number will be points

at which y is a minimum, and since every such point in-

dicates two impossible roots, it follows that if an even num-

ber of consecutive roots of the equation of limits substituted

in the proposed equation give results with the same sign,

the proposed equation will have as many impossible roots at

least.

Since for every minimum value of y there are two im-

possible roots, the number of impossible roots must be

double the number of such values. To investigate this, let

the equation (a) be differentiated, and the result is

m.(m.— l). xm
~2 + (m — 1) (m — 2)Mm~ 3

^ (m__ g) (,„ _ 3) Bo?«-
4

. . . . + s = 0,
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Such roots of the equation (a) as being substituted in

this and the proposed equation, give results affected with

the same sign, correspond to minima values of y ; and for

every such value there are two impossible roots of the pro-

posed equation.

(581.) Before the methods of approximation to the values

of the roots of equations which are now used were known,

they were frequently represented by geometrical constructions.

This method of representing them is now, however, used

only as an illustration, and as it is not inelegant, we shall

here explain the principles on which it is founded.

Let the equation whose roots it is proposed to represent

be f(#) == 0, and let any part of the first member beT? f(x),

and let the equation pf

(x) = f"(«/) be assumed, in which the

form of the second member is arbitrary, and let this value of

E'(jr) be substituted in the proposed equation, the result will

be an equation ¥ !!l(yx) = 0, between y and x. It is obvious

from this process, that if?/ be eliminated from the equations

f'(#) = F f,

(y) and -$m{xy) = 0, the result will be the pro-

posed equation; and it follows therefore, that if two

curves be constructed which are the loci of the equations

f\x) = tn
(y) and F !!(xy) = 0, the values of x corresponding

to their points of intersection are the roots of the proposed

equation. The investigation which we have just given on

the nature of the roots of equations may be looked on as an

example of the application of the principle, since the equa-

tions of the two loci, whose intersection gave the roots of

the equation sought, were

y. = o,

y = xm + AX™* 1 + BXm~2
. , . . . Ttf + V.

But this is evidently useless, as it requires the solution of

the equation itself to construct the second locus. We shall

however proceed to apply the principle to some examples
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which will render it clearer than any abstract explanation

could make it.

PKOP. CCLXXXVIII.

(582.) To represent by geometrical construction the roots of

a quadratic equation.

Let the proposed equation be

x* + %ax + b3 == 0.

Let one of the loci whose intersection give the roots of

the equation be a right line parallel to the axis of x^ re-

presented by the equation

y = b.

This substitution being made in the given equation, gives*

when B a > 0,

y* + x1 + %kx =
for the equation of the other locus ; this is the equation of

a circle whose radius is A* and whose centre is on the axis of

x at a distance from the origin equal to —a. Let ac=—

a

9

and with the

centre cand the

radius ac let

the circle be

described ; let

ab=b, and let

the parallel Bpf

be drawn ; the

values of % sciL

ap, APf

j corre-

sponding to the points p9 p
f

9 where this parallel meets the

circle, are the roots of the proposed equation*

The centre lies at the positive side of the origin if a < 9

and at the negative side if a > ; therefore in the one case

both roots are positive, and in the other negative.

ap 4- APr s= Sac 5
- i e. the sum of the roots taken with
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their proper signs is equal to the co-efficient of x in the

given equation.

ap x ap' == pp2 •== b% L e* the product of the roots is

equal to the absolute term.

If ab =? ac, p and p
f coincide, and ap = APf

5 L e. if

b = a the roots of the equation are equal.

If ab > ac, the parallel does not meet the circle, %
e if

b > A and b2 > 0, the roots are impossible.

If b 2, < 0, the second equation is

y* ~ x°~ -f 2ax = 0,

which is the equation of the equilateral hyperbola, the trans-

verse axis of which coincides with the axis of x, and the

origin being at the vertex.

But the equation can be constructed in all cases by the

circle alone. In general let the equation of the right line

parallel to the axis of x be

y = v# + b2
.

Making this substitution the equation becomes

«/
2 4- x1 4- %A% ~ m% = 0;

m being arbitrary, it may be supposed = 0, if b2 > 0,

which reduces this case to the former. But if b3 < 0, in

order that?/ may be real in the equation of the parallel, m
cannot be less than b ; in this case let m = b. The

parallel will in that case coincide with the axis of x itself,

and the equation of the circle is

y* +. x 1 + %ax — b2 == 0.

This is the equation of a circle whose ra,dius is */a? + b 2
,

and whose centre is at a distance from the origin equal to

— a. Hence let ac = — a, and the circle be described

with the radius y' a2, + b2
, and the roots of the equation are

ap, ap;
*

The equation may be constructed by the intersection of

the right line with any line of the second degree as well as

the circle. Thus let the equation of the first locus be
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B
2

* = * + £?
which is the equation of a right line intersecting the axis of

B 2

y at a distance from the origin expressed by -— and in-
. <-vA

clined to the axes of co-ordinates at angles of 45°. The

equation of the other locus will be

x* + 2Ay = 0,

which is the equation of a parabola whose axis is the axis

of y9
whose vertex is the origin, and whose parameter is

—#a. The intersection of this with the right line gives the

roots of the proposed equation.

PROP. CCLXXXIX.

(583.) To represent by geometrical construction the roots

ofa cubic equation.

Let the proposed equation be

X3 + AX% + B a# + c 3 = 0.

Let the equation of one of the curves whose intersection

is to determine the roots of this equation be

X 9, + AX = B2/.

By substituting y in the proposed equation the result is

B%y -f b 2x -|- o 3 = Oo

The former of these equations represents a parabola, the

equation of whose axis is x = — —, which is therefore

parallel to the axis of y. The value of y which gives the

A2

vertex is — -^—, and the principal parameter is b.

The latter equation represents an hyperbola, the axis of

y is one asymptote, and the equation of the other isy ——b,

which is therefore parallel to the axis of x ; and since the

asymptotes are rectangular,, the hyperbola is equilateral.
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Let a be its semi-axis, its equation related to the asym-

ptotes is

a?

IP

B

yx

Hence
az c3 /

Let ab = — —, and through b draw a parallel to ay ;

A2

and let bv = — -7-. On the axis vc with the vertex v, and
4b

a parameter equal to b, let a parabola be described . Let

ad = — b
5
and through d draw a parallel to ax. Let

ff' be drawn bisecting the angle d, and take

DF
/ 2c 3

describe an hyperbola whose vertices are f? f'5 and whose

asymptotes are yy' and ee'. The roots of the proposed

equation are Ap, Apt, Ap ]

\ the values of x corresponding to

the points of intersection p?
v\ p", of the parabola and

hyperbola.

MF
%'

Va
IT D

J* J» X

4P

Y

If the equation of the first locus be

kscy + c3 = Oj
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the other will be by substituting for o3
3 and dividing the

result by a\

X* + AX — M) + B2 = 0«

The former, related to rectangular co-ordinates, is the

equation of an equilateral hyperbola, the axes of co-ordinates

being the asymptotes, and its semiaxis equal to

A
°

The latter equation represents a parabola, the equation of

A
whose axis is x = — , and the co-ordinates of whose

s/-

A B2 A
vertex are x = — —5 y = ~ 7.

& 5
-
y a 4

Through the origin d let ff' be drawn bisecting the angle

-—— = DFf

s with the line FF r as trans-

verse axis, and the points f, F f

, as vertices, let an equilateral

A
hyperbola be described. Also let db'= — -~-> and

1 —— ~ A.V ~~ "T 4'

with the vertex v, the axis vc, and the parameter A, let a

parabola be described; the points of intersection of this with

the hyperbola will give the roots required.

It is always possible by a transformation to remove the

second term of the equation. Suppose this done with the

proposed equation, and that it is reduced to the form

x3 + bs# + c3 = 0.

Let it be multiplied by x = 0, by which it becomes

X* + bV + c3x = 0*

If the equation of one of the curves whose intersections

determine the roots be

X* = B^o
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That of the other will be5 when b2 > 9

y
% + x* + 0.

The former is the equation of a parabola whose vertex is

at the origin, whose axis is ay, and whose parameter is b.

The latter is a circle passing through the origin with its

c3

centre on the axis of x at the distance — — . Therefore let

a parabola be described with the vertex a, the axis ay? and

the principal parameter b; and a circle with the radius

c3

ca = —
- ~-> The point of intersection p gives the root of

the proposed equation. The point a gives the root x = 0,

which was introduced by multiplying by x. The other two

roots must in this case be impossible. The circle will lie on

the negative or positive side of the origin, according as c3
is

positive or negative; and therefore the real root will in the

one case be negative, and in the other positive.

If b3 < 0, the second equation becomes
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y* — x* 4. —x = 0„

This is the equation of an equilateral hyperbola whose

vertex is the origin-, and whose transverse axis is the axis

of x*

Let AC = jr-;-

2
= cAf

, and with the vertices aa' let an

equilateral hyperbola be described, the points p, p f

, r7
,
give

the roots of the proposed equation.

The centre of the hyperbola lies on the positive or ne-

gative side of a, as c3 > or < 0. If c lie on the positive

side of a, there must be one point of intersection on the

negative side; and if c lie on the negative side, there must

be one point of intersection on the positive side. Hence the

equation must have one real root having the sign contrary

to that of c 3
.

Supposing both parts of the hyperbola to intersect the

parabola, the roots will be real and unequal; and two will
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be positive and one negative if c3 > 0, and two negative

and one positive if c 3 < 0.

If the parabola and hyperbola touch, there will be two

equal roots.

If one of the branches of the hyperbola does not meet the

parabola., two of the roots of the equation are impossible.

prop. ccxc.

(584.) To construct the roots of an equation of thefourth

degree.

Since the second term may always be removed by a

transformation, the equation can always be brought to the

form

#4 + b2#2 + c 3x + d4 = 0*

Let one of the curves be the parabola represented by the

equation
.

jts = By,

which being substituted for %4
, gives for the equation of the

other when b2 > 0,

c 3 D 4

y2 + oc
2

-f —70c + — = 0.u B* B 2

And when b2 < 0,

c 3 D4

y
x - *2 + r#* + -55- = 0-

1. Let Ba > 0. The parabola being constructed as in

the last proposition 3 let a circle be described with its centre

c3

at c on the axis of x at the distance Ac = — — , and with

JT*r~ ~* As this circle, from its po-

sition, cannot intersect the parabola in more than two points,

there can be only two real roots to the equation in this

case a
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If the circle touches the parabola, the two roots are equal

;

and if it does not meet it, they are impossible.

If cb > ca, the circle must intersect the parabola, there-

fore in this case the roots must be real ; they will also have

in this case different signs : this necessarily happens when

the last term in the given equation is negative.

% Let b
z < 0. The equation of the second curve is

in this case that of an equilateral hyperbola, its centre is on

c3

the axis of x at the distance — — from the origin, and its
£b 2

semiaxis is V 4b4
~~

B*°

This curve being constructed as in the annexed -figure,

gives the roots required.

The observations made in the other cases as to the real 3

equal, and imaginary roots apply here also. It is evident

that since the hyperbola may intersect the parabola in four

points, all the roots may be real. Also it is plain that in

this case one of them at least must be negative, and two at

least positive.
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Since one or both branches of the hyperbola may touch

the parabola., there may be one or two pairs of equal roots*,

and since neither branch may meet it, all the roots may be

impossible.

prof, ccxci,

(585.) Tofind a cube which shall bear a given ratio to a

given cube.

This problem is in effect to construct the equation

x3 — ma3 = 0„

Let it be multiplied by x^ and we find

x^ — ma?x = o

Let one of the curves whose intersection is to determine

the roots be the parabola

x2 = ay.

This being substituted in the above equation, gives

y
7, = max.

Hence the root is determined by the intersection of two
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parabolas having a common vertex, and their axes at right

angles, and whose parameters are in the given ratio.

PROP. CCXCII.

(586.) To find two mean proportionals between two given

lines.

Let the given lines be a, h, and the sought means y and

x. Hence a : y : x : b, and therefore

y% = dX,

x% = by.

Hence, if two parabolas be described having a common

vertex and their axes at right angles, and whose parameters

are equal to the two given lines, the co-ordinates of their

point of intersection related to their axes,, as axes of co-

ordinates, are the sought means.

prop, ccxcm.

(587.) To trisect an angle.

Let A be the given angle. By trigonometry,

COS.3 |-A —
-J

COS. |-A — i- COS. A = ;

which by supplying the radius r9 and representing cos, ~a

by oo, becomes

4fX
2 — Sr2x — r z

cos. A = ;

which multiplied by #, gives

Let the equation of one of the curves be

2x2 = ry?

and the other by substitution will be

% 2 — Sry — % cos. ax = 0.

The former is the equation of a parabola, the axis of

which is the axis of y, the origin the vertex, and the prin-

cipal parameter equal to \r.



ALGEBRAIC GEOMETRY, 28?

The latter is. also a parabola,, the equation of its axis is

y = |.r, and the co-ordinates of its vertex are y = .!?•,.

x = — ———j and its principal parameter is cos, a.

These parabolas being described^ their points of inter-

section give the roots of the equation. The intersection

at the origin gives the root x = 0,- which was introduced

by the multiplication by x.

The equation having more than one real root, it might

appear that there were more values than one for the third

of the given angle. But upon examining the process, it

will be seen that the question really solved was not to find

an angle equal to the third of a given angle, but to find

the cosine of an angle which is the third of an angle whose

cosine is given. Since then the arcs

A,

2lf — A, 2ft + A,

4tf — a, 4tt + a s

6tf — A, Git -f A.

And in general all arcs which come under the general

formula %mtf + A have the same cosine, the question really

solved is to find the cosine of the third of any of these arcs,

And here again another apparent difficulty arises. If the

number of arcs involved in the question be unlimited, shall

there not be an unlimited number of values for the cosine

of the third parts of these ? To account for this it should

tyf)7r A
be considered that in general the arc -^r-tf + -^ must have

the same cosine as some one of the three arcs,

A

fit

for the number 77- must be either of these forms.* w n + 4.,

o
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or n + §., where n is an integer. If it have the form n9

that is, if 8 measure m, then

slm
—it ± 4A = Quit ± a ; therefore
o

%™>
COS. —tf ± -f

A = COS. (2W7Z* + iA) = COS, -f-A.

If it have the form n + % ;

2m ^ „ .—tf ± -J-a = 2^tf + ftf ± -Ja ; therefore

cos. -^-tf ± -J-a = cos. i^nit + -|# ± |-a) = cos. 1(2* + a).

If it have the form w + §.

;

TYl

% . -^-tf ± |a = 2ratf + 4.7? + J.a ; therefore
o

cos. (-^tf ± rA) ~ cos> (^tf + rP ± ta) = C0Sa t(^ ± A)°

And hence it follows that the cos. ( -^— + a), whatever be

the value of m, must be equal to one or other of the quan-

tities

cos. £a5

cos. j-(%tf — a)9

cos. j-(4nr — a)5

which correspond to the three roots of the cubic equation

already found*

prop, ccxciv.

(588.) To resolve the formula xm ± am into its simplefac-

tors "by geometrical construction.

Let x = a (cos. <p + V — 1 . sin. <p)5 and since by tri-

gonometry
9

(cos. <j> + V — 1 sin. 4>)
m = cos. m<p + y ,

~~—
1 sin. m<f> ;

it follows that
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wm -_. am
^
cos< m<p ^ ^ _ I sjn m^ t

Hence subtracting am from both members,

xm — am = #m (cos. m<p + a/ ~- 1 sin. ?^<p — 1.)

The question then is to find the factors of

cos, wz<j> + V — 1 sin. wz<f> — 1,

which will be found by investigating the values of <p which

satisfy the equation,

cos. m<f) -f V — 1 sin. m<p — 1 = 0.

This condition can only be fulfilled by the real and im-

possible parts being separately equal to nothing, which

gives

cos. m<p — 1 = 0,

x/ — 1 sin. mq> = 0.

And hence cos. m$ = 1, v m<f> = 2nit9 v 9 = n—

.

Hence the factors sought are found by supposing n in the

formula

C 2rf —- . 2* 7x —> ai cos» ^ hV-1 sin. w— r

,

t w m 3

successively to assume the values, 0, 1, 2
P
5, . . . . ?ra — 1

;

which give

# — a,

5
oc ~ a< cos.

2tt

77*
-f y/ - 1 sin.

2* 1

m 3

a? — a ) cos.
4?r

\- s/ ~—\ sin.
4tf

7
m 5

a* — a) cos.
6ir

m + V—1 sin.
6tf 7

??* 5

27? 2tf

a — aj cos. (m - 2)7— + V— 1 sin. (w — 2)—

f v
2* —-'

. t
-.2* 7

* —
«J

cos, (w— 1)— + v' - 1 sia. (wi - 1)~
I

u
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After this factor the values recur ; for if n = m,

%* „ t
• ^

• n n
cos. n = cos. .-wit = 1, and sin. ^ — = sin. %tf = 0?m m
which gives x — a, which is the same as the first factor, and

in like manner every succeeding factor would be only a

repetition of the former one. These therefore are the simple

factors of xm — am . Their forms may be somewhat modified

by observing that

2* 2*
cos. (m — I) — = cos. —

,

sin. (m — I) = — sin.—-,x ' m m

cos. (m — 2) — = cos. —

,

, 2tf 4tf
sin. (w ~~ 2) — = — sm.—,

and therefore omitting the factor x — a, the series of re-

maining factors will be

x —- a < cos. \- */ —\ sin.— 5

I m my
4# #

4tt

# — # ^ cos. j- //— 1 sm.

«r — a )

on

6ir

m
6*

^ cos. — + v' — 1 sin. —
I m m

x — a }

x — a )

6ir _
. 6#

cos. v"'—1 sin. —m m
4tt _

#
4# -)

cos. // — 1 sin.— >

C 2tf —~ . -Am -\

x — a \ cos. — - a/ — 1 sin.—
£ra

2tf

(B)

J
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If m be odd, and therefore (m — 1) even, we find, by-

multiplying the extreme terms of this series and every pair

of terms equidistant from them, this series of real qua-

dratic factors,

2* ^
x2 — 9m cos.—- . £c + a"m

x° — 2a cos. ——. x + aQ

m
fit

\
x* -~ 2a cos. — . x 4- a9

- \m

2a cos. x + a?

(C)

Therefore in this case the real factors of xm — am are

(x — a) and the above series of quadratic factors ; all the

simple factors except (x — a) being impossible.

If rn be even, and therefore (m —• 1) odd, after multiply-

ing the extreme terms of the series (b), and also every pair of

terms equidistant from them, a solitary term will remain in the

The coefficient of in this term will be -r-, andm 2
middle,

therefore the term will be

x — # [cos. it + a/ — 1 sin. #] = x -f- a.

Hence in this case xm — am has two real simple factors x — a

and x + a ; all the other simple factors being impossible. It

has also the real quadratic factors expressed in the series (c).

These results may be thus expressed.

1°. If m be odd,

xm — am = (x — a) (x2 — 2a cos.—x ~f a*)

2rf 2it

(x* — 2a cos, 2— . x + a2
) (x* —2a cos. 3— . x -f a*) . .

.

[x% — 2a cos.

2tf

m x + ^2
)«

u2
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%it

xm— am = (a? -— 0) (a? + a) (#
a — 2& cos. 1- a2

)

2# . %1t

(x~ — 2a cos. 2— . # -}- a*) (x2 — %a cos. 3— . # + «2
) • •

[or — 2# cos. —— . -3- + a2
).

m

2 7)1

To represent these factors geometrically, let a circle be de-

scribed with the radius ca = a, and let cp = x
9
and let the

circumference be divided into 2m equal parts at the points

a, a 19 a35 ... A2m_i, and let pa = #0? pa x
= #1, pa2 = £2, . « .

PA2m-~i = £2w_r Hence,

£>0 — <x? "°~ ti^

&_ = x2 — %a cos. -—
. x + a%m

4#
#* = x z

-«- 2# cos. — . x + a%
4 m

If 77i be even, one of the points of division will coincide

with b, so pb = x + a = zim . Since ^ = s2jw_i, *a = %?l_2 >

^3 = *2m~3> . . . . we find

2n
^2m~2 = ^2 — 2« COS. •

. X + a3
.

^2m~4 = # — 2a cos. -— . x -f- a*.
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Hence in general,,

(y*n\ ^^ ftm ___ <>> *y ry <y ty^ a — ^Oi "29 ^4? ^6 • •
#

• ^2m—2»

To find the factors of xm -f- am, it is necessary to proceed

in a similar manner, which will give

wm + am = am (cos. rap + v^—1 sin. m$ + 1).

Therefore,

cos. mp + 1 = 0,

sin. m§> = 0,

i-i • (2w + lV . . „ _ . . .

which gives <p = , the result or which is

(grc + 1), - —
. (8ra+lW

"

x = a (cos. — -f s/ — 1 sin* —M,m m
n being supposed successively to assume the values, 0, 1, %
« o . m — 1 as before, the simple factors will be

If r- . #
x — a (cos. — -f* V— 1 sin. — ),m m

Sjt _. &\
x — a (cos. 1- V-l sin.— ),N

rn m
5rt ,

—

r # 5^
a; — a (cos. 1- a/ — 1 sin. — ),v

ra m

or beginning with ^ = m — 1, &c. the series will be

x — a (cos. •— — v'—1 sin. — ),m m
Sit — .Sit.

x ' — a (cos. V — 1 sin.— ),m m
5#

m
Sit

x — a (cos. ^/ — 1 sin. ),v m m

And by uniting the extreme factors and those equidistant

from them, we find
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m '

(x2 — 2a cos. . x + aA (x2 — 2a cos. •— . x + d1
) . . .

.

The last factor being simply x + a when m is odd, and

(m— \)n _ . .

x2 — 2a cos, . x + a2 when w is even ; the num-
m

ber of real quadratic factors being in the former case

ra-~ 1 , . . . m——, and m the latter —

.

As before, let the circumference of the circle with the

radius a, be divided into 2m equal parts, and the lines

drawn from a point p at the distance x from the centre

to the successive points of division being denominated as

before,

it

z* = x2 — 2a cos.— . x + a2 *

zl — x2 — £a cos. -— a? -f &2
?3 m

^ = x — 2a cos. —x + a2
.

And since %
x
= £m__2 , za = 2w-s, &c.

(589.) Cor. 1. The formula,

7J* . If

x ~ a (cos. 2tz . 1- V — 1 sin. 2w — ),

is a general formula for the mth roots of am .

(590.) Cor. 2. The wth roots of unity are expressed by

the formula,

if - . tf

cos. 2n [- //— 1 sin. 2tz—

.

m m
(591.) Cor. 3. If a = 1, this proposition gives the reso-

lution of xm — 1 into its simple factors,
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SECTION XXI.

Of the generalproperties of algebraic curves.

(592.) As every equation between two variables may be

conceived to generate a curve, the variety of curves are as

infinite as the variety of the equations by which they are

represented. The classification of curves therefore should

be conformable to that of equations ; and as the first and

principal division of equations is into algebraical and tran-

scendental,the curves represented bythem have been similarly

divided and similarly denominated. An equation between two

variables (yx) is called an algebraical equation when it is

reducible to a finite series of terms involving only factors of

the variables {yx) with integral and positive exponents.

An equation, which is not reducible to such a series, or

which, when reduced to a series of such terms, will consist

of an infinite number of terms, is called a transcendental

equation. Accordingly, the two principal classes of curves

are algebraic and transcendental. Thus the lemniscata,

whose equation is

y + %y~x% + x* + a*y2 — a\v°~ = 0,

is an algebraic curve, The logarithmic and the cycloid

whose equations are

y = a\

x— j%ry—y%
A

y _ r — r cos. —£—±- = 0,
r

are transcendental curves, for they would, if resolved to a

series of integral and positive powers ofy and x
3
consist of

an infinite number of terms, From the nature of trail-
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scendental equations, it is impossible to form any regular

classification of the curves they represent. They possess no

generic properties, and the peculiar properties of each curve

may be investigated by the rules already established. This9

however, is not the case with algebraic curves. The means

of their classification are obvious ; they possess general pro-

perties which may be discovered from the nature and pro-

perties of general algebraic equations, as well as those di-

stinctive and peculiar properties which characterise each

subordinate species, and are derivable from its particular

equation.

In a classification of equations, with a view to a cor-

responding classification of the curves represented by them,

we should use such a means of distinction, as that equations

coming under different classes may not represent the same

curve.

Thus, for example, if the equations were classed according

to the number of their terms, the equations,

<y% _j_ x%
z=z ri

9

y
z + x 1 — %rx — 0,

would come under different classes, and yet they represent

equal circles. Such a distinction between the classes of

equations must therefore be adopted as will prevent the

possibility of the same curve coming under two different

classes. We shall find this distinction by investigating how

the transformation of co-ordinates affects an equation ; for as

this never affects the curve represented by the equation, any

quality in the equation which is changed by this operation

cannot be used as a distinction of classes ; and, on the other

hand, any quality which the transformation does not affect,

is a fit one for the purpose. The formulas expressing the

co-ordinates of a point relatively to one system of axes,

as a function of those relatively to another being of the first

degree, cannot make any change in the degree of the equa-



ALGEBRAIC GEOMETRY. 297

lion in which they are introduced. They may change the

values of its co-efficients or its number of terms, but can

never change its degree. Hence it is that algebraical equa-

tions between two variables are classed according to their

dimensions, and the lines represented are accordingly de-

nominated lines of the first or second or mth degree. The

degree of an equation is marked by the sum of the ex-

ponents of the variables in that term in which it is highest.

Thus,

x*y + bx Q
~

-f- cyz -f dy -f ex +J?= 0,

is an equation of the third degree, and represents a curve of

the third degree.

(593.) Newton, in his classification of lines, made a

distinction which, however, is now nearly abandoned. Con-

sidering that equations of the first degree represent only

right lines, and those of the superior degrees curves, he

designates the order of a line by the degree of its equation.

According to him, equations of the second degree represent

lines of the second order, those of the third degree, lines of

the third order, &c. He divides curves into hinds or

genera, and denominates lines of the second order, curves of

thefirst hind, lines of the third order, curves of the second

hind, &c. This distinction is, however, now out of use,

and we say lines or curves of the second degree or order

indifferently.

(594) The manner in which the equation of a curve in-

dicates the different peculiarities of its course has been al-

ready fully explained. By the principles which have been

established, the different sinuosities and inflexions of any

line will appear as plainly by its equation to the eye of the

analyst, as if they were traced on a diagram, and actually

exhibited to the senses. And, indeed, more plainly, as

several peculiarities of a curve may be developed in the dis-

cussion of its equation, which would escape the utmost
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sagacity of the descriptive geometer. These principles

enable us to follow the course of any particular curve by its

equation ; but there are some general properties of algebraic

curves, arising from different principles, which have not yet

been noticed.

(595.) A general algebraic equation of the nth order is

one which includes terms in which the variables are in-

volved in every variety of dimensions not exceeding n. A
method of determining the terms of a general equation of

any proposed order has been given by Newton.

He supposes the space included within a right angle, whose

sides are horizontal and vertical, to be subdivided into

squares by parallels to the sides. In the first horizontal

row of squares the successive powers of x
y

scil. 1, a?, x 1

^ x 3
,

&c. are inserted, and in the first vertical column the powers

ofy}
scil. 1, «/, j/

2
, &c. are inserted. Let such dimensions

of x and y be inserted in the other squares, that each hori-

zontal row shall contain the same dimensions of x^ and each

vertical column the same dimensions of ?/, so that the whole

will stand thus

:

1

y

X X2
j
X3 X* X 5 xd - - xn~l xu

yx yx 1 yx3 yx41 yx5 yx6

;T

j

yxn~l
IJX

%

yt y*x yW ?/x3

y
Qx^ y*x s

y
2x6

y
%xn~l J/V

y
%

y
sx y

3xz

y
lx* y

zx^ y
3x5

y
3xQ fxn-1 y*x-

t y*x y
4x2 y*x3 y*x* y^x 5 i/xQ y^xn

-'
1 y*x'

.V
s

y
5x y bx2

y
5x3

y
bx* y

5x5 y bx6
y

bxn~l

y
5x

y* y
dx y

6x* y^x3
y

6x* y
6x5

y
6x6

y
Qxn-1

y
6x'

- - " - - - - - -

- - - - - - - - -

f~l

y
n-^x y

n~ lxz
yn—xx^\y

n"~ lx* y
n-'lx5

ynx s

y
n^X6

—
yn-\xn-\ yU-l

r y
nx 13/V y

nx3
\ y

nx4 y
nxQ

y
nxn~~ i

y
v
a

Thus each vertical column consists of regularly increasing

powers of y multiplied by the same power of #, and each
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horizontal row consists of regularly increasing powers of x

multiplied by the same power ofy. By reading the vertical

columns successively, and supplying the co-efficients, the

terms of a general equation ordered according to the

dimensions of x will be found ; and by reading the hori-

zontal rows, the terms of an equation arranged by the

dimensions of y will be found. By reading it diagonally,

the terms of an equation arranged by the dimensions of

both variables are obtained. This method is called the

analytical 'parallelogram. As an improvement on this,

De Gua proposed converting the parallelogram into a tri-

angle, thus:

which is called the analytical triangle. This, when read

horizontally, the co-efficients being supplied, will give a

general algebraic equation arranged by the dimensions of

both Tariables ; and when read parallel to either side, will

give one arranged by the dimensions of either variable*

The first two horizontal rows give the general equation of

the first degree, the first three that of the second degree?

and the first (n -f 1) horizontal rows give the general

equation of the nth degree.
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(596.) An obvious conclusion from this arrangement is,

that the number of terms in a general equation of the nth

degree is the sum of an arithmetical series, whose first term

and common difference are each unity, and whose number

of terms is n -f 1. Hence the number of terms in the

. .
(w+l)(*H-2)

equation is ——-——

.

The entire number of constant quantities in any equation

is the same as its number of terms. But this number may

always be diminished by one by dividing the whole equation

by any one co-efficient, and from this it appears, that if two

equations of the same degree have their corresponding co-

efficients proportional they will be in effect identical ; for

by dividing each by the co-efficient of the same term, the

new co-efficients will become equal. The number of de-

terminate and distinct co-efficients in a general algebraic

equation ofany degree is therefore one less than the number of

terms, and therefore the number of determinate co-efficients

. n(n + 3)
in a general equation or the nth degree is -—

.

(597») In the classification by the degrees of the equations

it should be observed, that although the angle of ordination

does not affect the class of a curve nor its generic properties,

yet that different curves of the same class may be generated

by the same equation related to systems of axes of different

inclinations. Thus, for example, the equation

if + x% - r* =
always represents an ellipse, whatever be the angle of or-

dination ; but the eccentricity of the ellipse represented by

it will be a function of the angle of ordination. If the co-

ordinates be rectangular, the locus is a circle ; if otherwise,

the axes of co-ordinates coincide with the equal conjugate

diameters of the ellipse represented by the equation^ Thus

it appears, that the peculiar properties of the individual
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curve represented by any equation are affected by the axes

of co-ordinates by which the equation is constructed ; but

the class to which the curve belongs is still the same.

(598.) It should also be observed, that it does not follow

that every equation represents a curve of the order designated

by its degree. If an equation of the nth degree can be

resolved into two or more rational factors of inferior degrees,

it no longer represents a curve of the order expressed by its

dimensions. In this case the equation is equivalent to two

or more equations of inferior degrees, and instead of repre-

senting one curve of the degree expressed by its dimensions,

represents a number of curves of inferior degrees, whose

equations are expressed by the rational factors into which the

given equation can be resolved. Examples of this occurred in

the discussion of the general equation of the second degree.

It was there shown that in some cases the equation repre-

sented two right lines, and in that case the equation is the

product of two equations of the first degree. Thus, under

the conditions

B a — 4ac > 0,

AE2 + CD 2 + B 2F — BDE — 4aCF = 0,

the equation was found to represent two right lines ex-

pressed by the equations,

bx + d + {x—x f

) Vb2 •— 4ac
y = _ ___ ^

(BX -f D) — (X—

X

1

) y/ B 2 — 4ACy= _
„

In which x1 = — -—

—

-
A
—

. If these equations be arranged
B2-—4ac x &

thus,

(2a# + bx + d) - (x - a?)*/** — 4ac = 5

(2at/ + b% + d) + {x —- x) ^/b 2 — 4ac = ;

and multiplied together, and the result divided by 4a, and

arranged by the dimensions of x and y9
it will become



802 ALGEBRAIC GEOMETRY.

BDE— AE2— CD2

Air -f bxv + c#2
-f my + e# + ;

—

-
A

= ;

.

b2 — 4ac

but by the given condition,

BDE— AS2— CD3

B 2~ 4AC
= F,

which reduces the equation to the form. of the general equa-

tion of the second degree,

(599.) In order therefore that an equation of any pro-

posed degree should represent a curve of the same degree, it

should not be capable of being resolved into rational factors

of inferior degrees. If the equation can be resolved into

two or more such factors, it will really involve two or more

equations, each of which will represent a peculiar curve.

Such equations then do not represent one curve but several*,

which have no other connexion than that their equations are

multiplied together. A system of different lines thus repre-

sented by one equation is called a complex curve. An
equation of the second degree may represent a complex line

composed of two right lines. One of the third degree

may represent a complex line composed of three right

lines, or of one right line and a line of the second de-

gree. And in general, an equation of the nth degree

may represent a system of n right lines, or a line of the

second degree, and n — 2 right lines, or any number of

lines of inferior degrees, the sum of whose exponents does

not exceed n. It should be observed also, that in some

cases the factors of the equation may be impossible : such

factors represent no loci.

It may also happen that two or more factors may be

identical, or that all the factors may be identical. In the

former case, the sum of the exponents of the different lines

which the equation represents will be less than the exponent

of the degree of the equation itself In the latter case, the
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equation being a complete power, will only represent one

line, whose equation will be the root of that power.

The student will probably form clearer ideas of these

general principles from an example. An equation of the

fifth degree, not resolvable into rational factors of inferior

degrees, will represent one continued line of the fifth order.

If it be resolvable into two equations of the first and fourth

degree, it will represent a right line and a line of the fourth.

order. If it be resolvable into factors of the second and

third degree, it represents two lines, one of the second, the

other of the third degree.

If it be resolvable into three factors, two of the first degree

and one of the third, it represents two right lines and a line

of the third degree. If two be of the second degree and

one of the first, it represents two lines of the second degree

and a right line.

If of the three factors two be identical, sell, those of the

first degree, it will represent a right line and a line of the

third degree. If the two identical factors be of the second

degree, it will represent a line of the second degree, and a

right line.

From these observations it appears that every general

equation of any order embraces under it all curves whatever,

whether simple or complex, of inferior orders. Thus, a

general equation of the nth order embraces under it every

combination of right lines from one to n; every com-

bination of right lines with a line of the pth order from one

to p, with a curve of the (n — jp)th order, and in general

every combination of lines, the sum of whose exponents

does not exceed n.
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PROP. CCXCV.

(600.) To determine the number of points through which

an algebraic curve of the nth degree maybe draxon*

Let the co-ordinates of the several points be supposed to

be substituted successively for the variables in the general

equation of the proposed curve. There will by these means

be as many equations as there are points. In order to de-

termine the equation of the curve, it is necessary to de-

termine its several co-efficients, the number of which has

been already proved to be —1—^" . To determine these

will require as many independent equations. If there are

_ n(n + 3) . . m . , -n
therefore — given, these are sufficient -to determine all

the constants, and therefore to determine the curve. A
curve therefore of the nth order may always be drawn

,, i
n(n + 8) .

through given points.

If there should be a less number of given points, they

will be insufficient to determine all the co-efficients, and

therefore an infinite number of curves of the proposed order

may be made to pass through them.

It should be observed that the equation of the proposed

order, determined by the given points through which the

line is required to pass, may not represent one continued

line of that order. The values of its co-efficients, determined

by those points, may be such as to render the equation re-

solvable into rational factors ; in which case, as we have seen,

it is not a line of the required order which is drawn through

the given points, but several lines of inferior orders. Con-

siderations purely geometrical plainly indicate this ; for if n

be the number of points, they may all be on the same right
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line, and in that case the sought equation will be a complete

nth power
9 whose root being extracted, gives the equation of

the right line.

The solution of the problem to determine the equation of

a line of the nth order passing through—-^—- given points

can never be impossible, as the several co-efficients are de-

termined by simple equationso

The practical solution of the question in particular cases

may be simplified by assuming axes of co-ordinates passing

through four or more of the given points; but in this case§

what is gained in simplicity is lost in symmetry
?
for the re-

sulting values of the sought quantities are never symme-

trical when one or more points are assumed to have any

peculiar position with regard to the axes of co-ordinates,,

PROP, CCXCVXo

(601.) To find the greatest number of points in which a

right line can meet an algebraic curve.

As the lines assumed as axes of co-ordinates are entirely

•arbitrary
9

it is always possible to assume them so that the

equation of the curve shall be a complete equation of

the nth degree with all its terms,, In this case,, ify = ?

the resulting equation is of the form

AX 71 + -BX
n~ l + CXn~"2

. . . . o M# + N = 0.

Each real root of this equation determines a point where

the axis of w meets the curve. The number of real roots

cannot exceed n> and it therefore follows that the number

of points where the axis of x meets the curve cannot exceed

n* As some of the roots may be impossible^ there may be

a less number of points of intersection than n
9
or there may

even be no point where the axis of x meets the curve if n

be even ; as in that case all the roots may be impossible,

x
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Hence we find that every algebraic curve <tnay be inter-

sected by a right line in as many points as there are units

in the exponent of its order> but not in more.

Since a transformation of the origin to any other point on

the axis ofy cannot affect those terms which are independent

ofy> it follows that the greatest number of points in which

a parallel to the axis of x can meet the curve is expressed

by the exponent of the highest power of x^ which is not

multiplied by a power of y*

Similar conclusions may be made with respect to the axis

PROP. CCXCVII.

(60S.) To determine the greatest number of points in

which two algebraic curves, the exponents of whose orders

are m and n, can intersect.

Let it be supposed that such lines are assumed as axes of

co-ordinates, that neither of them shall be parallel to a line

joining any two points of intersection, and that therefore

there shall be distinct values ofy and x for each particular

point of intersection. Suppose y eliminated by means of

the equations of the two curves, the resulting equation will

give the values of x for the several points of intersection,

and from the manner in which the position of the axes of

co-ordinates has been assumed, there will be one point of

intersection for every real value of x. Since the equations

from which y has been eliminated are of the mth and wth

degree, the resulting equation in terms of x only will be of

the mn\h degree, and therefore the greatest number of real

roots it can have is equal to the product of the exponents of

the orders of the two equations. Hence we find, that two

algebraic curves may intersect each other in a number of

points equal to the product of the exponents of their orders^

but not in more.
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In the actual investigation of the points of intersection of

two curves, it should be observed, that it cannot be inferred

that there are only as many points of intersection as there

are real roots in the equation found by eliminating y. For

it may happen that a right line passing through two or more

points of intersection is parallel to the axis of y, and in this

case for such points there is the same value of x. To find

all the points of intersection, therefore, each real value of x

given by the elimination of y should be substituted in the

equations of each of the lines, and the corresponding values

ofy found ; such of these as are real and unequal, give points

of intersection.

Ify occurs only in the first degree in one of the proposed

equations, it is evident that for each real value of x found

by the elimination of y, there can be but one value ofy in

that equation in which it occurs in the first degree,, which

must be real, and therefore in this case there are as many,

and only as many, intersections as there are real values of x.

A similar conclusion obviously applies when x occurs only

in the first degree.

(603.) Cor. 1. If m > n, and it be required that the

line of the rath order shall pass through a number of given

_ , m(7n JcS) .

'

, n ,

points expressed by -—-—

—

5
whenever a number or these

points greater than mn are upon the line of the nth. order,,

the line of the mth. order passing through the required points

must be a complex line composed of the line of the nth order

and other lines. For if not
5
the two lines would intersect in

a greater number of points than win.

(604.) Cor. % Two lines of the mth order can only in-

tersect in a number of points expressed by m2
.

(605.) Cor. 8. If wi8 be not less than -±—^—Z, or in
A/

other words, if m be greater than % it follows that two
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curves of the mth order can intersect in a greater number of

, m(m + 3) _ . . . n .

points than , that is, m a greater number or points

than are in general sufficient to determine the curve. In

this case, some of the co-efficients arising from the given

points assume the form — , and are therefore indeterminate.
(J

Hence a number of points not exceeding m2 may be so

placed, that an infinite number of' curves of the mth order

may pass through them. This is generally true; for if

m < 3 it is true, because then m2 < Q
— , and therefore

a number of points expressed by m2 is insufficient to deter-

mine the curve ; and if m > 2, it is true for the reason

above stated.

PROP. CCXCVIII.

(606.) Two right lines intersect each other and a curve

of the nth order, to investigate the relation between the con-

tinued products of the intercepts ofeach between their com-

mon point of intersection and the points where they re-

spectively meet the curve.

These right lines themselves being assumed as axes of co-

ordinates, and y and x being successively supposed = in

the equation of the curve, the resulting equations will have

the forms,

KXn + BOF-1 + CXn~2
. . . . MX + N = 0,

Ay + By-1 + cy~2
. . . . m^ + n = o.

The continued products of the roots of these equations are

N N .

respectively — and —, which are as a' : a ; that is to say,,

the ratio of these products is the reciprocal of that of the co-

efficients of the highest powers of x and y respectively5
which



ALGEBRAIC GEOMETRY. 309

enter the equations whose roots are their factors. Now, as

no change of origin can affect the values of a or a', this ratio

remains the same for all systems of secants parallel to those

assumed; and hence follows the general theorem^ that, If

two right lines parallel to two right lines given in position

intersect a curve of the nth order, the continued products of

their segments intercepted between their point ofintersection

and the curve will be in a constant ratio.

The particular application of this theorem^ and its con-

sequences to lines of the second degree, has been shown

in (188),

As a further example, we shall consider the application of

this theorem to lines of the third order. The general equa-

tion of the third degree is

Aj/3 + Bxy2
-f cx2y -f nx3

-f e?/2 -J- yyx + gx* -j-h# + \y -f k = 0.

If y and x be supposed successively = 0, the resulting

equations are

d#3 + G#a + ux + k = 0,

Ay3 + ®y
%

-f iy + k = 0.

ic

The products of the roots of these equations are — and

—, and therefore they are as a : £, and as a change of

origin makes no change in a or d, they remain in the same

ratio for all axes of co-ordinates parallel to those assumed.

Hence iftwo right lines in given directions intersect a line of

the third degree in three points, the solids contained by the

three segments of each line shall be in a constant ratio.

If by a change of origin two of the roots of either equa-

tion become equal, the line, instead of intersecting the curve

in three points, touches it in one, and intersects it in the

other. In this case, instead of the solid contained by the

three segments, we consider that whose base is the square of

the tangent, and whose altitude is the secant.
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If two roots of each equation become equal, we consider

the two solids, whose bases are the squares of the tangents^,

and whose altitudes are the secants.

If the three roots of either equation become equal, they

indicate a point of contact formed by the union of three points

of the curve, and which is therefore a point of inflection «>

In this case, the solid considered is the cube of the tangent.

If k = 0, one of the roots of each equation = 0, which

shows that the origin is on the curve.

If k = and h = 0, two roots are = 0, which shows

that the axis of x touches the curve at the origin ; and if

k = 0, h = 0, and G = 0, the three roots are = 0, which

shows that the origin is a point of inflection.

If d = 0, the first equation has but two roots, and the

axis of x and its parallels cannot therefore meet the curve

in more than two points. Hence the conclusion is, that the

solid contained by the three segments of the one line shall

vary as the rectangle under the two segments of the other

;

or that the solid contained by the three segments of the one

shall bear a given ratio to a solid whose base is the rectangle

under the segments of the other, and whose altitude is

given..

If d = and a = 0, the first equation will have but one

root, and therefore the axis of x and its parallels meet the

curve in but one point. In this case the solid contained by

the three segments of the one line shall vary as the segment

of the other, or shall bear a given ratio to a solid whose

base is given, and wThose altitude is the other line.

Similar conclusions^ mutatis mutandis^ can be applied to

the second equation* We shall not pursue this example

further. The student can with facility examine all its ap-

plications by proceeding as above, and as we have proceeded

with the equation of the second degree in (138).

(607.) If the general equation of the wth degree be ar-
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ranged by the dimensions ofy, it will be of the form

Ay 11 + (bx + c)yn
~l + (px2 + eo? + f)^~2+ . . . . n = 0.

For the same value of x the sum of all the values ofy is

therefore

bx\v

and as the number of values ofy for any value of x is in ge-

neral n, it follows^ that if a right line be drawn represented

by the equation

n&y + B.r + c = 0.9

it will possess this property,, that if it be made the axis of x9

the sum of all the values ofy on one side of it will equal the

sum of all the values ofy on the other side. This property

points out an extension of the signification of a diameter•,

which may in general be understood to be a Vine intersecting

a system ofparallel chords in such a manner3 that the sums

ofthe intercepts between it and the several points of the

curve on each side are equal.

As the variety of lines which may be assumed as axes of

co-ordinates is infinite^ so every curve may have an infinite

number of diameters 9

For the same value of x the sum of the products of every

two values ofy is

and the number of such products is —^—^~ . Hence a line

of the second degree represented by the equation

f2i (n —> 1 \

\
v

Q -Ay2 + (w — 1) (bx+ c)y +D^-fEi + F = 0,

will have the same diameter as the curve., and also the rect-

angle under the coincident values of y will be equal to

the ?zth part of the sum of the rectangles under every pair

of corresponding values of y in the proposed line. And
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it follows, that the sum of the positive rectangles under

the intercepts between this line of the second degree and

the proposed line is equal to the sum of the negative rect-

angles.

In like manner a curve of the third order whose equa-

tion is

-('->
:

(-\+fcS|i5(^.y

-f-
^—- (d^2 -1- -RX -T F)l/3 + G#3 + HX2 + IX + N — 0,

1

will have similar properties, that is, will have the same dia-

meter, and the product of every three coincident values ofy

•ni i
w.w-l.w-2. „ ,

will be equal to an ——:—~—~— th part ox the sum or the

products of every three coincident values of y in the given

line, and therefore the sum of the products of every three

intercepts between this and the proposed line measured

positively, is equal to the sum of every three measured

negatively.

Curves thus related to any algebraic curve are called

curvilinear diameters. And from what has been shown

abpve, it appears that a curve can have a curvilinear dia-

meter of any order inferior to its own.

A rectilinear diameter, which bisects its ordinates, is called

an absolute diameter. Thus all diameters of lines of the

second degree are absolute diameters.

In order that a curve should admit of an absolute dia-

meter, it is necessary that a transformation of co-ordinates

which would make all the terms involving odd powers of one

of the variables disappear should be possible, and as this is

not always the case, curves of orders exceeding the second

may not have any absolute diameter.

A counter-diameter is a line which, being assumed as

axis of 0C} will, for equal and opposite values of oc, give equal
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and opposite values of y. Thus an axis is both a diameter

and a counter-diameter.

The axis of x being a counter-diameter, and the axis

of y properly placed, the equation ought to be fulfilled

after changing x into — x, and y into —y. This always

happens when the even rows in a descending order in the

analytical triangle, beginning from the highest row, are

wanted in the equation. For if the degree of the equation

be even, this change leaves the signs of all the terms un-

altered, and if it be odd, it changes all the signs.

As a transformation of the direction of the axes of co-

ordinates without changing the origin does not introduce

any new dimensions of the variables, it follows that if the

co-ordinates be placed as above, and that the axis of x be a

counter-diameter, all right lines through the origin are also

counter-diameters. It appears therefore, that if a curve

admits of any counter-diameter, it admits of an infinite

number, and that they all intersect in the same point.

From the property of counter-diameters, it appears that

all right lines through their point of intersection, and ter-

minated in the curve, are bisected at that point, and it is

hence called the centre of the curve.

In order that a curve should admit of counter-diameters

and a centre, it is necessary that the dimensions of the

variables which enter the even rows of the analytic triangle

in a descending order should be capable of being removed

by the transformation of co-ordinates. As the existence of

a centre and counter-diameters has been proved to be inde-

pendent of the direction of the co-ordinates, this trans-

formation can only be effected by a change of origin. If

then a transformation of origin, which will make the neces-

sary terms disappear, gives finite and determinate values for

the co-ordinates of the new origin, that point will be the

centre ; otherwise the curve admits of no centre.
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(608.) The distinction by which algebraic lines of any

proposed order are subdivided into classes is the number of

their infinite branches. We shall not enter here into the

detail of this subject, as the specific properties of the dif-

ferent orders of lines beyond the second offer no particular

interest to the student. The general methods given in the

preceding part are sufficient to determine the figure and

properties of any particular curve which may present itself

to our inquiries. It may not be uninteresting, however,

simply to detail the subdivision of lines of the third order.

Newton has divided the lines of the third order into four

principal classes, included under equations of the forms

;

AX3 + Bxy2 + ex* + DJ/ + EX + F = (1),

AX3 + i&ocy + ex2
-f EX + F := (2),

AX3 + Bj/2 + ex2 + EX + F == (3),

AX3 + ex* + ny + EX -f F == (4);

under the first are included 65 different species, to which 8

more have since been added.

These 65 are again subdivided into the eleven following

classes

:

!

)
2, f Redundant hyperbolas. Six hyperbolic branches and

8. i three asymptotes, characterised by a > 0.

4.)

5. 1 Defective hyperbolas. Two hyperbolic branches and

6. ) one asymptote, characterised by a < 0.

yy ^ Parabolic hyperbolas'. Two parabolic branches, two

£ > hyperbolic branches, and one asymptote, cha-

J racterised by a = 0.

9. Hyperbolisms of an hyperbola. Six hyperbolic

branches and three asymptotes, characterised by a = 0,

c = 0, e > 0.

10. Hyperbolisms ofan ellipse. Two hyperbolic branches
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and one asymptote, characterised by a = 0, c = 0,

e < 0.

11. Hyperbolisms of a parabola. Four hyperbolic

branches and two asymptotes, characterised by a = 0,

c = 0, e = 0.

The second equation represents a curve called the

Trident, It consists of two parabolic branches, two hyper-

bolic branches, and one asymptote.

The third represents curves having two parabolic branches.

The fourth represents the cubical parabola.

This classification, numerous as are its parts, does not

contain all the species.

SECTION XXII.

Geometrical problems 9 illustrative of the application of the

precedingparts ofAlgebraic Geometry,

prop, ccxcix.

(609.) Given the base of a triangle9
and the ratio of the

rectangle under the sides to the difference of their squares
9

tofind the locus of the vertex*

The base and a perpendicular through its middle point

being taken as axes of co-ordinates, and the given ratio

being m : 1, and half the base* being expressed by a, the

condition in the proposition may be expressed thus :

Vy* + (# + ctY . Vy2 + (# — af = 4<ma%,

which reduced to a rational form, becomes

(j/
2 + a?

2 + a*y - *a*x%
(1 + 4ms

) =s 0,

which is resolved into the factors
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if + x* - %a */\ + 4m2
. a? + a3 =

5

y2 + #2 + £a vTh-W". ff + a2 = 0,

which are the equations of two circles, whose centres are on

the axis of x, and determined by

x — -f a*/l -f 4wza,

and whose radii are equal, each being Qma.

If m = 1. the two circles thus determined cut the base

and produced base in extreme and mean ratio.

prop. ccc.

X

(610.) Two right lines, each of which passes through a

given point, intersect in such a manner as to intercept be-

tween them a given magnitude of a right line given in po-

sition tofind the curve traced by their intersection,

Let ap and bp be

the right lines passing

always through the

given points a and b5

and intercepting cd9

a part of the right

line xx' given in po-

sition, always equal

to the given magni-

tude 772.

Assuming the line x'x as axis of x, and a perpendicular

YYf intersecting it at any point as axis of y> let the

points a and b be y
]x\ and y"x ,!

, and let the equations of ap

and bp be

{y ~y]

) - «'(# - x!

) = o9

(j,
-y ) — a\x — a?

1

) = 0o

By supposing y = in each of these, we find
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oc

od = a/1 - ~r :

and therefore by subtraction,

if v11

a1 a"

By means of this equation and the first two, the quantities

a! and d] being eliminated, and the result arranged by the

dimensions of the variables, we find

(xn — x1 — m)yz+(«/— y")yx + (mif -\-myu +«/V— y
fxf!

)y

— mg/y = ;

which being an equation of the second degree, in which

c = and e = 0, shows that the locus is an hyperbola, and

that the right line xxf is an asymptote.

The position of the centre and axes may be found with

facility by the general formulae already given,

prop. ccci.

(611.) Given the base and the locus of the vertex of a

triangle, to investigate the locus of thepoints where a square

inscribed on the given base meets the sides, and also the

locus of its centre.

The base and a perpendicular through one of its ex-

tremities being taken as axes of co-ordinates, let the co-

ordinates of the vertex be y
]x\ and those of the point where

the angle of the square meets the side passing through the

origin be yx. By (66), we have the conditions

y =
atf

yx!

T
where a is the base of the triangle.

yx!
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The values ofy
]x ] resulting from these equations are

ay
y

yi =-

a-y
ax

a-y
If yx be the co-ordinates of the centre of the inscribed

square, these formulas become

y a—%'

= a{x~y)

The equations of the loci of these points respectively will

therefore be found by substituting the values ofy !x! in the

equation of the locus of the vertex.

From the form of the values ofy
]ad

i
it follows, that if the

locus of the vertex be an algebraic curve of any proposed

order, the loci of these points will be a curve of the same

order. But it is not necessarily a curve of the same

species.

Thus for example, if the locus of the vertex be the circle

represented by the equation

the equation of the locus of the point where the angle of

the square meets the side of the triangle, is

x2 + %ay - a* = 0,

which is the equation of a parabola, whose axis is the axis

ofj/.

The student will easily observe various other particular

applications of the general formulas determined above,
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PROP. CCCII.

(612.) A given right-angled triangle (bac) is so moved,

that the vertex (a) of the right angle, and one extremity (b)

of the hypotenuse, describe right lines perpendicular to each

other, and given in position, tofind the nature of the curve

described by the other extremity (c) of the hypotenuse.

Let the right lines

xxf and YYf described

by the points A and

s be assumed as axes

of co-ordinates, and

let the co-ordinates of

the point c heyx, and

ab = b, ac = a ; then

by the conditions of

the question

,

3

TP o

Y
A,

AO

' y* + (x

hi
a

by
f = a\

which being arranged by the dimensions of the variables,,

becomes

(a
1 + b*) y

1 - %abxy + a*xz — a4 ~ 0.

Since Be — 4ac = — 4a4 < 0, the curve must be an

ellipse
5 whose centre is at the origin of co-ordinates.

PROP. CCCIIIo

(613.) To determine the curve in which the sine of the

angle at which the radius vector is inclined to the tangent,

varies inversely as the square of the radius vector*

Let %t be the angle under the radius vector and tangent^
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and ra2 being assumed as constant, the condition of the pro-

position is expressed thus

:

mz

sm. zt = —- ;

% z

but by the general formula,

zdvo
sm. zt — —

(sW+cfe2)*

By eliminating sin. zt, the result will be

z6dco2 — mWdw1 — ni'dz* = 0,

•.• dfo =

1
To integrate this, let z2 = — , and therefore

2(2
4— ra

4)*

and

dy
dz = —

By which substitutions we have

dw = -~ ——— L—

2(l-wy)T

The integral of which is

w = i- cos."1 m2
j/

;

and therefore,

m z

cos* 2w = ——
?

£2

•; z2(cos.2 w — sin.2 w) = m2
,

which, related to rectangular co-ordinates, is

y
2 — #2 — — w2

.

The locus sought is therefore the equilateral hyperbola.



ALGEBRAIC GEOMETRY, 821

PROP. CCC1V*

(614) Tofind the locus of a point
t
from which several

right lines being drawn to several given points, the sum of

their 2mth pozvcrs will he given, in being supposed a po-

sitive integero

Let the co-ordinates of the several given points be y
]x\

j/
fx'

3 „ . . . . y
{n)x (n)

, and those of the point whose locus is

sought j/^. By the conditions of the question,

{{y—yY+ (x—ri)*} m + {(y—J/")
8 + (ff—#7

)
2

}

B2

5
&c.-v= 0,

v being the given magnitude. This equation, after the

terms are severally expanded and arranged according to their

dimensions, must be of the form

Mfm + Bfm
-lX + Cfm

~'lX z
* s e e — V = 0,

which being an equation of the Swath degree, shows that the

locus is a line of that order.

The case in which m = 1 was given in (26£)

PROP. CCCV.

(615.) To find the locus of a point, the difference of the

c2mih powers of whose distances from two given points is

given, m. being supposed a positive integer.

The co-ordinates of the given points being as before, the

condition,, expressed algebraically, is

I (y—j/y + (x-x !

y

}

m-
{ (y~y')?

+

(x ~~ x 1

')
%

}

m- v= 0,

where v is the given difference after expanding the terms

and expunging those which destroy one another^ the re-

sulting equation between yx is one of the %(m — l)th

degree, therefore the sought line is one of the %(rn —* l)th

degree.

If m = 1
5
the equation is that of a right line, and becomes

%"—y)# + 2(#"- x ])x+y *

+

rf* - (y
/2 + %]]z

) - v= o,

Y
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which. is the equation of a right line perpendicular to that

which joins the two points, and which divides it into seg-

ments, the difference of the squares of which is equal to the

given difference . This will more readily appear by sup-

posing the axis of x to pass through the two given

points, and one of them to be the origin, which renders

y\ _. y\\ -_. xu -_. o^ by which the equation becomes

x]% — 2xx ! — v = 9

which involves the condition.

jj

{x] — xf — X2 = v^

which shows that the right line divides the line joining the

two points into segments, the difference of whose squares is

equal to v,

PliOP, CCCVL

(616.) Tofind the locus of a pointfrom which the sum

of the mth powers of right lines drawn at given angles to

several given right lines shall be given
3 m being supposed

a positive integer,

Let the equations of the given right lines be

Ay -f ~boc + c =
5

tiy + n\v + c' = 0,

Auy -f B ?/

a- + d ! = 0,

and the given angles be (p? <p
!

, <p
fl

9 &c. the lengths of the

several lines will be

aj/ + bx 4- c

sin, (p Va2 + b^

A!y + B
fx 4- c f

sine <p
} y/A'3 + Bf2
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Hsin.pV A//2 + B '

The sum of the wzth powers being taken and equated

with a constant quantity, will give an equation of the mth

degree between y and x
3
which is that of the locus sought.

The case in which m = 1 was investigated in (63).

The case in which m = 2 was given in art, (269),

puop. cccvu.

(817.) Tofind the equation of a curve of a given species

passing through any proposed number ofgiven points.

The following demonstrations are taken with some in-

considerable change from Lagrange., Cahiers de VEcole

Normale.

Let the co-ordinates of the given points be tfx\ y
!lx f

9

yV, &c. These being successively substituted for y and

x in the equation of the curve, will give as many equa-

tions as there are given points, which will eliminate as

many constants as there are points, which will determine the

equation of the required curve.

Although the circle is, after the right line, the line most

easily described, it is not so by its equation related to rect-

angular co-ordinateso In this respect the class of curves which

maybe considered as the simplest, are those of which the

values of y are integral and rational functions of oc9 and

which are therefore included in the general equation

y = A + BX + C#3 + D^3
. . . .

This class of curves are called parabolic, because the equa-

tion of the parabola is a particular case of this equation,

sell, the case in which the first three terms only occur. We
have already pointed out a striking application of this class

y 2
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of curves in illustrating the theory of equations in Sec. XX. 9

and they are also useful in the investigation of curves in

general ; for a curve of this kind can always be made to

pass through any number of points of the proposed curve,

since it is only necessary to take as many indeterminate' co-

efficients, A; b, c 5
d, as there are points through which it is

required to pass, and to determine these co-efficients by the

values of the co-ordinates of the given points. Hence it is

clear that whatever be the nature of the proposed curve,

the parabolic curve thus determined will differ from it the

less the greater number of points they have in common.

Let the co-ordinates of the points through which the

curve is required to pass be y
]x\ yV, ^V, andwe

have the following equations :

y = a + BX 1 + cx z + do/3
,

y = A + BX11 + CX112
-f BX fl

\

y = A + BX 1 ' 1

-f CXm + VX,,i3

%

y"= A + Brf"f+ CXm + DX ,,I!

%

from which equations the values of a, b, c ? d, are deter-

mined. By subtracting each equation from the preceding,,

we find

y - y> = B(x ! - x") + c<y2 ~ xm) + v{x,s - d%
y -/' = B{X" - X!lf

) + c{x»2 - Xm\+ v(x"3 - xm\
f'-f!^ B (rfit _ xmi)+ C(xm - xm% ) + v(a?"-

3 — x>»
13
).

By dividing these equations by x } — x ]

\ x fl — x'
l!

, &c.

^J-^IT = » + C(^ + X !l

) + I)(X,Z + X !X !! + d'%
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Subtracting each of these equations from the preceding, and

dividing the results respectively by xf — x!!l

, x ] — #;//
'......

= c + d(x! + x'1 + ri%
a--d
a>--xm

d<--a"

x»--xm

In which

y-y
« —

,

*'-*"'

«' y-y
*"-^" •

By continuing the process, the quantities a, b, c, may be

successively eliminated, and the value of the last found, and

thence the values of the others. As an example of this, let

the curve represented by the equation

y = a -f bx + cxQ

be required to pass through three points y
]x\ ?/V, yV9

y-y
x'-x"

= B + C(x' + x'),

y-ym

x"-x'"
= B + C(x" + X1

").

a— a'

— r<

X — xm

Substituting the last of these in the first,

B.

x ! — XH x'—x'"

And substituting the values of b and c in the equation,

y =s a + B^ f + c«2
lf2

5

the value of a is found,
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a a . ,.

A = if — ax ] — —

:

~
x
odx\

Hence the equation of the curve sought is

y = ?/ -f a(# — x l

) + -^ ^(^— cr
f

) (x — x11)*'

X "-—"X

A general formula for the equation sought in these cases

may be found with somewhat greater simplicity. Since y
must successively become y\ ij\ y/;...when x is x\ x f!

, od
u
,.»*

the value of y found by eliminating the indeterminate con-

stants ; the expression for y must be of the form

y = Ay + sy + cy + Dy. . . .

Where Af

, B f

, c
f

, are such functions of x, as when # = x}

will become a' — 1 , s f = 0, c7 = 0. . . . . when x = xl

\

Af = 0, b' = 1, c' = 5 D f = 0. . . . . when # = xm^

A1 — 0, b ! = 0, c7 = 1, D f = 0, .. . . . and so on. Whence

it is obvious that the values of a', b
?

5
cf

5
&c. are

(a? — ^) (x—*x^) {x—xm) . . . .

A' ==

jy3^^^ 7TT

(x—a!) (x—x") (x—>x 1!!!

) .

The number of factors in the numerators and denominators

of each of these is one less than the number of given points

This last expression for y, although under a different

form from that found by the first method, yet ultimately is

the same, as may be proved by arranging the result given by

the former process according to the quantities y\ y
lf

3 yw, . . .

and substituting for a
5
a\ &c. their values. But the latter

method is preferable, as well on account of the simplicity of

the analysis by which we are conducted to it
;
as on account
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of the elegance and symmetry of its form, and its com-

modiousness for calculation.

It follows also from this,, that in any series composed of

several terms, as many intermediate terms may be supplied

as may be required* This is useful in supplying the links

in systems of observations or experiments, or in tables

calculated by formulas or by constructions. In this consists

the method ofinterpolation.

PROP, CCCVIIT.

(618.) To investigate thefigure and arm ofa curve repre-

sented by the equation a2

y
2 — y

Qx2 — 16V* = 0.

By differentiating the equation
5
the result is

dy 4*x(M> — a?
8
)

Hence the axis of x touches the curve at the origin.

dy
If x == a, -j- is infinite, and for this value of x

3 y is also

infinite. Hence the lines,, whose equations are x = + a

are asymptotes, and between them the curve is entirely in-

cluded. To find the area, let the equation be solved for ys

and the result multiplied by dx, gives

7
4x*dx

ydx = —r=r-o
a/a 2,— x7.

To integrate this, let a circle be described with the origin as

centre, and a radius equal to a. Let the arc a!b\ whose

sign is x, be <p ; and let the area sought be a?
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_ sm.^ pa sin. p . ,

a —Jydx = 4/\ - —£ = — 4/ sin. pa cos. <p«

This Integral taken between the limits + a and — %
proves the area included between the curve and its asym-

ptotes to be equal to the area of the circle.

Ify = mb', \' y 1 = Va2 — a?
2

; hence by the equation of

the curve we have

yy
f = 4r2

.

This curve therefore is the locus of a point b assumed on

the ordinate to the diameter of a circle such, that mb shall

be a third proportional to b'm, and twice am,

PROP. CCCIXo

(619.) To investigate the Jigure and quadrature of the

curve represented by the equation x^— a^x 9,

-f cfy*= S

By solving the equation for y9 we find

oo Va2 — do
2
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Hence the curve is included within the limits x = + &, and

passes through the origin ; by differentiating, we find

dy
___

aft — 2a?8

d% a*/a* — x*'

which shows that parallels to the axis ofy at the distances

± a are tangents ; that the origin is a multiple point at

which the two tangents are inclined to 1 the axis of x at angles

of 45°.

The figure of this curve is therefore similar to that of the

lemniscata.

To find the area

A=fj/dx=J = 37- +c;

which taken between the limits x = + a and x = — a, gives

the whole area

a = 4^.

Hence the area of this curve is to that of the lemniscata with

the same axis, in the ratio of 4 : S e

prop. cccx,

(620.) The ordinate to the axis of a cycloid, being pro-

duced until it becomes equal to the cycloidal arc inter-

cepted between it and the vertex; to find the locus of its

extremity,

If A = the axis of the cycloid, it is evident^ from the

rectification of this curve, that the equation of the locus

sought is

y* = 4a#.

It is therefore a parabola whose axis and vertex coincide

with those of the cycloid , and whose focus is at the middle

point of the base.



880 ALGEBRAIC GEOMETRY,

PROP. CCCXI.

(621.) A semicircle being described upon a given right

line ab as diameter, let an indefinite right line ef be

drawn parallel to that diameter, and intersecting the circle;

tofind the locus of a point P in a right line drawnfrom
the centre qf the circle intersecting the circle , and the 'parallel

at B 1 and v, so that p will divide the intercept bd1 in a given

ratio m : n.

Let cp = z
9
and the angle pcb = w, ca = b, cb = r

\

hence

J b 1 m
\ sin. wjm-fw+ i r

sm. w "

{^
sm. wjm+w

This equation Is obviously deduced from the conditions of

the question, and, after reduction, becomes

% =
n m

+ r .

sin. w m+ n '
' ' m + n

This is the equation of a conchoid, whose modulus is

rm
m-kn'

3

and the equation of whose rule is

hn
** m -j- n

The centre of the given circle being the pole of the con-

choid.
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PROP. CCCXIX,

(6SS.) To investigate the figure and quadrature of the

curve represented by the equation a*y — x2y — a3 = o

By solving the equation for y9

y^
a? — ar

Ilence it appears, that if x = + a, y is infinite, and there-

fore the parallels to the axis of y represented by the equa-

tion x = + a are asymptotes. Also y is positive for all

values of x between + a and — • a. The minimum positive

value of y is = a}
and corresponds to x = 0, therefore a

parallel to the axis of x intersecting the axis of y at a

distance from the origin equal to a touches the curve at that

point, and the part of the curve included between the

parallel asymptotes is extended indefinitely above this

tangent. For all values of x beyond the parallel asym-

ptotes y is negative, and diminishes without limit as x

increases without limit. Hence the axis of x is an asym»

ptote* This curve is represented thus

:

It is included in the ninth class of Newton's enumeration of

lines of the third order3
and comes under the generic name of

redundant hyperbola^ as having a greater number of hyper-

bolic branches than the hyperbola of the second degree.
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The particular species of redundant hyperbola, investigated

in this proposition, is called an hyperbolism of the hyper-

bola.

To effect the quadrature of this curve, let the area be a 5

dx
a =fydx = ay ^—i>

which, by integration, gives

, a-\-x
a = \a* . 2 . .

a — x

The area being supposed to commence from the axis ofy,

no constant is introduced.

PROP. CCCXIII.

(623.) To find the equation of the curve, whose sub-

tangent varies as the rectangle under the co-ordinates

This condition, expressed analytically, is

xdy-
dJ

.a=yX
,

which gives

ady — ydx = ;

which integrated, is

y = b%

h being the base, whose modulus is a. The curve sought is

therefore the logarithmic.

PROP. CCCXIVo

(624.) Tofind the equation of a curve whose area always

equals twice the rectangle under its co-ordinates.

Let the co-ordinates of any point be yx. The condition

stated in the proposition is
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fydx = 2yx ;

which, by differentiation, gives

2xdij -f ^<£r = 0,

This equation, multiplied by y 9
and integrated, gives

%xy l — a
3

a being an arbitrary constant, which is therefore the equa-

tion of a curve possessing the proposed property.

prop, cccxv.

(625.) Tofind the equation ofa spiral in which the area is

proportional to the logarithm of' the radius vector.

This condition, expressed analytically, is

J&dw ~ ah ;
-

by differentiation,

_ dz
z^dco = a ,

z

which, integrated, is

which is the equation sought.

prop, cccxvi.

(626.) A right angle cab is given in position, mid an*

other right angle c'a'b' is so moved*, that the points of

intersection, p, p', of the sides of the angles respectively
,

shall he always at a given distance ap = A!xljrom their

vertices ; tofind the curve described by the middlepoint m

of the intercept a'p' between the side of the angle given

in position and the vertex of the other angleo

Through the middle point & of pa let gf be drawn per-
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A,

Vm
JL

JDLl. V JB.

B

pendicular to it, and let this and pa be assumed as axes of

co-ordinates. Hence if the angle a'bp' = w3
and AG or

mp' = a, we find

ad = 2a cot, w
9

9.•a

ME :

sin. oj

a sin. w
9

a cos, co»

Hence we find

x = & cot. w +
cla

a sin. w5
sin. w

^/
2 = a(l + cos. w)

By eliminating w by these equations, the result, after re-

duction, is

x\%a —y)- f = °?

which is the equation of the cissoid o? Diodes,

If ag? = ag, and G;Ef be drawn parallel to ab
5
gg' is the

diameter of the generating circle, and the line GfE ;

is the

asymptote*

PROP. CCCXVIIo

(627.) Tofind the locus of the intersection ofa tangent

to a given circle^ and a line perpendicular to it passing

through a given point in the circle.

Let the diameter passing through the given point be

assumed as the axis from which the values of the angle w are
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measured, the perpendicular being represented by z> the

conditions of the question give the equation

z = %r cos.2 |w = r(l — cos. w),

which is the equation of the cardioide.

It is otherwise evident from geometrical construction,

that the cardioide is the locus : for let p be the given point

on the circle, p the intersection of the perpendicular and

tangent. Draw vp and ca
5
and on

the radius pa as diameter let a

circle be described intersecting vp

in b? and draw ba. b^ca is evi-

dently a rectangle, and therefore

Bp = AC. Hence up is constant,

which is a property of the cardioide.

PROP. CCCXVIII.

(6£8.) Two equal parabolas being placed in the same

plane^ and so as to touch at their vertices, let one ofthem be

supposed to roll upon the other ; tofind the loci ofitsfocus

and vertex*
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By the conditions of the question
5

it appears that if from

the vertex v of the fixed parabola a perpendicular vb be

drawn to a tangent through any point p, and produced

until v'b = vb, the point v;
is the vertex of the moveable

parabola; and if tv' be produced until vV = vf, f' is its

focus ; and FF f being perpendicular to pt, and bisected by

it ; since by art. (253), the locus of c is the vertical tangent

to the fixed parabola, the locus of F f is its directrix. The

equation of the tangent pt being

%y — f{x + x-) = o.

The value of vb is x f coSo bvt. Let the co-ordinates of the

point V be yx,

y %f

x " p
5

y* = px\

y* 4. & = 4r'a
. —fr"r

Eliminating y
fx J by these equations, the result is

x3 + y
2x — £py

z = 0.

The equation of the locus of the vertex, which is therefore

a cissoid, the diameter of whose generating circle is \p.

PROP. CCCXIX.

(629.) The ordinate p'm to the diameter ofa circle being

produced until the rectangle under pm and the absciss am is

equal to the rectangle under the ordinate p !m and the dia-

meter^ to find the equation, figure, and properties of the

curve? which is the locus of the extremity of the produced

ordinate.

The origin of co-ordinates being at a, let am = x,

p'm = y\ pm — y9
and ab = a. By the conditions of the

question 5

ay 1 = yx ;
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but by the equation of the circle.

>,! —

,

y =z v ax — x2
.

Hence the equation of the locus, after clearing it of the

radical, is

y°\x -f cfx — a% = ;

which solved for y, is

Hence, when x=a, y~Q,
therefore the curve intersects

the axis of x at b. All po-

sitive values of x greater

than a
3
and all negative va-

lues of x whatever., give im-

possible values of y ; but all

values of x between a and

give real values of y : hence

the curve is entirely included

between the parallels through

a and b. Since, for every

value of x
y

there are two

equal and opposite values of

3/, the parts of the curve on

each side of the axis of x are

symmetrical.

By differentiating the equa-

tion of the curve, we find.

dy a3

dx 2yx2

Hence the subtangent s is

a \/a — x

\/X

a*

%x Jax— x*

Hence follows a geometrical construction for drawing a

z
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tangent. Let mf = \a
9
and draw fp; and p't perpendicular

to it. Then tp is the tangent.

Also -~- = so when x '= 0, and since at the same time
ax

y = oo
5
the axis of 3/ is an asymptote.

Let the equation be differentiated a second time, and the

result is

d2
y __ a\Sa— 4<x)

____ _. _

1

Hence the points whose co-ordinates are # = la, 3/ = —;
&

are points of inflection ; therefore if the radius cb be bisected,

the ordinate passing through the point of bisection meets

the curve at the points of inflection.

Let a be the area of the segment pmb
?
supposed to begin

from bs __

\/ ax— X2

a = — jydx = — qf
~— ax.

Let the angle p'cb be <p ;

\a sin, <p
— */ax — x2

. £a(l + cos. <£)=. x\ hence

„ sin.2 (p

2 ^ 1 + cos. p
r

•«• a = iaP/O- — cos. p)<^,

which, by integration, gives

a = \a\$ — sin. <p),

No constant is added, since A and <p are simultaneously

evanescent.

The quantity ^a^p is equal to four times the sector p'cb,,

and \a2 sin. <p is four times the triangle p fCB, and therefore

the area is four times the difference between these. Hence

the area pmb is equal to four times the segment p'b*

The entire area included between the curve and its

asymptote is therefore equal to twice the area of the

circle.
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If a perpendicular cd to ab meet the curve at d, the line

joining d and b will be a tangent.

prop, cccxx.

(6o0.) To investigate the figure of the curve, whose

equation is x* — a*x2 — b
%xl

-f- a
2b2 — c3y = 0.

The proposed equation may be expressed thus

:

(x2-az
) (x

z— 52
)

y =
(T

Hence the curve meets the axis of x at the points x = -f <7
9

^ = — «, jr=+&,a? = — £ ; and if a > b, for all values

of x > a, y is positive, and continually increases for all

greater values. For the values of x between a and 5, y is

negative, and positive for those between b and 0. Hence it

is easily seen that the figure of the curve is

/W A "IKT

where ab = + 6, ab' = — #, ac = + a, Ac' = — a.

The equation of the tangent by differentiating is found

to be

r

2^{^'a -(a4+6 ft

)}y-y =
c*

L(*-<);

therefore the points at which the tangents are parallel to the

axis of x are x =
5

a; = + —^—

.

z a
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If a and b both = 0, the four points a, a', b, b'
?
unite in

one, and become a point of undulation : the equation of the

curve becomes in this case y — —, which is one of the nu-

merous family of parabolic curves represented by the ge-

neral equation y = ax
11

.

prop, cccxxi.

(631.) Tofind the locus of the intersection of the tangent

to an ellipse , with a 'perpendicular to it passing through

the centre.

The equation of the ellipse being

a*y'2 + 6V2 = a*b\

and that of the tangent

a%jfy + ***'* = a^>
the equation of the perpendicular to the tangent from the

centre is

tyrfy — a2
y

fx = 0.

Ify and «r
f be eliminated by these equations, the result

will be

(j/
2 4- *?)* — (fix* — hQy* —

P

which is therefore the equation of the locus sought.

To investigate the figure of this curve, let y = 0, and the

corresponding values of x are

x = 0,

x = -f «,

a? = — a.

In like manner if # = ? the corresponding values of

y are

y = 0,

3/ = + b
>

y= -b.
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Hence it appears that the four vertices and the centre are

points of the proposed locus.

If the equation be solved for y
2
> we find

where c
1 — a" — 6*.

Hence it appears that for each value of x there are four

values ofy 9
but of these four two are impossible. For since

therefore

Hence

are both impossible values of y, except when x =
5
which

givesy = 0. Therefore the two real values are

y = ±\/i& - x7
- + v7 -^4 + c

1^.

The parallels to the conjugate axis of the ellipse therefore

meet the curve in but two points, and are all bisected by the

transverse axis, which is therefore an axis of the locus.

By differentiating the real values ofy9
we find

dy _ ar(ca—

%

y/|:6
4 + c

a
a:

a
) _ <*• a* - g(y» + ^2

)

&T "~ *~

%y V|F+. C207a
" ~ 3/ ' 6

l— 2(^+^ a

V

Hence if x =
5 y = ± A, -~- = 0,

Also ify = and # = + a, -— = £. Hence the tangents

through the four vertices of the ellipse are also tangents to

the locus at these points.

dy
Since the numerator of the value of -j- consists of two

factors, x = is not the only condition on which it may

vanish. If
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2vy>* + cs^2 ^o,

avcz — b
z

or x =
2c

?

we shal. also have -— = 0. This value of x is impossible

if c < h, but real if otherwise Hence if c > b> there are

six points at which the tangent to the locus is parallel to the

transverse axis; which points are determined by

x = 0,

x = -f
2c

a,\/c2— bz

2c

and the corresponding values of y. If c = &, three of these

points unite in one, and form a point of undulation.

If c < $5 there are only two points where the tangent

is parallel to the transverse axis, which are determined by

x = 0, y = + bo

To find whether the tangent through the vertex of the

conjugate axis intersects the locus
5
let b be substituted for

y in the value of x, and we find

~x = ± Vc^^T2 .

Hence if c > #
5
the tangent intersects the curve at two

points determined by these values of x.

If c be not less than &, the tangent does not intersect the

curve*

du
Of the two factors in the denominator of -~-

9 one cannot

= 0, therefore the value can be infinite only when y —
and x = + a ; hence the only points at which the tangent

through the vertex is perpendicular to the transverse axis

are the vertices,
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In the case where c > b,

the figure of the locus is there-

fore represented thus.

If c be not greater than b
y

the figure of the locus is repre-

sented thus.

It appears also that the centre is a conjugate point.

When c > b
}
the curve has four points of inflection.

To determine the polar equation, let z sin. w, and z cos. a?

be substituted for y and "#, and the result is

£2 — a2 CQSa2 w „j_ fta gin< 2 Wt

This equation bears an obvious analogy to the polar

equation of the ellipse itself, related to the centre as pole^

which may be expressed

2
z2

cos.2 w sm.2
to

a* b2

To find the area (a') of the locus : by the general formula

a' = yk%dw + d.

Hence in this case

a ! = \a%foo$? oj doj -f -b-fmx^ w& + o! ;

but since

d sin. to = cos. w dw
9

d cos. a; = — sin. w tfw,

we have

A f = Jia?f cos* cod sin. w — ^Wf sin. wd cos, to + c f

.

Let circles be described on the axes of the ellipse as

diameters: if cp = z and pcd = w
5

let. p 9 p\ be the points
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where the radius vector meets

the two circles, and let p
f¥

be parallel to cb, and pE to

cd. Then — a? cos. vod sin. w

is the differential of the area

GEp, and — h2
sin. wd cos. w

is the differential of the area

AFj?
f

. Hence,

CPD = {("GBP + AFp') + C f
.

To determine c', we should observe that when cpd = 9

that is, when cp coincides with cd, the point p will coincide

with d, and p
! with a. Hence

d — ~gcd = 0,

V d = |GCDe

Hence we find

cpd = i(CEpD + AFp {

).

Hence we find the entire area (a) of the curve

The area of the entire curve is therefore an arithmetical

mean between the areas of the two circles, and is equal to

half the area of the circle described with the line joining the

extremities of the axes as radius.

It appears from this that the curve bpd bisects the space

abgd included between the circles.

The transverse axis of the ellipse being supposed fixed, if

the conjugate axis be continually diminished, the ellipse will

ultimately coincide with the transverse axis. The corre-

sponding limit of the locus will be found by supposing

b = in its equation, which gives

(j/
2 + x%Y — a*aP — 0.

This equation is resolvable into two factors,

y
7, + x % ~~ ax == 0,

if -f x2 + ax = 5
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which are the equations of two circles described on cb and

en' as diameters^ which are therefore the limit of the curve

in this case.

If the ellipse becomes a circle, scil. if b = a, the equation

of the locus is

(
y -f xy — a*x*— ay = o,

which is resolved into the factors

if -f #2 — a? = 0,

y* + #2 = 0.

The first gives the circle on the transverse axis> and the

other the centre.

prop, cccxxn.

(832.) To determine the locus of the intersection of the

tangent to an hyperbola, and a perpendicular to it through

the centre.

The equation of the locus found in the last proposition

becomes in this case

(y* + x*)* - a %xl + by == 0.

If in this equation x == 0, it is necessary that y = also,,

therefore the conjugate axis can meet the locus only at the

centre. But y — gives, as before,

x = 0,

x = + a,

x = — a%

hence the locus meets the tranverse axis at the vertices..

It appears, as before, that two of the four values ofy are

impossible, and that therefore the perpendiculars to the

transverse axis can each meet the curve in but one point
5

and that the transverse axis is an axis of the curve.

It appears, as before, that the tangents to the hyperbola,

passing through the vertices of the curve, are also tangents
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to the locus at those points ; for the differential co-efficient

becomes, in this case,

dy x cf — ^y^+x 1

)

which becomes infinite when y = and x2 = a2
.

For all values of x2 > «2
, y is impossible ; therefore the

locus is included between the vertical tangents.

To find the value of -j- when y = and x = 0, we are

to consider that the value of —~- consists of two factors,
ax

— and ,, , n;~-—^. When .r = and y = 0, the

$2

former assumes the form —, and the latter becomes tt. To

find the true value of the first factor, or what is more readily

done, of its square, let the numerator and denominator be

both differentiated, and we find

d(oc*) $(i54 + ex^
d{if)

c2 -S(|64 +c2^2p

which, when x = 0, becomes — ; therefore, when x =

and j/ = 0,

x h

y ~ - a*

and in this case 3
therefore,

dy a

doc ~ b

Hence the centre is a multiple point. The tangents to the

curve at this point are perpendicular to the asymptotes of

the hyperbola. The equations of the tangents to this

point are
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by — ax = 0,

by -f ax = 0.

To determine whether these tangents meet the curve again,

let b2y
l be substituted for aV in the equation of the curve?

and it becomes

yl _|_ XQ -_
?

which gives j/ = and x = 0. The tangents therefore do

not meet the curve again.

It appears from this investigation, that the figure of the

curve is like that of the lemniscata, which are a species

of it.

Its polar equation is

£2 = a2 cos/ u) — b2 sin. 2 w3

which, when a% = &% becomes

3? = ^ COS. 2fc>,

the equation of the lemniscata.

PROP, cccxxm.

(683.) Given the base and rectangle under the sides ofa

triangle3
to determine the locus of the vertex.

If the base and a perpendicular through its middle point

be assumed as axes of co-ordinates, the condition expressed

in the proposition is

Vyz + {x + af . ^^TJ^^^af = a1 + b%

where a is half the base, and a2 -[- b
2, = the rectangle. This

equation, when reduced to a rational form, becomes

(f + a 1
)* + &%2(y - ^2

) == 62
(6

a + 2a").

This equation, solved for j/
2 and #% gives

y = -, (a2 + x2
) ± vWT~b ;WT^cFx2

,

x2 = a* - «/
2 ± vH^+1*2

)
2~- 4a*y

.'

Hence, for each value of x9 two of the four values ofy an

impossible, and the other two are real and equal with op-
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posite signs. The axis of x is therefore an axis of the

curve. When x = 0, y = + b : the axis of 3/ meets the

curve, therefore, at two points determined by y = + & and

J/ = - *.
_

When ^/ = 0, a? = + -/S*?!1, or a? = ± 5^/— 1.

The latter values are impossible, and the former determine

the two points where the curve meets the axis of x.'

All values of x z > %az + 52 render y impossible ; there-

fore the curve is included between the parallels to the axis

ofy through the points determined by x = ± \/9>a
l + b*.

If the equation of the curve be differentiated, the re-

sult is

dy x a*— (y
2 -\-xz

)

dx~~ y ' a% +(y*+ x*y

If x = 0, and \'y = ± b
9

-7-- = ; therefore the parallels

to the axis of #, through the points determined by these

values ofy and x9
are tangents.

If y = 0, and v a? = + y^a 2, + &2
, the values of ~

are infinite ; therefore the parallels to the axis ofy, through

the points determined by these values of y and x
9
are tan-

gents.

To determine whether the tangents through the points

determined by x = 0, y = + Z>, meet the curve again, let

b be substituted for ?/ in the value of #2
, and we find

x = 0,

The latter values are real, = 0, or imaginary, according

as az > b*, a% = &2
5 or aa < &°

From these circumstances, it appears that when a2 > b 2

is represented thus

;
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If c be the origin, and a

and b the points where it

meets the axis of #, and

B, e, those where it meets

the axis of y9
there are

points of inflection on each

side of the points d and e.

dx
In this case •— = 0, on the condition.

The points (besides d and e), therefore, where the tangent is

parallel to ab, are determined by the intersection of a circle,

whose centre is c, and radius a with the curve. This circle

will not meet the curve if a2 < 6% and will touch it at d if

a2 = b\

If a* be not greater than h2
^ the figure of the curve is

similar to that of the ellipse.

prop, cccxxiv.

(684.) Given the base and area ofa triangle, tofind the locus

of the centre of the inscribed circle.

Let the base be' and a perpendicular yy' through its

middle point be the axes of co-ordinates*

Since the area of the triangle is given^ the locus of the

vertex is a right line parallel to the base., at a distance av

from the base such., that the rectangle under av and ab

shall be equal to twice the given area* Let v be the vertex

of the triangle in any position. If bp and b'p bisect the

angles vba and ^b ;a, p is the centre. of the circle which

touches the three sides . Let the co-ordinates of vhey'x^

and those of p
?
yoc^ therefore
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y
tan. t'BA

tan. vb!a —

a— x'

y
a + oc

:s

tan. pba

tan. pb'a — ,y

But the angles vba and vb'a are respectively equal to twice

the angles pba and pb'a; therefore, by trigonometry,
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% tan. pea
tan. uba =

tan. vb'a

1 — tan. 2 pba?

% tan. pb'a

1 — tan2 pb'a

By substituting in these tlie values of the tangents already

found, we find

y ___
%y{a—-x)

a—a! (a — xY—y^

y %(«

+

x)

a + rf (a + xY~~y 2
'

Eliminating x1 by these equations, the result, arranged by

the dimensions of the variables, is

2x2y — y#* — y^B — ^ 2
j/ + ay == 0,

which being an equation of the third degree, shows that the

locus is a line of that order.

To examine the figure of the locus, lei its equation be

solved for each of the variables, and the results are

- (aq- x* ) ± </(a?-x2)(b*--a;£
)y- y

\/yy
z + 2a?y - ah/

In which 62 = a2
-f y2

, which is the square of the line bv ;

V BV = h.

To determine the points where the curve meets the axis

of y9
let x = 0, which gives

yy + 2aa
j/ - a9y

} = ;

a(a+6)

a(6 — a) a(a Jr h)
Let ad = r— 3 ad = — -—:— , and the points d and

y y
D f are those at which the locus meets the axis ofy 9 These

points may be obviously found geometrically by bisecting
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the angle vba and its external supplement; the bisectors

will meet yy' at d, d ;

If ad = r
9
and ad' = — r\ the value of x may be ex-

pressed thus.

v-'y(y-r) (y+r)

%/-y

\ r II

V

Y
H Q-

jy/

It E tV7 1C M .

3? N /,CAv ^-^JN"
*—s*

X «\s^ V . _r_

A. yf

as

\_

/

K

\a,

.k F
I

3

i

By the value of?/, it appears that for all values of x* be-

tween b z and a9
?
that is^ < b

z and > a2
, the values ofy are

imaginary*

Hence if ve = ve' = vb
?
and parallels to yy' be drawn

through the four points e ?
b, f/

9
and b', the curve is ex-
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eluded from between the parallels through e and b, and

also from between those through e' and b !

. But since for

all other values of x the values ofy are real, a part of the

curve is included between the parallels eh and b'h'; and

the remaining parts of it extend infinitely in opposite di-

rections beyond the parallels through e and E f

.

Since y — y
! gives oo = ± b, the curve passes through the

points e and e'.

Since y = gives x = ± #, the curve passes through the

points b and b'.

Since for all negative values of y greater than ad/, the

value of x°~ is negative, and therefore that of x is ima-

ginary, the curve cannot pass below a parallel to the axis of

x through B !

.

From the value of x, it appears that it is impossible for

all values of y between r and \ij ; and hence it follows,

that the curve is excluded from between the parallels to the

axis of x through the points c and d, ga being half of va,

and da being equal to r.

From these circumstances, it appears that the part of the

curve included between the parallels bh and b'h' is inclosed

in the rectangle kl', whose sides are parallel to the axes of

co-ordinates, and that the curve meets this rectangle at the

points b, B f

, d, and d'.

Since for each value ofy there are two equal and opposite

values of x, the axis ofy is an axis of the curve.

If the equation be differentiated, we find

dy #(%-y) a

dx
~

'

yy'iy—y'Y

This vanishes on either of the conditions,

y = -jy-

The first condition indicates that the parallels to xx f

through d, D f

, are tangents to the curve. The second would

A A



354 ALGEBRAIC GEOMETRY.

also show the parallel through c to be a tangent ; but the

corresponding value of x being infinite, proves it to be an

asymptote.

CUl!

The value of ~~- becomes infinite on any one of three
(IX

conditions,

y = Q,

#=00.
The first shows that the parallels bh and b'h' touch the

curve at b
?

b'.

The second shows that the parallels to Yirf through e?
e',

touch the curve at these points.

The third shows that the tangent to a point in the

branch eg or e'g' approaches without limit to parallelism

with yy'.

From all these circumstances, it appears that the figure of

the curve is as it has been represented.

By the value of y, it appears that the parabola repre-

sented by the equation

z 2 — yy
] — a*~0

is a diameter of the curve bisecting a system of chords

parallel to the axis of y. If the equation of this diameter

be put under the form

a?

//

it is plain that the axis of the parabola is the line YYf

, and

az

that if ao = — —
?

o is the vertex. Also, since by its

t/

equation y = 0, gives x = ± a
3
and y = y

! gives

x = + ja* + y
lo: = ± b,

it must pass through the points b, b', and e, fA The point

o is evidently the point of bisection of dd 1
.

It is not difficult to explain the genesis of the different
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parts of the curve by the motion of the centres of the circles

touching the three sides of the triangle. While the vertex

v moves in the direction vm, the centre of the circle touching

the three sides, %m, vb !

, and be', moves through dpb. At

the same time the centre of the circle which touches vV and

bx, the productions of the sides B rv and bb ;

, and also the

side bv, describes the asymptotic branch en. Also the

centre of the circle touching vb, b
?

x', and b'v, is describing

the infinite branch E fG f

, and finally, the centre of the circle

touching b$, b'#;

, and b'b, is describing the part bW.

In like manner, while the vertex of the triangle is moving

in the direction vm;

, the centres of these four circles describe

the several parts, DB f

, e'n', eg, and b'd'.

prop, cccxxv.

(635.) Twogiven curves appV and Apfp !

, one related to

rectangular, and the other to polar co-ordinates, and re-

presented by equations of the forms v(y%) — 0, z = f(w),

are so related, that if the curve appV be wrapped upon

Appfp
f!

, the ordinates pm, p'm', pW, . . . preserving their

inclinations to the curve, shall be equal to and coincident

with the radii vectores op, op\ op11 ....... the points p, p\

p
]

\ . . . being the positions of the points p, p f

, P
f;

, . ^ . . when

the curve appV is wrapped upon App'p"; to determine the

conditions by vcliich the equation of either of these curves

may befoundfrom that of the other.

By the conditions expressed,

the lines pm and op are equally

inclined to the tangents at

the points p and p ; and the

same being true for all cor-

responding points, we have

the condition

aaS
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doc zdvj

dy dz
?

the angle w being measured from the axis of y : but since

y -" z and dy = «
7

£, v
^Jw = dx.

Hence by differentiating the equation f(j/jt) = 0, and

changing y into z, and doc into zdfw, and eliminating x, we

shall find by integrating the result, the equation z = f(w).

Also,' if this latter equation be given, a similar process will

discover the equation $(yoc) = 0.

It is evident that either curve may be supposed to pro-

duce the other ; appV by being bent into such a form that

the points m, M f

, m", shall all unite in the origin o, and the

ordinates become radii vectors, will produce App'p11

; or

App !p" by being bent into such a form, that the radii vectors

will become parallel, and their extremities lie in a straight

line, omm'm" passing through o will produce app'p".

By these means every curve related to rectangular co-

ordinates produces a corresponding spiral and vv.

Since zdw = dx, and z = ?/, we have z^dw = ydx.

Hence it follows, that the area included between two

ordinates of the one curve is double the area included be-

tween the two radii vectores of the other, which are equal to

those ordinates. Also, since

dy 1 + dx2 = dz* + zHw\

The arc of the one intercepted between two ordinates is.

equal to the arc of the other intercepted between the cor-

responding radii vectores. We shall apply these general

principles to some examples*

1°. Let the curve app'p7 be represented by the equation

y
m = ax.

By differentiating, we find

mym~~
ldy = adx ;

and by making the necessary substitutions,,
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mzm~2dz = adcvp

which being integrated, gives

>mzm
~x = (m — l)&w.

When m = 2, the carve is the common parabola, and the

corresponding spiral is that of Archimedes, represented by

the equation

.% = i-awc

Hence if ap be any

arc of the parabola,

and pm = Ap, the arc

Ap will be equal to ap,

and the area apm will

be double that of the

segment Ap, and there-

fore the segment Ap

will be one-third of the

rectangle Mm, and equal to the area Amp.

It appears therefore that the rectification of the spiral of

Archimedes depends on that of the parabola.

2°. Let the curve app' be a line of the second degree

related to its axis and vertical tangent as axes of co-ordinates,

and represented by the equation

V
if + ~-x« — pec = ;

by differentiating

%ydy + —xdx ~~ pdcc = 5

which, after the necessary substitutions, becomes

dw =

2a

dz

P (P± _ ,*

%a\2

When a is infinite, the integration of this gives

z = ipcv,

a result which coincides with that already found. Other-
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wise the integration, after substituting— for p> gives

z = b sin.—w.
A

If b = a, this equation becomes

z = b sin. a).

Hence if the curve app' be a circle whose diameter is 2b 9

the curve App f
is a circle whose diameter is b.

8°. Let the curve App1 be the logarithmic spiral repre-

sented by the equation

z — a°\

By differentiating, we find

tan. . dz = zdJ«/.

By the proper substitutions, this becomes

tan. Qdy = <fo;

which being integrated and a constant introduced
,

(y — y') — cot. . # = 0,

which is the equation of a right line.

Hence if App' be a logarithmic spiral, app' will be a right

line touching it at a, and if pm, pV, be inflected parallel to oa ?

and equal to op, op\ the arc pp
] will be equal to pp f

, and the

area pop1 will be half the area pmm'p'. Also at is equal to

the arc of the spiral continued from A to the pole, and the

triangle aot is double the corresponding area. These re-

sults agree with those found in art. (437), (488),

4°. Let the curve ppV be the equilateral hyperbola re«

lated to its asymptotes, and represented by the equation
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yx = m*.

By differentiating, we find

ydx 4- xdy = 0,

which, after the necessary substitutions, becomes

s3d& + ara
atfe = ;

which being integrated, gives

which is the equation of the lituus.

Hence if pm = Ap, and p'm' = Ap', the arc pp f = pp\ and

the area pmm'p1
is equal to twice the area pAp1

; also the

area of the entire lituus continued to the pole is equal to

half the space included between the hyperbola and its asym-

ptotes, and the entire length of the lituus is equal to that of

the hyperbola.

5°. The preceding is only a particular case of a more

general class of curves included under the equation

y™x = a'
n+1

,

which, differentiated, gives

y
mdx -f mym~lxdy = 0,

•.•ydx + mxdy = 0;

which ?
after the necessary substitutions, becomes

(m + l)zm+ Jw = mam+1 .
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SECTION XXIII.

Propositions illustrative ofthe application ofthepreceding

part of Algebraic Geometry to various parts of Physical

Science,

piiop. eccxxvi*

(636.) A right line of a given length being drawn per-

pendicular to an horizontal planej to find the nature of the

curve traced out by the extremity of its shadow*

The meridian line being assumed as the fixed axis., and

the angle which the shadow r makes with it being «;, and

L the length of the perpendicular. Let z be the zenith

distance of the sun, & its polar distance, and A the latitude.

By the conditions of the question, we have the equation

r — l tan. z;

and since the angle a; is the sun's azircmth, we have by sphe-

rical trigonometry,

cos. -sr — cos. z sin. A
COS. W = :

—
.

sin. z cos. A

By these equations, eliminating z
9 the result is

r . cos. A . cos. w + & sin. A = Vr* + l2
. cos. -&.

If the meridian line be taken as the axis of x
9
and the

intersection of the planes of the horizon and prime vertical

as the axis of y, and this equation be reduced to one between

rectangular co-ordinates yx
9
the result is

cos. 2
iff . y

2
-f (cos.2 vs — cos.2 A)<r2— sin. 2A . L#

+ (cos.
2

7a — sin.2 A)l2 = 0.

The locus is therefore a line of the second degree,
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It is an ellipse, hyperbola, or parabola, according as

cos. m > cos. A, cos. -ar < cos. A, or cos. ta- — cos. A.

In other words, when the sun's polar distance is less than

the latitude, it is an ellipse ; when it is greater, an hyperbola

;

and when it is equal to the latitude, it is a parabola.

At the pole cos. A = ; the locus is therefore a circle

represented by the equation

y
2
- + x* = l2

tan. 2 w e

At places within the polar circle the locus has at different

times of the year all its varieties, inasmuch as the sun's

polar distance is, at different times of the year, greater, equal

to, and less than the latitude.

At the polar circle the locus is a parabola at the solstice,

and an hyperbola at all other times.

At all latitudes less than 66^° the locus is always an hyper-

bola, since the sun's polar distance is never less than 66^°.

At the equator the locus is the intersection of the planes

of the prime vertical and horizon at the equinoxes ; for in

that case sr = 90°, and the equation of the locus becomes

x r= 0.

PROP. CCCXXVI1.

(637.) Tofind the curve described by the vertex ofthe

earthbs conical shadow*

Let the semidiameters of the sun and earth be r9 r\ and

let z, z\ be the distances of the vertex of the shadow and

the centre of the earth from the sun, we have the

.equations

z r

P
2(l + ecos.w)'
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the latter being the polar equation of the earth's orbit,

eliminating z
f

, the result is

pr
~~

2(r — r
1

)
(l-\-e cos. w)'

Hence the vertex of the shadow describes an ellipse similar

to that of the earth, and whose parameter is

pr

PROP, cccxxvin.

(638.) Ifa body revolves in any proposed curve, to find

the curve of a fixed stars aberration as seen from this

body.

As the aberration is in direction always parallel to the

tangent to the orbit in which the body is supposed to move,

and in quantity reciprocally proportional to the perpendicular

from the centre of force upon the tangent, the nature of the

curve of aberration may be investigated by finding the

locus of the extremity of a line drawn from the centre of

force parallel to the tangent, and such that the rectangle

under it, and the perpendicular on the tangent, shall be

constant.

These conditions may with great facility be reduced to

equations. Let T(y
fx !

) = be the equation of the curve,

the origin of rectangular co-ordinates being at the centre of

force, and yx being the co-ordinates of any point of the

sought locus, the condition of the radius vector being

always parallel to the tangent, gives the equation

dy 1

__ y
dx 1

~~
x'

xdy 1 — ydx1 = 0.

Let x11 be the distance from the origin at which the tan-

gent meets the axis of x. By the equation of the tangent
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__ x ]dy]— ijdx*

Let ^? = the perpendicular on the tangent

P =5 y . =-,

and therefore we find

#'<$/~yfdat

P "" wy^T^

'

and since by the first condition,

cLv ! x

therefore

And by the condition, that the rectangle under the perpen-

dicular and radius vector is constant,

ps/y
9, + #2 = rn?'

The locus sought will therefore be found by eliminating

jjui from the equations

otfy — yKx =z m* (1),

ydaf - xdij = (2),

v{i/af)—0 (3).

PROP. CCCXXIX.

(639.) The orbit being a line of the second degree with

the centre offorce at thefocus, to find the curve of aber-

ration.

The polar equation of a line of the second degree, the

focus being the pole, is

r = £
2(1— e cos. ta)

9

which reduced to rectangular co-ordinates^ and arranged by

the dimensions of the variables, is



#64 ALGEBRAIC GEOMETRY.

ya + (i - .<s>v
a - p**' - ip* = o.

By differentiating this, we have

dy pe — 9.(1— ez)xi

Hence equation (2) of the last proposition becomes

_p^o? —
- £(i — e2)^ — %y = o.

By means of this, the equation of the orbit, and the equa-

tion (1) of the last proposition, eliminating y
f and x\ the

result, arranged according to the dimensions of the va-

riables, is

errfi

y* + (1 — e*)x* + (2 ~ e*)tf*x* + 4—y
3

em* , ,
47M 4(1— .^

a
) „ 4m4(l~

£

2
)
2

p V ^ pQ, J pZ

which is obviously resolvable into the factors

j,* + (1 - ^2 _ o^

4m* 4ttc
4
(1— e2)

^ p ** p~

The former gives y = 0, a? = scil., the origin of the co-

ordinates. The latter is the equation of the locus sought,

which is therefore a circle, the co-ordinates of whose centre

slem'2' /lni
z

are x = 0, y = •, and whose radius is . From
* J

p
9

p
which it also appears that the origin of co-ordinates is within

the circumference, on it, or outside it, according as e < 1,

= 1, or >1.

Hence it follows that the curve of aberration is always a

circle when the orbit is a line of the second degree, with the

centre of force in the focus ; but that the true place of the

star is within the circle if it be an ellipse, on it if it be a

parabola, and outside it if it be an hyperbola. It is obvious,

that if the orbit be a circle, the true place of the star is in

the. centre of the circle.
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niop. cccxxx.

(640.) The orbit being an ellipse or hyperbola, with the

centre of force at its centre, to find the curve of aber-

ration.

The tliree equations in proposition (638), become in

this case

AV2 + E^'2 = A ~B\
A\yy + ^xx = ^\

x ]

y — y
]x = mz

.

By eliminating j/ and x 1

from these, we find

A~j/
2 + 13

QX" = 7)1*.

The equation of the curve of aberration, which is therefore

a curve similar to the orbit, its semiaxes being

m on— and —

.

A B

prop, cccxxxi.

(641.) The orbit being a parabola, theforce acting along

the diameters, tofind the curve ofaberration.

The three equations in prop. (688), become in this

case

y
,z — px- —

3

%y — px — 0,

x !y — y
!x = m\

By eliminating y\ x\ by these equations, we find

4m 2

p J

The locus is therefore a parabola, whose axis is perpendicular

to that of the orbit.
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PROP. CCCXXX1I.

(642.) The orbit of the planet being supposed a circle,

with the sun in the circumference, to find the curve of

aberration.

The equations in prop. (838) become in this case

xfy — y'x = <m 2
,

yy
] + xx! = rx,

y
2 + ri* - 2rx f = 0.

Finding values for ?/V from the first, and substituting them

in the last, the result, divided byj/2
-f x2

, is

r'
2x z + 2rm 7,y— m4 = 0,

the equation of the curve of aberration, which is therefore

a parabola, whose axis is the axis of y, and the co-ordinate

of whose vertex is y = -^7-.

PROP. CCCXXXITI.

(848.) The orbit of a comet being supposed parabolic, to

find the place ofperihelionfrom two distancesfrom the sun

and the included angle.

Let the equation of the orbit related to the axis and

focus be

z = Z_
2(1— cos. w)'

Let the two distances given be z\ z !f

, and the corresponding

anomalies w', ^\ hence

„f = £
2(1 -cos. w !

y

„v P .

2(1 -cos. a;")'

by dividing; we find

z* 1 —cos. wn

z !/

1 — cos. a/
'



ALGEBRAIC GEOMETRY. 867

The given angle under sf and z!I being <p, we have

«/ -f a/' =: ^.

By eliminating one of the anomalies by these equations, we

shall find a value for the other. This elimination may be

effected thus,

Hence

1 -- cos. w f = £ sin •
s >',

1-- cos. w f; = 2 sin. "i-"''.

A/5 sin. JLw"
2

sin. 4«"

A/T' sin. iw' + sin. i**.

>/%'
~~

sin. .la/— sin. I**'

^ -K/? cot. i?

^/z'-Vz" tan. ^-a/')'

Hence by finding the value of oJ — w r/

, the value of each

anomaly is known.

prop, cccxxxiv.

(644.) The parabolic orbits of several comets having

a common tangent, tofind the locus of the perihelia.

Let p be the perpendicular distance of the common

tangent from the sun, z the perihelion distance, and z! the

distance of the point of contact, and let the angle under p

and z be w* By the polar equation of the parabola

2z.

1—cos. 2a/

'

and since by the properties of this curve P is a mean pro-

portional between z and z\

p* = zz!

,

s
f being eliminated by these equations, the result is

„ 1 — cos. &o>

,
2 = P>__ ;
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but by trigonometry,

. 1—cos. cZoj
sin. w = -.

Hence the equation related to rectangular co-ordinates is

y
1 + xr — vx — 0.

The locus is therefore a circle described on the perpendicular

v as diameter.

prop, cccxxxv.

(CAB.) The parabolic orMis ofseveral comets intersecting at

the same point, tofind the locus of the perihelia.

Let £f be the distance of the intersection of their orbits

from the sun, and z the perihelion distance, and w the angle

under them. By the polar equation of the parabola,

,

%z

1— COS. cu'

Hence the equation of the locus sought is

z = z !

sin. 2 \wt

which is the equation of a cardioide, the diameter of whose

generating circle is the distance z\

prop, cccxxxvi.

(&4<6.) Projectiles being thrownfrom a given point with

the same velocity in different directions, tofind the loci of

the vertices andfoci of the parabolce described by them.

Let the height due to the velocity be h, and the angle of

elevation s
9
the equation of the path of the projectile in free

space is

x~
y = x tan. s — -—

.

4h cos.
2

£

The axis of y being vertical, and x horizontal, let the co-

ordinates of the vertex be yx\ and those of the focus j/V.
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To find at
9
let y = 0, and x 1 will be half the resulting value

of x: hence

xl = &1-1 sin. s cos. £ = h sin. 2s.

To find y, let x] be substituted in the equation of the curve,

and we find

y = h sin.
2

s.

The values ofyV are found by observing that x ]] = #f

, and

the line drawn from the origin to the focus is equal to h

and the angle under it, and the axis ofy is, by the properties

of the parabola, bisected by the direction of projection.

Hence we find

xn = h sin. 2s y = — h cos. 2s

,

To find the locus of the vertices , let s be eliminated by

means of the values of ifx\ and the resulting equation is

4y
a

4- x ]* ~ 4m/ = 0,

which is the equation of an ellipse, whose conjugate axis is

vertical, having its extremity at the point of projection, and

transverse axis horizontal. To find the magnitude of these

axes, let x ! = 0, \*y = h; and ify = — , the correspond-

ing value of x
!

is h. Hence the conjugate axis is equal to

h, and the transverse axis to 2h.

To find the locus of the foci, let s be eliminated by means

of the values of t/V
9
which gives

y* + #*'* = H a
.

The locus sought is therefore a circle whose centre is at the

point of projection, and whose radius is the height due to

the velocity.
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PROP. CCCXXXVII.

(647.) Several projectiles being thrown in the same di-

rection with different velocities, to find the loci of their

vertices andfoci.

To find the locus of their vertices, let h be eliminated by

means of the values of y
lx] found in the last proposition.

The resulting equation is

y
f = Atan. s . ccK

The locus is therefore a right line through the origin.

To find the locus of the foci, let h be eliminated by means

of the values ofy
nxn

; the result of which is

y = cot. 2s . x!!
.

Hence the locus sought is a straight line through the point

of projection, and inclined to the vertical line at an angle

which is bisected by the direction of projection,

PROP. CCCXXXVIII.

(648.) Given the velocity and direction ofa projectile, to

jind the point where it will meet a given plane, and also the

time offlight.

The projectile must meet the given plane in some point

of the intersection of the given plane with the vertical plane

in which the projectile moves. Let the equation of this

line be

y — tan. m . x -\- b;

where m is the angle at which the plane is inclined to the

horizon, and b the distance of the point where it meets the

axis of y from the origin. By this equation, and the

equation

x z

y = tan. e . x — -— , ,^ 4h cos. £

we find the co-ordinates of the point sought are
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oc = 2h —— ) sin. (s— st) + \ sin.
7 (h- w) cos.V \ a

\
cos. ml x

t h S $

sm.orcos.sC
.

C h

^= Sh
cos. 9 ** J

sin '(5

~^)±J
sin.

a

(
6 -w)--cos.^ >

z
S + b.

To find (t) the time of flight. Let m = 16^ inches.

Since the vertical through the projectile moves uniformly

with a velocity expressed by 2 cos. s Jmk, we find

x

% cos. s v Hm
Hence

T = _ I #

a
J sin# (e

__ w\ + J gin> 2/g __^ __ ~cos>'% ( * I
m cos. 2 m. I I h

^ J

being the time of flight expressed in seconds.

prop, cccxxxix.

(649.) Given the velocity of projection, tojind the angle

of projection, at which the distance of the point where the

projectile meets a given plane shall he a maximum.

This problem is in effect to investigate the value of s
3

which renders the value of x in the last proposition a

maximum. For this purpose, let it be differentiated, and

its differential equated with cypher ; the result of which is

cos. s cos. (s -— or) — sin. s sin. (s — rar) —- r sin. s

cos. e sin. (s—m) cos. (e— w)+ 5 — = 0;

where 11 = i sin. 3 (s — m) cos.
2 w I

z
.

This equation gives the sought value of £ ; but to extricate

it, requires some trigonometrical artifice. Observing that

cos. s cos. (s — w) — sin. s sin. (s — m) = cos. (2s — w),

multiplying by R, and substituting for Rv its value, the

equation becomes
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cos. (2s — w) J r + sin. (g — w) I + — sin. s cos. 2 w = 0,

b sin.scos.2<sr
v r = — sm.(g - ot) . yr- -.

v ' h cos, (2s— ot)

By equating this with the other value of r, and squaring

and expunging the terms which mutually destroy each other,

we have

cos.
2, (2s — sr) -f 2 sin. (s — sr) cos. (2s— #r) sin, s

H sm,~ s cos. w = 0.
H

But by trigonometry,

2 sin. (s — or) sin. s = cos. w —
- cos. (2s — ^).

By this substitution, the expression being cleared of the

terms which destroy each other, and divided by cos. w
5

becomes

cos. (2 — m) A sin.2 s cos. j3 = 0.

By trigonometry, •

cos. (2s — ct) = cos. 2s cos. sr + sin. 2s sin. or,

cos. 2s = cos 2 s — sin. 2
s,

sin. 2s = 2 sin. s cos. s.

Making these substitutions, and dividing by cos. ts cos.2 s
9

and arranging for solution, we find

H H
tan.

2
s + 2 .

-
7

. tan. m tan. s + =—— = ;— h J—h

which solved, gives

tan. s = 7 . -j tan. w + •] sec. 2 -ar— — i * i

which gives the required value of se
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The cause of the two values of s is obvious ; for the angle

of elevation being the same, the projectile may be thrown

either up or down the plane, and one of the values of the

elevation gives the maximum range up the plane, and the

other down it.

If the projectile be thrown from one point to another on

the same plane
s h = 0, and the formula for the range

becomes

. cos. e sin. (s-~m)
x = 4h .

—— ——

.

cos. ra-

in this case also the maximum range is given by the eleva-

tion resulting from

tan, s = tan. m + sec « ™ 5

but by trigonometry,

sin. <us + 1

tan, vr ± sec. m = ~ - ~ tan. Uxs -f 90°),
cos. w n "

Hence the direction which produces the greatest range is

that which bisects the angle under the plane, and the vertical

through the point of projection.

It is observable, that if s and s
1 be two angles of elevation

so related that

g + g' = 90° + w5

we shall always have

cos, s sin. (s — ot) = cos. s
1

sin. (J — &).

Hence two such elevations always give equal ranges with

the same velocity of projection; and it appears from the

way these angles are related to the value of s, giving the

maximum range, that any two directions of projection,

equally inclined to that which gives the maximum range*
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will, with the same velocity of projection, give equal

ranges.

It also appears from what has been said, that the elevation

which produces the greatest range on the horizon is 45°, and

that complemental elevations give equal ranges.

PROP. CCCXL.

(650.) To find the locus of the emptyfoci of the orbits of

severalplanets having a common point ofintersection, and

at that point having the same velocity.

Let the distance of the point of intersection from the sun

be d, and the distance of the same point from the empty

focus d ;
. By the properties of the ellipse,

d + d' = 2a,

where A represents the semitransverse axis.

Since the velocity at the point of intersection is the same

in all the orbits, the osculating circles at those points must

have a common chord passing through the sun. Let this be

c. By the properties of the ellipse,

_ 2dd'

A

Eliminating a, we find

CD

4.D— C*

Hence the value of n 1

is constant, and therefore the locus of

the empty focus is a circle with the common point as centre,

and d / as radius,
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PROP. CCCXLI.

(651.) To investigate the figure of the earthfrom the

horizontal parallax of the moon accurately observed at the

same time in different latitudes.

Let 9 be the latitude, and r the corresponding semi-

diameter of the earth, and let the equation

a2b2

a2 sin.
2

<p-f b
2 cos. 2

<p

be assumed as that of a meridian , a representing the equa-

torial, and h the polar semidiameters. Also let r! be the

semidiameter corresponding to another latitude <p', v

az
b*

a2 sin. 2 <p
f+b2 cos.2 <p

r

Dividing one of these equations by the other, and supposing

a = mb^ we have

r2 mz
sin.

2,

<p' + cos.2 <p
f

rH
" mQ sin. 2

<p-f cos.
2 9

"

Hence, observations of two horizontal parallaxes at given

r
latitudes will give the value of -y ; from whence that ofm

9

or the relation of the equatorial and polar diameters, is easily

found.

Therefore, assuming the earth to be an oblate spheroid,

we can find its axes. And the truth of the assumption may

be proved by every pair of observed parallaxes giving the

same value of m.
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PROP. CCCXLII.

(652.) A perfectly flexible and inelastic chain ofuniform

density and thickness being suspendedfrom twofixed points,

tofind the curve into which it willform itselfhy the effect

of its oivn zveight,

Let the fixed points a and b be the points of suspension,

and the horizontal and vertical lines through a being taken

axes of co-ordinates, let yx be the co-ordinates of any point

p, and let the arc ap be s. The part ap of the chain may

be considered as a rigid body retained in a state of equi-

librium by three forces, scil. the weight of the chain s acting

in the vertical direction, the tension a at the point a acting

in the direction of a tangent at that point, and the tension t

at the point p acting in the direction of the tangent at the

point f.

Let the angles under the tangents at the points a and p,

and a horizontal line, be respectively a and w.

By the principles of Statics, since the forces all act in the

same plane, their component parts in the direction of each

axis of co-ordinates must be in equilibrio. Hence we have

the equations
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a cos. a — t cos. w = 0,

a sin. a -— # sin. sr — s = 0.

Eliminating if by these equations., the resulting equation

solved for tan. &9
gives

a sin. a— ,v

tan. or ;

but in general tan. w = —_--

,

# cos. a

Jy a sin. <%-

^t a cos. OC

which is equivalent to the differential equation of the cate-

nary found in (54<6). By a comparison with this,, it appears

that the curve sought is a catenary, whose axis is vertical.

PROP. CCCXLI1L

(658.) A flexible and elastic chain is attached to two

fixed points, tofind the carve into which it willform itself'

bj/ its own gravity.

The chain being supposed of uniform density and thick-

ness, let the ratio of any assumed length of it to the length

of the same, when extended by the tension t, be 1:1+ et.

Let the tension at the lowest point be equal to the weight of

a length c of the unextended chain. Let s
! be any length

of the unextended, and s of the extended chain. The axes

of co-ordinates being vertical and horizontal, we have by the

conditions of the question

ds = ds'(l + et).

The forces which keep s at rest are 1°, the tension t
9
2°, the
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tension c, 3°, the weight s
1 of the chain. These forces are

therefore as the sides of a triangle, which are parallel to

their directions, that is, as dx, dy, ds ; hence

t ds s f

__ dy

c dx 9
c ~~ dx

'

By differentiating the latter, and eliminating ds\ we find

d2

y ds

dx2 ~~
cdx-\- c2eds*

Now if -~ == p9 v ds = Vl+p2
• dx, v

dp __ Vl+p2

dx ~~
c+c^eVl+p2

'

v dx = — : 4- c2rfp,

and aj/ = - _ -f c2epdp.
Vl+p*

By integration we find

x ~cl \p + a/1 + p* I + c*ep9

y = c A/l + p
2 + ±c2

e<p*.

The integral being assumed, so that when p = we have

x = 0, j/ = c*

In these equations the variable p is the tangent of the

angle, which the curve at the point yx makes with the

horizon.

By the elimination of p, we should find the equation of

the curve expressed between the variables yx.

To express the equation between s and p, we should

observe that

ds = a/1 + ft
1 dx.

In which the value of dx already found being substituted,

and the result integrated, gives

s = cp + i^e[p s/TTf + l(p '+ s/TTf)
}
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PROP. CCCXLIV.

(654*,) A given orbit is described by a body round a given

point as centre qfforce^ andfrom any 'point in it the body is

projected with the velocity in the orbit in a direction imme-

diately opposed to the action of theforce ; tofind the locus

of the point at which it shall cease to recedefrom the orbit.

Let r> be the distance of any point in the orbit from the

centre of force, and h the distance at which the body shall

cease to recede from the curve. Since in moving through

H — i> the body loses the velocity with which it is pro-

jected, it would acquire the same velocity in moving through

the same space in the opposite direction. Hence, if v be the

velocity in the curve,

v^ = —- kmfsdj)y

where 2m is the velocity communicated by the unit of force

in the unit of time. Let the law of the force be such that

f = Dn~\

the force being unity at the distance unity. Hence, by in-

tegrating, we find

V2 = (H — Dn
).

n v

If c be the chord of the osculating circle passing through

the centre of force, since v is equal to the velocity in the

curve, we have

V2 = mFC = #&Dn
"~*1

C,

which combined with the former, gives

Kn = D" + '/ID*-
1

. |C.

The values of c and d
3
known by the equation of the given
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orbit, give the equation sought. We shall give a few ex-

amples of the application of this formula.

1. Let the orbit be an ellipse, the centre of force being
'

, . , 2d(2a - d)
the focus. In this case n = — 1, and c =. ——

,

where a expresses the semitransverse axis. Hence

h — 2a.

The locus is therefore in this case a circle, whose radius is

equal to the transverse axis of the orbit.

2. If the curve be an ellipse, the cewtre being the centre

of force. In this case n = % c == , where b' is the se-

midiameter conjugate to d. Hence

Hs = D* + Bi2 = A* + B s
?

a and b being the semiaxes. The locus is therefore a circle,

whose radius is equal to the line joining the extremities of

the axes.

3. If the curve be a circle, the centre being the centre of

force, the formula becomes

H" = (1 + |>».

PROP. CCCXLV.

(655.) A given orbit is described round a given point as

centre offorce, and a body being placed at any point in the

orbit, is moved by the action, and in the direction ofthe

force, until it acquires the velocity it zvould have in the orbit

;

tofind the locus of the point at zohich this velocity shall be

acquired.

Let h be the distance at which the velocity shall be ac-

quired, and d the distance of the point in the orbit from

the centre of force. As before.
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v* = —(nn ~~ h"),

v 2 = mnn'~l
. c,

V nn = d m - wd""1
. ^c.

The values of d and c resulting from the equation of the

given orbit being substituted, give the locus sought.

To apply this formula to some examples

:

1. If the curve be a circle, with the force at the centre,

H" = (1 - T)D\

% If the curve be a circle, with the force on the circum-

ference, let its equation be

% = %r cos. w.

Since in this case z = d, and n = — 4, and <p = d = #, v

h = £ +
. r cos. w

5

which shows that the locus is a circle touching the given

one internally at the centre of force, and whose radius is

r

3. If the curve be an ellipse or hyperbola, the force being

at the focus. Let the equation be

2(l+£ cos. ft;)'

In this case z = r>, w = — 1. c = ————, a being the

semitransverse axis, •.•

9.az

4<a--z*

Substituting for z, this becomes
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H =

where

2(1 +e! cos. ttf

4<ab2
pf

~" 4*f-62 '

, __ 4<aVa2-b2

6 " "

4a2 -62 '

A being the semiconjugate axis of the given orbit. The

locus is therefore an ellipse or hyperbola, whose parameter

and eccentricity are p' and e\ and whose transverse axis

coincides with that of the given ellipse.

4. If the given orbit be a parabola, the force being at the

focus. In this case c = 4d^ v

h = Id,

PH
4(1 — cos. cv)

The locus is therefore a parabola, whose axis is coincident

with that of the given orbit, and which has the same

focus.

5. If the orbit be an ellipse, with the force at the centre.

In this case n = % c = —7-, d = a\ v
a)

h2 = a'
2 - U* = 2«'a _ (^ + /,*),

And since by (173),

1— e2 cos.
2 w '

the equation of the locus sought is

%b2

l — £a COSo2 W ''

which is the equation of a curve of the fourth degree, similar

in figure to the lemniscata.

For the hyperbola the equation becomes
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1

—

e* cos.'2 cv

which, when a2 =: bz
, becomes

262

(a2 - 6*),

H* =
2 cos. 2 w-r

which is the equation of an equilateral hyperbola.

6. If the given orbit be the logarithmic spiral repre-

sented by

z = aw .

In this case d = #, c = 2z, and w = —• % •
.'

1 1
H = -Z ~

: —~aw .

a/2 -v/2

Hence the locus sought is also a logarithmic spiral.

PROP. CCCXLVI.

(656.) A material point is moved by its own weight on a

curve, the plane ofwhich is vertical ; to determine the per-

pendicular pressure on the curve.

Let ay the axis of y be vertical^

and ax that of x horizontal ; and

let the co-ordinates of any point

p be yx. Let the velocity v at

p be that which would be ac-

quired in falling freely from the

horizontal line cd ; and it follows

from the principles of Mechanics,,

that the velocity at every point will be that which would be

acquired in falling from the same line, Hence, if ac = y\
y z = 4ra(y - y) 9

m being the space described freely in the unit of time.

The pressure exerted by the moving point at p in the

direction of the normal is the effect of two causes'; 1°, the
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weight g of the moving point resolved in the direction of

the normal, and £°, the force arising from the angular

swing of the point round the centre of the osculating circle.

The former is

„
Ax

g . sin. = g .
— -,

(dy2 + dx*y

where 9 is the angle at which the tangent at the point p is

inclined to the horizon. The latter is

^ * 2mr ~~ ^ ' r
'

where r is the radius of the osculating circle, the value

of which being substituted for it, gives

v2
__ 2(y

,—y)d9y.dx
imr

(dy z+dx zy
These two forces being united, give the whole pressure,

p=g. -
X—- \dif + aa? + 2(y - y)d*y I

idy^+dx*)**- 3

It is evident that when the curve is convex towards the

horizon, these two forces act in conjunction, and when con-

cave, in opposition. The formula thus determined, how-

ever, accommodates itself to these cases by the sign of

A%
To determine the point at which the pressure is equal to

the weight, let p == g> which gives

(dy2
-f dx*y -

(
dy % + dx^dx - 2{y

J — y)d2y . dx = 0,

*«*-»£ + * + £-*+&-*
If part of the pressure arising from the weight resolved in

the direction of the normal act in opposition to the part

arising from the centrifugal force, which will be always the

case when the curve is concave towards the horizon ; when

these become equal, the pressure on the curve will vanish,
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and the body will fly off in the path of a projectile. To
determine this point, let p = 0, v

d2y dif
«(y - y)

dx*'
+

dx*
+ 1 = o

These general formulae serve for the determination of the

pressure when the equation of the curve is given^ or^ when

the law of the pressure is given, the species of the curve

may be found by integration. We shall proceed to give

some examples.

lv Let the curve be a circle, the

point commencing its motion from the ex-

tremity (b)
3

6f the horizontal diameter.

The equation of the circle being

y* Jf X* — ry

dx y
9

dhj __ r~_

dx2 ~~ y3
*

By these substitutions, and observing that tf = 0, we find

p = %
6 (y.

In this case, the part of the weight of the moving point re-

y
solved in the direction of the normal is g .

-1— , and there-

fore the part arising from the centrifugal force is twice this.

It follows also that the pressure at the lowest point d is

.equal Co three times tile weight. This result evidently gives

the tension of the string in a common pendulum; for the

perpendicular pressure being exerted in the direction of the

radius, is the force wbteh would draw the radius were it the

string of a pendulum.

The point f at which the pressure is equal to the weight,

is found by taking cm = J-r, and drawing mp.

%: Let the curve be a circle, the point commencing its

e c
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motion with a given velocity from the extremity n of the

vertical diameter.

Let the velocity at d be that which would

be acquired in falling through cd, and let

ac = y. In this case, making similar sub-

stitutions, we find

To find the point at which it will fly off, we have

Hence if cm = ~ac, i? will be the point.

Ify = r, that is, if c coincide with v, we have

8. Let the curve be the cycloid, having its axis vertical,

and the point commence to move from the vertex with a

given velocity,

c^ Let the velocity at t> be

that which would be acquired

in falling through cd, and let

B
ac = y. By differentiating

the equation of the cycloid twice, we have

dz

y __ r

dx*
~" ~~

If'

which being substituted in the general formula, gives

To determine the point where it will fly off, we have

y = y*
Hence if ca be bisected at m, the parallel mp determines the

point.

Ify = 2r, and therefore the initial velocity be nothings
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the point where it will fly off is determined by a parallel to

the base through the middle point of the axis.

Ifthe convexity ofthe cycloid is turned towards the horizon,

y becomes negative, and the formula for the pressure becomes

6
V2ry

When y = 0, this becomes

The negative sign points out that the pressure is exerted

against the concavity , and not the convexity. This result

shows that the pressure is twice that which would be exerted

if the body were quiescent on the curve. At the lowest

point the pressure therefore is equal to double the weight.

These results apply to the tension of the string in the

cycloidal pendulum ; and it may in general be observed, that

the formula for the pressure always applies to the tension

of a string to which the moving point may be supposed to

be attached, and which is wound off from the evolute of the

proposed curve (342).

A change of sign in the formula for the pressure indicates

a change in the direction of the pressure, the positive sign

indicating a pressure on the convexity, and a negative on

the concavity. The sign changes at the point where the

two forces already mentioned are equal and opposite, and at

that point the moving point will fly off, unless it be sup-

posed to change its position to the concave side of the curve

in which the formula continues to represent the pressure.

Thus, in the second example, if the point at p, where it

would fly off, be supposed to be changed to the concave side

of the curve, the formula continues to represent the pressure-,

and we thus find the pressure at b

2u J

c c 2
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In this case, if3/ = r, the pressure at b is equal to twice the

weight.

In like manner, in the third example we find the pressure

at b infinite. This* is accounted for by the cusp at b

through which it would require an infinite force to carry the

moving point.

PROP. CCCXLVII.

(657.) To determine a curve such, that a material point

constrained to move in it by theforce ofgravity will descend;

with an uniform vertical velocity.

Let the uniform vertical velocity be a,* and the point

being supposed to begin its motion from the axis of xr

the velocity at any point yx of the curve will be ^>\/g^

which being resolved in the vertical direction, gives

v %j/ dy% = a2dy <2 + a*dx2
9

a '

which being integrated, gives

£

6ga
'

which by a transformation of origin may be reduced to the

form
3

y* =jptf:

the curve sought is therefore the semicubical parabola*
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PROP. CCCXLVIIIo

(658.) A right line ab, fixed at a to <tn horizontal line

ax, is moveable round a in a vertical plane passing through

ax, to determine the locus of the point p, so assumed, that

the time ofdescent of a body through pa shall be the same

at all elevations
s
thefriction being supposedproportional to

the pressure.

Let the space which a

bodywill descend through

freely in a vertical di-

rection in the time of

falling through pa be s9

and let ae, perpendicular

to ax, be equal to $.

By the principles of Mechanics, if t be the time of falling

through s,

m
where m = 16-^ feet, and t being expressed in seconds.

If unity express the weight of the body, and w zz pax
?

the pressure on ap is expressed by cos. w, and the part of

the weight acting in the direction pa by the sin. w. Let the

friction be a cos. w
9
a being constant Hence if f be the

whole force in the direction pa, we have

r = sin. cu — a cos. w«

This expression will be somewhat simpler by assuming

an angle 8 such, that tan. = a
9
which substituted in the

above equation, gives

f = sin. w — tan. cos. w,

sin, (co~~0)
or f = ———*—•

»

cos. y

Now if pa = £, we have



390 ALGEBRAIC GEOMETRY,

% = mFT\

Substituting for r and t their values found above, we have

z = *—— . sin. (w — S),
cos. a

which is the equation of the locus of p.

If «/ = £-+ e~-<

the equation becomes

7J»

If wf = — 4- A — ">, v cos. o>
f = sin. (w — 0), by which

cos. w
9

cos.

which is the equation of a circle whose centre is placed on the

line from which the values of oJ are measured, and whose

s
diameter is equal tou cos,

Hence the locus may be thus constructed. Let ad be

drawn, making the angle ead = 0, and through E draw ae

s
perpendicular to ed. Hence ad = ., and dap = w r

.

The circle described on the diameter da is therefore the

locus.

The segment ape is the only part of the circle which will

fulfil the conditions ofthe proposition. For in the other seg-

ment the tangent of 8 would be negative, which would be

equivalent to supposingthe friction to act
5
not in opposition to,

but in conjunction with the force down the line. Strictly

speaking, therefore, the locus sought is the segment of a

circle described upon ae containing an obtuse angle, whose

tangent expresses the ratio of the friction to the pressure,
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PKOP. CCCXLIX.

(659.) Ttoo weights (a and b) are connected by a string

which passes over a fixed pulley (p) ; one (a) hangs verti-

cally ; the other (b) is supportedUpon a curve, the plane of
which is vertical ; to determine the point on the curve at

which the weights will be in equilibria.

Let pm and ub be x and y9 and

vb = r. If x be the result of the

forces acting on &
?

resolved in the

vertical, and y their result, resolved

in the horizontal directions, by the

principles of Statics, the condition of

equilibrium is

xdx -h Ydy = ;

but these forces are a acting in the di-

rection #p, and b acting vertically ; hence

we find

yy = — a —

,

r

Hence the equation of equilibrium becomes

r

but since

r3 = j/
z

-f x°~j

v rdr = ydy 4- xdx,

therefore the equation becomes

hdx — adr = ;
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or if the curve be represented by a polar equation.*

dx = cos. w&r — r sin. w dcv,

V (S cos. w — a)^r — #r sin. w Jo; = 0.

Either of these equations combined with that of the curve

are sufficient to determine the point.

Ex. 1. If the curve be a circle whose centre

is in the vertical line passing through the pulley,

and which is therefore represented by the

equation

(x - xj + y* = e%

or r* — 2x!x = xt
2 — a?

f2

?

v rtfr .-r- #W# = ;

which, combined with the general formula, gives

ax1

Hence if cp = at, c being the centre, cp : vb : : b : a, which

determines the position of b.

If a : b : : ^/d 2, — r2
: <a?

f

, the equilibrium will take place

when vb is a tangent.

If a = 5,
"

* ^/ = r, a circle described with PC as radius,

and p as centre, gives the point.

jE#. % Let the curve be an hyperbola, whose tranverse

axis coincides with the vertical passing through the pulley^

and so placed that the pulley is at the centre.

Let the equation of the curve be

Azy*— B2#2 = - A2B2
S

v r2 = e*x% — b2
,

V/ A2 -|-B
2*

where e = • —— . By differentiating, we find

rdr = e2xdxo
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By this equation and

bdx .— adr = 0,

the differentials being eliminated, we find

&x = — r.
a

393

Jf x = r cos. c^, we find

cos. OJ

b A*

"a * a* + b
2 *

Let pd be the asymptote to the curve, and let vpd = %
and vp# = a>, therefore

cos. w = — cos.2 L
a

which determines the sought point.

If ca = 0, the sought point is at

an infinite distance, or what amounts

to the same thing, the weight rests

in equilibrio on the asymptote.

As w cannot be greater than 0.

a
Hence, if— > cos. 0, the equilibrium

is impo ible.

prop. cccx.

(660.) Tojindthe centre ofgravity of the arc or area of

any plane curve, its equation, related to rectangular co-

ordinates, being given.

By the principles of Mechanics, if any number of particles

of matter fi, p
jl

, pw
, be placed in the same plane, the per-

pendicular distance of their centre of gravity from any line

in that plane is equal to the sum of the products of the

particles into their respective distances from that line di-
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vided by the sum of the particles. Hence, if the sum of the

products be represented by s(py)
9
with respect to the axis

of x, and by s(px), with respect to the axis of y$ and the

sum of the particles by s(p), the co-ordinates yx of the

centre of gravity are

$(py)

The numerators of these expressions are called the statical

moments of the particles with respect to the respective

axes.

If therefore it be required to find the centre of gravity of

an arc (a), we have p = da, and $(p) = a, v
fydaT

Y =

Jxdai
(a).

(3).

If it be required to find the centre of gravity of an area

(af

), we have dydx = p, andJflydx = a! : hence we find

Y = ffiJdxdy
'

Jfdydx

__ JJxdydx

Jfda:dy

If the area be intercepted be-

tween two values of yP scil.

pm = y, and pfM f = y
!

; these

formulae, integrated for y}
be-

x come

2fydx

Jxydx
x

~~ fydx

the integrals being taken between the limits y and y
f

.



ALGEBRAIC GEOMETRY. 395

If the area be intercepted between pm = x, and ph

the formulae integrated for x become

T = fyxdy )
fxdy

(5).

In both the systems of values (4) and (5), one of the

variables must be eliminated by means of the equation of

the curve and its differential, and the results integrated

between the required limits give the co-ordinates of the

centre of gravity.

If the axis of x be an axis of

the curve, and the centre of

gravity of the area intercepted

between two ordinates pp, and

p|p' must be upon the axis

ax, and in this case the formulae

(4) become

Y = 0,

fxydx
x ~ /yd*

And if the axis ofy be an axis, and the centre of gravity of

a similar area be sought, we have

x = 0, 1

Y ^foyty >(?)•

fxdy J
It is plain that these systems of formulas are independent of

the angle of ordination.

We shall proceed to apply these formulae to some ex«

amples.

1°. Tofind the centre ofgravity ofa given straight line.

The given line itself being axis of x
9
the formulae (2)

become

;

i
(6) '
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Y = 0,

fxdx x
X =

x 2
'

the centre of gravity is therefore at the point of bisection*

2°. Tofind the centre ofgravity ofa circular arc.

Let the axis of x be the radius bisecting the arc^ and the

origin being at the centre, the equation is

j/2 -f x* = r%

v ydy = — xdx
y

but (dy* -f rf#
a
) = da?, and the formulae (2) become

Y = 0,

~~~"

a
'

Let 2w be the angle subtended by the arc at the centre,

V y = r sin. w, a = 2rw ; hence

sin.

w

x = r ,

w

Hence in general, " The centre of gravity of a circular

arc is that point of the bisecting radius, whose distance from,

the centre is to the radius as the sine of half the arc is to

half the arc, or as the chord of the arc is to the arc itself."

And it follows from this, that " The centre of gravity of a

semicircle is at that point of the bisecting radius whose

distance from the centre is a third proportional to the cir-

cumference and the diameter."
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3°. Tofind the centre of gravity of the arc of a cycloid,

which is bisected at the vertex.

The origin of co-or-

dinates being at the ver-

tex v, let aa' be the arc,

v being its middle point.

The centre of gravity

must lie upon the axis

vc = 2r, and, by the properties of this curve, if the origin

be at the vertex,

VA = 2 y^ry,

aa' = 4 V%ry,

da zz % ^/2r .

dy_

Vy
By this substitution, the formulae ($) become

Y = iy>

x = 0.

Hence, if vm zz ^vm, the point m is the centre of gravity.

The centre of gravity of the entire cycloid is at the point

of trisection of the axis next the vertex.

4°. Tofind the centre of gravity of the area intercepted by

txvo parallels intersecting the sides ofa given angle.

Let ax be assumed bi-

secting the parallels, and

ay parallel to them.

The equations of the

sides of the angle are

y = ± ax,

which substituted for y in (6), gives

afx'dx _ o
fa?—a!*\

n
x*-\- xtf + rf*— aJxdx _ /xs—x 3\ _ a?

x + x'
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\ x + x
X + )

the integration being effected between the limits x] zz am

and x zz am'.

If x' = 0, the formula gives the centre of gravity of the

triangle ap^, for which

It follows also that " The centre of gravity of a triangle

is the point where the bisectors of the sides drawn from

the opposite angles intersect."

5°. Tofind the centre of gravity of the . area intercepted

between two parallel chords of a circle.

Axes of co-ordinates being assumed^ with the origin at the

centre parallel and perpendicular to the given chords, the

equation of the circle is

y°~ -f x2 zz ?-%

v xdx zz — ydy.

This substitution being made in the formulae (6), gives

fydx

but —fy~dx =: —-— , the integral being assumed between

the limits j/ = pm, andj/ z= p'm5

and Jydx zz pm' = \?p\ there-

fore if pp' = a,

X ~ 3a '

Or if the angle pcx = w, and

p'cx == cJ
9
we find

a = r2{(w' — w) — sin..(w' — w) cos, (&/ + w)j,

which substitutions give

x z=

3 (&/— w)— sin. (&/ — a) cos. (w' + w)"
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If w = 5 the formula gives the centre of gravity of the

segment p fxp'
3 which is determined by

x = 3' '

sin.
3 w r

a/ — sin. a/ cos. a>'°

this case. if«':
It

, the result becomes

X
r

~ *3" * "IT*

which determines the centre of gravity of a semicircko

Hence < c the centre of gravity of the area of a semicircle is

that point in the bisecting radius, whose distance from the

centre is a third proportional to three times the circum-

ference and the diagonal of the circumscribed square."

6°. To determine the centre ofgravity of the area inter-

cepted between ttvo parallel chords ofa parabola.

Let the diameter to which those chords are ordinates be

the axis of #, and the tangent through its vertex the axis of

j/? the equation will be

y* — jpx,

v» - dx.

V

This substitution in the formulae (6) gives

pfy*dy'

which being integrated between the limits y = pm, and

y = pfM f

?
gives

5
'p(3/

3-y3 )'

Ify = 0, the result is

-_3 £
fX.

p
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Hence the centre of gravity of the parabolic segment vkp fa'

determined by assuming ac equal to three-fifths of am,

7°. To determine the centre ofgravity of the area inter-

cepted between two parallel chords of an ellipse or hy-

perbola.

Let the diameter bisecting those chords and its con-

jugate be assumed as axes of co-ordinates, and the equation

df the curve is

&V + bW = a2bz

f

which being substituted in (6), gives

2a* fy°~du .

where a expresses the area intercepted between the parallel

chords, and yx the angle of ordination. This being in-

tegrated between- the usual limits, gives

x = ^To • • sin, yx/

Ify == 0, this becomes

2aV3
.

x =
"IwT

• sm
*^

which determines the centre of gravity of an elliptic m
Hyperbolic segment.
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If the curve be an ellipse, and 3/ = b, the formula be-

comes

%a*b .

but in this case, the area being that of the semiellipse, be-

comes a = -iy^tf, ci and V being the semiaxes ; and since

ab sin. yx = a!U, the formula becomes

4#

Hence the centre of gravity is independent of the dia-

meter 2b, and therefore all semiellipses, bisected by the same

semidiameter, have the same centre of gravity, and which is

determined in the same manner as that of a semicircle.

86 . Tofind the centre ofgravity of the area intercepted

between two parallels to one asymptote of an hyperbola ter-

minated in the other asymptote.

The equation of the hyper-

bola, related to its asymptotes,

is

yx = m2
,

v ydx = — xdy>

v xydx = — xxdy = %
r

Also, y*dx = — yccdy = — m2
dy. Making the substitutions

in the formulae (4),

y = — m

x = — m
fydx

1) D
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hxxtfydx = -fx&y = - m*f-^ = - mHy + c. The

formulae being integrated between the limits y = pm, and

y = pm, give

y =
y

1 ~-y

x =
3/~9

9°« To determine the centre ofgravity of the area inter-

cepted between parallels to the axis qfj ofa parabolic curve

represented by the equationy
m = am~~lx*

By differentiation,

my™"1
_

By this substitution, the formulae (4) become

m + l yfm+2 -~ym+2

Y ^ 2(j»+2)
e y^+i-^+i'

x =
2wi + l

e

an*-1

(y
m+ 1-ym+ 1

/

If^ = ?
the values become

The examples 4° and 6° are cases of this,
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PROP. CCCLI,

(661.) To investigate the centres of gyration and per-

cussion or oscillation ofan arc or area ofaplane curve.

Let abcd be a body move-

able on an axis bd, and g its

centre of gravity, and let of

be drawn through the centre

of gravity perpendicular to

the axis bd. In revolving on

the axis, let the body be sup-

posed to strike a fixed ob-

stacle at any distance, fe = d from the axis of rotation, with

any forcejf; there is a certain point in the line fe, at which,

if the whole mass of the body were concentrated, the line fe

would strike the obstacle at E with the same force; this

point is called the centre ofgyration.

If the angular velocity at the moment of impact be given,

the force (f) with which the body will strike the obstacle

at e, will be a function of the distance (d). But since the

moving force of the entire mass is independent of the point

of impact, and. the same at whatever distance the obstacle

may be applied, the whole of it cannot be in all cases ex-

pended on the obstacle. What is not expended upon it

must, from the nature of inertia, be exerted upon the fixed

axis, which therefore sustains an equivalent shock. The

entire moving force of the mass is then equal to the sum of

the forces of the impact on the obstacle at e, and the shock

upon the axis of rotation. There is a certain point in the

line ef, at which, if the obstacle were placed, it would

receive an impact equal to the whole moving force of the

revolving mass, and at which therefore the axis would suifer

no force. This point is called the centre ofpercussion.

The determination of the centre of percussion involves that
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of spontaneous rotation. As a fixed obstacle at the centre

of percussion would destroy all the moving force of the body,

without producing any effect on the axis of rotation, it fol-

lows, that a force applied at the same point upon the body

supposed quiescent, would produce a rotatory motion round

bd. Relatively therefore to any point not coinciding with

the centre of gravity, there is a corresponding centre of

spontaneous rotation, which may be determined by con-

sidering the former as the centre of percussion, and thence

determining the axis of rotation.

The centre of percussion possesses also a still more re-

markable property. If the axis of motion be horizontal,

and the body vibrate as a pendulum, the time of its vibra-

tion will be the same as that of a single particle suspended

at the centre of percussion. From this property, the centre

of percussion is more generally called the centre of oscilla-

tion. We shall now proceed to determine these points.

Let p be any particle of the body, and z its distance from

the axis of motion, and let co be the angular velocity on the

axis of motion at the moment of impact ; the velocity of the

particle p will therefore be go;, and its moving force pzw.

The quantity of this which acts at the point e is^~-. As

the whole impact upon the obstacle at e is composed of the

forces of all the particles in the body, the value offmay be

thus expressed

:

J ~ d '

where ${pz~) signifies the sum of the products found by

multiplying every particle of the body by the square of its

distance from the axis of rotation.

The quantity $(pz*), which is called the moment ofinertia

of the body with respect to the axis on which it is supposed

to revolve, is of considerable importance in all theorems re-

lating to the motion of a body upon a fixed axis. The
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determination of its value depends upon the figure and mass

of the body, and the line on which it is supposed to revolve.

We shall presently give the methods of determining it where

the particles of the body form any line or plane surface*

Let g be the distance of the centre of gyration from the

axis of rotation. By the conditions of its definition, we find

where m expresses the mass of the body. Hence,

G - ~^r~'

that is,- " the square of the distance of the centre of gyration

from the axis of motion is found by dividing the moment of

inertia by the mass of the body."

It appears, therefore, that the same body may have dif-

ferent centres of gyration corresponding to different axes of

motion. Of these, that which corresponds to an axis passing

through the centre of gravity is called the principal centre

of gyration. A remarkable relation subsists between the

position of this and any other centre of gyration. Let zJ

express
1

the distance of any particle p from the axis of

motion passing through the centre of gravity, and d the

distance between this and any other axis parallel to it. It

is obvious that

z* = z z
-f b 2

-f %nz\

v pz 1 = pz!z
-f pv z + %vpz\

v s(pz*) = $(pz'2
) + s{pD z

) + 2v${pz !

).

If Gf be the distance of the principal centre of gyration

from the centre of gravity,

_ s(^)
(jr —- .

M

Hence, since g2m = s(ps2
), and g,2m = s(psra

), and as s(pz^

is the statical moment of the body with respect to a line

through the centre of gravity, and therefore s(ps') = 0,

we find
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G2M = G/2M + D3M,

V G 3 = Gfa +B Z
.

Hence the centre of gyration, with respect to a y axis, can

be found if the centre of gyration, with respect to an axis

parallel to it through the centre of gravity, be given.

To determine the centre of percussion, it will be necessary

to estimate the shock sustained by the axis of rotation by

the impact of the body on the point e. Let this bey7
.

Now, if the entire moving force of the mass be f, the

condition

' =S+f
must be fulfilled. As the moving force of the whole mass

is composed of the moving forces of its parts, the value of f

may be found by considering that the moving force of any

particlej? is pzw, and therefore

F = &s(pz),

cvs(pz z

)V us(pz) = ~~- +f,

This equation expresses the shock sustained by the axis of

rotation. To determine the centre of percussion, d must be

assumed of such a value as to fulfil the condition

f' = 0.

Let this value be l ; v

s(p«) ~ —
L
— = 0,

_ s(ps2
)

m

s(pz)

that is,
u the distance of the centre of percussion from the

axis of rotation is found by dividing the moment of inertia

by the statical moment.'"

It is not difficult to prove that the centre of percussion is

also the centre of oscillation.

Let the axis of motion be conceived to be placed in an
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horizontal position, and the force of gravity acting on the

body will cause it to have a motion of vibration. The body

being supposed to have descended from any position, let it

be supposed to have acquired an angular velocity w, when

the angular distance of its centre of gravity from a vertical

passing through the axis of motion is p, and let the angular

distance of any particle p from the vertical be ^. The part

of the force of gravity (g) which acts in accelerating the

particle p is g sin.
\J/ 3

and therefore the force impressed on

the particle is gp sin. <K In the equation

fd = ws(pz %
)

duo
\{gs(pz sin. ^) be substituted forJd, and -=7 for u9 the re-

sult is

gs(pz sin. #) =± Mi) sin. <£,

: m gMD sin. <p = ~jr • s{p% )•

d<p d*<p

Also, since to = — —
3

.• & = — —. Hence,

^md sin. p = - -j-s(pzQ

).

Multiplying both sides of this equation by %d<p> and inte-

grating, the result is

d^
9guj> cos. <p -f a = j—-s(pz2

) ;

or, 2g-MD cos. <p -J- a z= w2
. s(p*2

).

To determine the constant a, let <p
f be the value of <p when

co = 0; v
S^MD COS. <p

! + A = 0.

Subtracting this equation from the former, and solving for cu*

% __ Qg-MD (COS. <p — COS, (p
!

)
~~

s(pz2
)

Th's equation determines the angular velocity acquired by

the body in falling from a quiescent state through the angle
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<p
l — tp. To determine the distance of a single particle p

from the axis, which, in moving through the same angle

would acquire the same velocity, let d be its distance.

To apply the general formula just found to this case, we

must suppose

m = p, d = cZ, and s(p£2
) = pd2

. Hence,

2 — ^gP& (cos - 9 ~~ cos
* $

!

)
""

p¥ "

"

Dividing the former equation by this, we find

MD ${pz)'

v d = l.

Hence, a point placed at the distance l from the centre of

motion would vibrate in the same time as the body itself.

The calculation of the time of vibration of any pendulous

body is thus reduced to the case of a simple pendulum.

Since s(mz'
1

) = mg2
", and also

G z = g'4 + D%

V L = r D.

By this formula, the centre of oscillation may be imme-

diately found from the principal centre of gyration.

From the formula

s[mzz
) g2

~ s(mz) ~ d

it follows, that " the distances of the centres of gravity,

gyration, and oscillation, from the centre of motion, are in

continued proportion."

Also, since

g'2

L ~ D = —

,

it follows, that "the distance between the centres of gravity

and oscillation is a third proportional to the distances be-
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tween the centres of gravity and motion, and between the

principal centre of gyration and the centre of gravity."

If the axis of suspension be changed to the centre of

oscillation, let 1/ be the distance of the new centre of oscil-

lation, and D f the distance of the centre of gravity from the

new axis of motion. Hence,

ir

but d' = L — d = — . Therefore.
D

l/=D + -p
or, 1/ = l ;

that is, the former point of suspension becomes the new

centre of oscillation. The centres of oscillation and rotation

are therefore convertible.

In applying these principles to the arcs and areas of

plane curves, we shall confine ourselves to the case where

the axis of rotation is in the plane of the curve.

I. To determine the moment of inertia of the arc ofa

plane curve revolving round an axis in its own plane.

Let the axis of motion be taken as axis of?/, and a per-

pendicular to it as axis of x, and let s equal the arc. In

this case, p = ds, and z = x ; therefore,

s(pz*) ^.fx*ds.

Ex. 1. If the revolving line be a right line represented by

the equation

y — tan. <p . x -f- b == 0,

By differentiating, we find

dy — tan. <p . dx = 0,

v ds = \/dy2
-f dx%

.= sec. <p . dx9

v s(pz
z
) = sec. <pja;*dx.

Integrating this between the limits x and x\
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s(pz°) = sec. $
Z?
3 — x'3

x and xf being the values of x for the extremities of the

line.

If the length of the line be m, we find

m = sec, <p(x — x !

) 9

V &(pz*) = ^m(x* -f x !x + x,z
).

Hence we find the centre of gyration

G s = Kx* -f XfX + X*).

And since the centre of gravity is the middle point of the

line

d = i{x + af)
9

_ 2(a?
a +^ +^)V L ~ 3(x+x'j '

which determines the centre of oscillation.

If the line be parallel to the axis of y, x = x\ v
g = #,

l = x*

The centres ofoscillation, gyration, and gravity, therefore,

coincide in this case.

If the axis ofy pass through the middle point of the line

x = — x\ hence,

g'« = \x*.

Ex. % Let the revolving line be the arc of a circle repre-

sented by the equation

y
Q + x2

v ds
rdy

V s(jpa
) = rfxdy.

Hence, if aa( be the arc, and YYf

the axis of rotation, Jxdj/ is the

area ph&!pl
. To express this, let

acx = <p, and a'cx = V, v
pAAfp' = CAp + CAA' — CA'//

;
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\*Jxdy = 4-r2 |<f>
—

<p
} + sin. <p cos. <p — sin. p

f cos. <p'}

v s(/?£2 ) = -Jr
3

{<p — <p
! + i sin. %5—i- sin. 2p'}.

Let the length of the arc aa' be m, and

m — r((<p ~- p').

To find the centre of gyration, we have, therefore,

sin. %$ — sin. 2p' ^

The distance of the centre of gravity from the centre of the

circle being
sin. i(<p— d)

= -^{:

r .

Its distance from the axis of rotation is

2 sin. id?-® 1

) cos. i(<p-+fl)
d = r-

sin. <p—sm. 0'

d == r
7

Hence, for the centre of oscillation, we have

c
<p
-. <p' sin. 2<p — sin. 9,$ 1

L = ^ Csin. p-sin. <p' $sin. <p~2sin. <p'3°

If the point x bisects the arc aa', we have <p = — <p
f

, and

the several formulae become

s(ps2
) = lr

3
{2<p + sin. 2p},

C
^ ,

sin. 2p 7

sin. p

* C sin. a 2sin.
f>
3p 2sin. f

.

For the semicircle yxy', <p =—, and p
f = — -^-, and the

formulae become

g2 = -Jr
2
,
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~~
4

"

For the whole circle these become

s(p#2) — rV,

^ — -a' ?

to =0,

L = 00 .

22#. 3. To determine the moment of inertia of a cycloidal

arc terminated at the vertex, and revolving on its base.

The base being assumed as axis of oc, and the axis being

expressed by a,

s = 2^/a(a — y) 9

- dfe/

•.' as = — Va .

V a — y

To integrate this, let a — y = y, •.• d?/ = — dy,

*-
A/y ->

v s(p2s
) = -v/«t Say* + fy* - -j«y

a
$.

No constant is supplied, as the arc is supposed to terminate

at the vertex; and if the vertex be taken as the middle

point of the arc, the expression becomes

$(pz°~) = 4 Vay' I a2 + \ijl — \atf \ •

In this formula it should be observed, that y is measured

upon the axis from the vertex.

Since 5=4 *Jay\ we find

g* = a* + \if- - \a\f ;
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and since d = a — \y\

- a% + ry
iz-ra}/

For the whole cycloid y
] — a, and the formulae become

g* = T̂a\

l = ^-a.

Hence it appears that the time of vibration of the entire

cycloid is equal to the time of vibration of a simple pen-

dulum, the length of which is equal to four-fifths of the

axis,

II. To determine the moment of inertia of the area ofa

plane curve revolving on an axis in its own plane.

As before, let the axis of motion be assumed as axis ofyv

and a perpendicular to it as axis of x3 and let a be the area

Since p = dk = dydx, we find

s(p£2
) —Jfx^dydx,

which being integrated for y, gives

s(jp2t) —Jx zydx,

either of the co-ordinates x or y being eliminated by means

of the equation of the curve, and the result integrated for

the other, the integral so determined, taken between proper

limits, will be the moment of inertia sought.

Ex. 1. To determine the mo-

ment of inertia of the area of a

right angled triangle revolving

round one of the sides of the right

angle.

Let ba = 3/', and ac = x\ the equation of bc is

afy + y
lx — y'% 1 = 0,

y(# r—x)
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yv s(pz*) = ~fx x(x] — #>Jr,

which, by integration, gives

ifx^f x } x\

No constant is added, the area being supposed = when

x = 0. The integral, as it stands, expresses the moment of

inertia of the trapezium BpmA, in which Am = x. To de-

termine that of the triangle, let x == x\ v

sQ>*») =
1̂2

'

And since the area of the triangle is iy
]x\ we find

but d = •§•#' : hence

L = ^'.

Ex. % If the triangle be supposed to move on an axis

passing through c, perpendicular to ca, to determine the

moment of inertia.

In this case, if the co-ordinates of the point b be y
!x!

9 the

equation of cb is

xly — y
]x = 0,

••• <K) = ^Azdx,

which, extended to the entire area, gives

f

!x'
3

s(pz*) =
4

Since the area = \y
]x]

> and d = \x\ we find

G* - ^,

jE#. 3. If the curve be a parabola of any order represented

by the equation
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By substituting this value in the general formula, and in-

tegrating

Since

SO*2
) = -^Ta • #m+8°

Jy m + 1
9

m + 1
G* = ——„X*%m +t 5

but J> = -x : hence

m+3
In the common parabola m = 4, v

G2 ——• 3 /v»2

JRr. 4. Let the curve be a circle represented by the

equation

y* + x* - r* = 0,

v s(ps2
) =j&2 A/ra — a?* Jr.

If a? = r cos. <p9 and y = r sin. <p, this becomes

s(pz*) = ry*sin.
2

<p cos.
2,

<prf<p,

which being integrated, gives

s(pz*) = |r4 | sin.
3

<p cos. p ~- 4 s*n *
<P
cos » ? + 4? f

»

no constant being added3 this expresses the moment of

inertia of the area included by the sine, versed sine5 and

arc. To express that of the segment contained by the arc,

the chord of which is 2y, it becomes

s(pz^) = \r*{ sin.
3

<p cos. <p — 4 sin, <p cos. <p + 4P }•

If a be the area of the segment

a = r\<p ~* sin, <p cos, <p).

Hence we find
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a
I x

<p — sin. cos. (p 3

Extending this to the semicircle, let

it

' = T» v

but in this case.

g2 = i-r
2

;

4r

_ 3r7r
V L "" 16

-

PROP. CCCLII.

(66£.) A vessel sails between two light-houses ; tofind the

track she must describe so as to receive an equal quantity of

lightfrom each.

The intensity of the lights being expressed by m, m\ and

m 77i!

the distances #, & f

, the quantities of light will be—-, —--
;

hence we have

mz* = m'z'K

This equation being expressed with relation to rectangular

axes, one of which is the line joining the light-houses,

becomes

m \y
z + (# — %'Y } = m!

{y* + (x — «£
7
)
2
) \,

x\ x ]

\ being the distances of the light-houses from the

origin of co-ordinates. This equation, when disposed ac-

cording to the dimensions of the variables, is

2(m^—mV ) mw 2 — m!x ]l
"

f~ + x° - • j~x + —
- = 0*m — m m — m'
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When m and m1 are not equal, this is the equation of a

circle, the centre of which is on the axis of x at the distance

,— from the origin. Eut if m m!

, it is a rightm— m' ° &

perpendicular to and bisecting the right line joining the

light-houses.

PROP. CCCLIII,

(fi6
c
S.) Tofind the image ofa straight Vine in a spherical

reflector.

Let o be the centre of the reflector,

and cv that radius which is perpen-

dicular to the straight line ab, and f the
~

principal focus. Let ca = #, cf = b,

acb = wy and B f being the image of

any point, let cb' = z.

By the principles of optics,

bf . b'f = OF9
,

which gives the equation

(-iL + h) lb - z) = 6*
v
cos. to

v

which solved for z, is

1 -\ cos. w
a

Hence the image is a line of the second degree, whose

species depends on the distance of the straight line from the

centre of the reflector ; if this distance be less than half the

radius, the image is an ellipse ; if equal, a parabola ; and if

greater, an hyperbola.

F, E
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PROP. CCCLIV.

(664.) Tofind, the image of a straight line made by a lens.

Let c be the centre of

the lens, and, as in the last

proposition, let ca = a,

cf = 5, acb = w, cb' = z>

By the principles of optics,

as before, we find

b

h
1 -J cos. w

a

Hence the same conclusions follow as in the last proposition

.

PROP. CCLV.

(665.) To find a refracting curve such, that parallel

homogeneous rays incident on it shall be all refracted to the

same point.

X

Let the incident rays pr be parallel to ax, and let pn be

the normal to the point p. By the principles of optics, the

sine of the angle of incidence bears an invariable ratio to the

sine of the angle of refraction, the medium being supposed

of uniform density. Now, the angle pnx is the angle of

incidence, and the angle apn is the angle of refraction,

therefore

sin. APN

sin. pnx

m being constant. By (327) we find
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tan. apn = dz

zdw

where z == ap, and oj = pax. Hence

sin, pnx = sin. w cos. apn + cos. w sin. apn.

By these substitutions in the first equation, the result is

dz dz .-— =s ^ (—- COS. cu — sill, w),
saw #aa>

or dfe = m(cos. wdfe + srf cos. w),

which, by integration, gives

^ = mx cos. vo + mc,

mc
or z = r .

1 —m cos. cj

This is the equation of a line of the second degree, whose

eccentricity is m, and whose axis coincides with ax, and

whose focus is a. The curve will be an ellipse or hyperbola,

according as m < 1, or m > 1, that is, according as the rays

are supposed to pass into a denser or rarer medium.

The value of c remains indeterminate, which shows that

any curve having the eccentricity equal to m, whatever its

axes may be, will fulfil the proposed conditions.

PK0P. CCCLVI.

(666.) To determine the caustic hy reflection of a given

curve.

Let apc be the curve, f
~~~

the focus of incident rays,

fp being a ray incident at p

;

if po be normal to the curve,

its reflection pb' will make

the angle opb' = ops. Now,

by the principles of optics, ifo be the centre of the osculating

circle, and the lines ob, ob', be perpendicular to pb, pb', and

the intercepts pb, pb', be bisected at 6, V, the corresponding

point/of the caustic is found by taking Vfa third propor-

e e 2
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tional to f& and b?. Since op is the radius of the osculating

circle, pb must be half the chord which coincides with the

incident ray ; let this chord be c, and let fp = z !

, and

vf=zv. By the conditions already expressed,

V = 4^— c"

From this equation, that of the curve and the known value

of c, the locus of/*may, without difficulty, be determined.

If the incident rays be parallel, z f
is infinite, therefore, in

this case, the formula becomes

i-C

PROP. CCCLVII.

(667.) Tofind the caustic when the reflecting curve is a

circle^ thefocus ofincident rays being on its circumference.

In. this case c = %] = pf, therefore

Sinceyp = -Iff, a parallel to cp

through f will intercept cd

equal to a third of the radius,

therefore d is a fixed point. Let

/a be perpendicular to cp, and

join da. It is obvious that d/a

is a right angle, and since de

and pa bear the same ratio to

bf and af, the angle daf is right. Let the angle pfe be

a/, andybE = w, and cp = r, and Bf—z,
% = da sin. w\

da = §r sin. w\

• • % = *r sin.2 cJ ;

and since <J = >? the equation of the caustic is

z

or z :

= ^sin. 2 4^,

§r(l — cos. w).
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which is the equation of a cardioide, whose base is a circle

concentrical with the given circle, and the radius of which

is one-third of the radius of the given circle.

If therefore cd ~ ~cf, and a circle be described with c as

centre, and cd as radius, the cardioide, whose base is this

circle, is the caustic.

PROP. CCCLVIII.

(668.) Tofind the caustic by reflection, when the reflecting

curve is a circle^ and parallel rays are incident in the plane

ofthe circle.

Let ck be a radius

of the circle drawn

perpendicular to the

incident rays ; and let

fa be a ray incident

at aand let caf= cab,

ab will be the reflected

ray; and if ca be bisected at d, and db be drawn per-

pendicular to ba, the point b will be the focus of an inde-

finitely small pencil of rays incident at a, and parallel to fa.

The object is therefore to determine the locus of the point b.

Let be and bg be drawn parallel to ck and af

respectively. And let bg = x> cg = y, ac = r, and

ack = <p. By what has been stated, we find

AB = ir sin. <p,

AE= AB .COS. (tf~-.2p)= — AB . COS. $p™ — \r Sin. <? COS.2<? 2

v ae= — \r sin. <p cos. 2<p,

be— ab . sin. (tt-^)= ab sin. %<p 9

v BE=^r sin. <p sin. %<p*

But since x — af — ae, and y = cf— gf, and af =s r sin. <p^

cf = r cos. <p 9 v
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x = r sin. <p + .|r sin. <p cos. 2<p,

y =z r cos. <p
—

• ir sin. <p sin. $<p

;

but by trigonometry,

sin. <p cos. 2<p = -J(sin. 3<p — sin. <p\

— sin* <p sin. 2$ = i(cos. 3<p — cos. p).

Making these substitutions, we find, after reduction,

x == (ir 4* %r) sin. <p -f- ir sin. 3<p

«/ = (4r -i- Ir) cos - <? + ir cos - &(?•

By comparing these equations with those of epicycloids in

(507), it is obvious that the caustic is an epicycloid, the base

of which is concentrical with the given circle, its radius

being half that of the given circle, and the radius of the

generating circle being one-fourth of the radius of the given

circle.

prop, cccxxx.

(669.) To find the caustic by reflection^ the reflecting

curve being the common cycloid, and the incident rays being

parallel to its axis.

Let c be the centre of the base of the cycloid, and let fa

be a ray incident at a$ and da being the normal to the

point a, let dae = dab, and let db be drawn perpendicular

to db, the point b will be the focus of reflection of a small

pencil of parallel rays incident at A in the direction fa. For,

since by the properties of the cycloid already proved, da is

half the radius of the osculating circle (492), the pencil of
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rays parallel to af must be brought to a focus at b. The

object is therefore to find the locus of the point b.

Let bg and be be parallel to af and ck respectively, and

let af •= y\ cf = x\ bg = y9
and cg = x

9
and daf = <p.

Since ba = af, and baf = 2daf, we have

y — y = y cos. 2<p 9

x] — x = j/' sin. 2<p

;

but cos. 2<p = y—-, and sin. 2<? = - ^ ~~ y
r r

Making these substitutions, and finding the values of y] and

x\ we have

y» - 2rj/ = - ry,

Making these substitutions in

x f— J^rJ^J2-

y — r cos. — — r = 0,

which is the equation of the cycloid when the origin is at

the middle point of the base, the result is

—

—

# + ^rv — y* a
A/r2 _ ry— r cos. — 7 — = 0.

_
T

. ,*+ Vry-y2 */r*—ry
Now, it = w3 cos. w = ——

,

cos. %uj = 2 cos. 2 a; - 1 = 1 — -I",

and hence we find

y _ ^ cos. l+^Z£^ - |r = 0,
2,'

which is evidently the equation of a cycloid described upon

half the base of the given one, and which is therefore the

caustic sought.
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PKOP. CCCLX.

(670.) To jind the caustic by reflection, the reflecting

curve being the logarithmic spiral, and thefocus of incident

rays being at its pole.

Let p be the pole of the

spiral, and px the line given

in position, from which the

angle apx — w is measured,

pa being a ray incident at a ;

let ac be the radius of the

osculating circle. By the pro-

perties of this spiral, p is the

middle point of the chord of

the osculating circle, and v cpa is a right angle; and if P

be the focus of incident rays by the principles of optics, the

focus b of reflected rays is found by drawing B,a, making

cab equal to cap, and cb perpendicular to ab. The angle

at which the radius vector is inclined to the tangent being 0*

let the equation of the spiral be

V = awK

And let pb — z, and bpx == o>, andBPA = 0, we find

z1 = •§-£ sec. 0,

v z = 2 cos. aPr~t,

which is the equation of a logarithmic spiral similar to the

given one, and which is therefore the caustic sought,
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SECTION XXIV.

Praxis.

(1 .) Given the base and the sum of the sides of a triangle

to determine the loci of the points where the angles of the

inscribed square meet the sides, and also that of the centre

of the inscribed square.

(2.) In a right angled triangle given in magnitude and

position, one of the sides containing the right angle, to find

the locus of the centre of the inscribed circle,

(3.) Given the base and vertical angle of a triangle, to

determine when the sum of the sides is a maximum.

(4.) To determine the greatest ellipse inscribable in a

given triangle, and touching one of the sides at a given

point.

(5.) To find the greatest triangle inscribable in a circle,,

(6.) To find the least triangle which can be circumscribed

about a circle.

(7.) To find the greatest rectangle inscribable in a circle.

(8.) To find the least quadrilateral which can be circum-

scribed round a circle.

(9«) Given in position two sides of a triangle, and a point

through which the third side passes, to determine the tri-

angle so that the sum of the sides given in position shall be

a minimum.

(10.) On the same conditions, to construct the triangle so

that the area shall be a minimum.

(11.) Given the base of a triangle, the ratio of the sum of

the squares of the sides to the rectangle under them, to find

the locus of the vertex.
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(12.) Given the base of a triangle., and the ratio of the

sum of the squares of the sides to the difference of their

squares, to find the locus of the vertex.

(18.) A triangle of a given area has an angle given in po-

sition, to find a curve to which the opposite side is always a

tangent.

(14.) The sum of the circumferences of an epicycloid and

hypocycloid, described with the same base, is independent

of the magnitude of the base when their generating circles

are equal.

(15.) To determine when an epicycloid is an algebraic,

and when a transcendental curve.

(16.) To determine the nodes of an epitrochoid, the de-

scribing point being outside the circumference of the gene-

rating circle.

(17.) To determine the inflections of an epitrochoid, the

describing point being within the generating circle.

(18.) A circle being described concentrical with the base

of an epitrochoid, and with a radius equal to the difference

between the sum of the radii of the base and generating

circle, and the distance of the describing point from the

centre to the generating circle, to determine the points when

the epitrochoid meets this circle, and the position of the

tangent to the epitrochoid at these points.

(19.) To determine the position of the tangent to an epi-

cycloid at the points where it meets the base.

(20.) To apply investigations similar to the preceding to

Irypotrochoids and hypocycloids.

(21.) To deduce the equations of cycloids in general from

those of epitrochoids.

(22.) To exhibit the different analogies between epitro-

choids and cycloids.

(28.) Two lines of the second degree being given, a right

line touches one of them and cuts the other, and through
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the points of section two tangents are drawn to determine

the locus of their point of intersection.

(24.) To determine the curve in which the perpendicular

from the origin on the tangent is always equal to half the

normal through the point of contact.

(25.) To find the curve in which the normal bears a given

ratio to the part of the axis of a?, intercepted between it and

a given point.

(26.) To find the equation of the curve in which the

radius of curvature varies as the inclination of the tangent

to a line given in position.

(27.) To determine the locus of the vertex of a triangle

constructed on a given base, one of the angles at the base

differing from twice the other by a given angle.

(28.) The vertices of two angles given in magnitude are

given in position, and the point of intersection of one pair of

sides describes a right line, to find the curve described by

the point of intersection of the other sides.

(29.) To determine the curve whose tangent is always

equal to the part of the axis intercepted between it and the

origin.

(80.) If the ordinate to the axis of a line of the second

degree be produced until the produced part equals the

normal, to find the locus of its extremity.

(31.) To inscribe an ellipse in a given parallelogram, so

that its area shall be a maximum,

(82.) If two sides of a triangle

arc be divided into the same

number of equal parts, and the

points of division of one side,

beginning from the base, be

joined with those of the other

side, beginning from the vertex,

to find the curve on which the
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intersections of every pair of consecutive lines taken in this

order are placed.

(33.) If on two sides of a triangle abc, equal parts be as-

sumed, to find the curves on which the points p of inter-

section of every pair of lines joining the successive points of

division are placed.

(34.) To explain and prove the principle of the Pen-

tagraph.

For a description of this instrument, see Hutton's Mathe-

matical Dictionary.

(35.) To determine the area and inflection of a curve, in

which y varies as the square of the sine of oc.

(36.) A circle revolves in its own plane uniformly round

a point on its circumference, and at the same time a point

on the circumference revolves round the centre with the

same angular motion, to find the curve traced by this point.

(37.) The length of a circular arc is given, to find such

a radius that the area of the segment may be a maximum.

(38.) To find the point in an ellipse, where the part of

the tangent between the point and a perpendicular from the

centre is a maximum.

(39.) To find where the intercept of the tangent between

a perpendicular from the focus of the ellipse and the point

of contact is a maximum.

(40.) From a given point to draw a line intersecting an

ellipse, so that the part intercepted within the curve may be

a maximum.
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(41.) To find the greatest ellipse inscribable in a semi-

circle.

(42.) An angle of a triangle being given in magnitude

and position, and the sum of the containing sides being

constant, to find the curve to which the side opposite to it is

always a tangent.

(43.) An angle of a triangle being given in magnitude

and position, and the difference of the containing sides being

given, to find the curve to which the opposite side is always

a tangent,

(44.) To find the least triangle which can be included by

a tangent to a given curve and the axes of co-ordinates.

(45.) To find the greatest parallelogram which can be

included under the co-ordinates of a point in a curve.

(46.) Given the length of the arc of a semicubical para-

bola, to find when the area included by it, and the co-

ordinate of its extremity, shall be a maximum.

(47.) To determine the curve which shall intersect similar

and concentric ellipses at right angles.

(48.) To determine the curve which shall cut any number

of ellipses or hyperbolas, having the same centre and vertex

at right angless.

(49.) To determine the locus of the points of contact of

concentric circles, touching similar and similarly posited

concentric ellipses

.

(50.) To describe a circle with a given centre, and touch-

ing a given parabola.

(51.) To draw a tangent to an ellipse, so that the inter-

cept of it between the axes shall be a minimum.

(5%) To express the area of the sector of an ellipse con-

tained by the axis and the radius vector in terms of the ec-

centric anomaly.

(53.) If a portion be assumed on the ordinate to the axes

of an ellipse equal to the semiconjugate diameter, to find

the locus of its extremity.
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(54.) To circumscribe a given ellipse by a triangle whose

area shall be a minimum,,

(55.) Two points b and c and a circle being given, to de~

C termine a point p on the circle from

which right lines being drawn to the

centre, and to the two given points,

the sines of the angles apc and ape,

which the radius forms with the lines

to the given points shall be in a given ratio.

(56.) A point and two right lines are given in position, to

determine the equation of a circle, which, passing through

the given point and touching one of the given lines, will in-

tersect the other3 so that the part of it intercepted within the

circle shall have a given magnitude,

(57.) Two diameters of

a circle being drawn, in-

tersecting perpendicularly,

from the extremity b of

one of them a right line

is drawn, meeting the

other at any point a, the

given circle at pf

, and

through the points a and p f parallels to the diameters are

drawn intersecting at p ; to find the locus of the point P of

intersection of these parallels.

js (58.) Two angles are inscribed in the

same segment of a line of the second

degree, whose sides intersect at the points

p and p f

; a right line passing through p

and p' always passes through a fixed

point ; to determine this point.

(59.) Given the base of a triangle,

and the ratio of the sum of the squares of the sides to the

sum of the squares of the segments of the base, intercepted



ALGEBRAIC GEOMETRY* 431

between the perpendicular and its extremities, to find the

locus of the vertex.

(60.) Given the base of a triangle, and the ratio of the

rectangle under the sides to the rectangle under the seg-

ments of the base intercepted between the perpendicular and

its extremities, to find the locus of the vertex.

(61.) To determine the axes of co-ordinates, to which a

line of the second degree must be related, in order that the

sum of squares of the values of y^ which correspond to the

same value of <r5 may be invariable.

(6%) To determine the conditions under which the sum of

themth powers of the values of y, corresponding to the same

value of X) shall be the same for all points of the curve.

(63.) To determine for all algebraic curves, the condition

under which the product of all the values of j/ 5
for the same

value of x, is invariable.

(64.) To determine for all algebraic curves, the condition

under which the sum of the products of every n values ofy$

for the same value of x shall be invariable, n being an in-

teger less than that which marks the degree of the equation*

(65.) The ordinate (pm) to the dia- .

meter of a circle being produced until

the produced part (pp f

) equals the chord

(pb) of the arc intercepted between the

ordinate and the extremity of the dia-

meter, to investigate the figure and pro-
*

J ^ ng

perties of the locus of the extremity (p
f

) of the produced

part.

(66.) The ordinate to the diameter of a circle being pro-

duced until the whole produced ordinate (mp') equals the

tangent of the arc (pb), to find the locus of the extremity p f

of the produced ordinate,

(67.) The ordinate to the diameter of a circle being pro-



438 ALGEBRAIC GEOMETRY.

duced until it becomes equal to the secant of the arc (pb), to

find the locus of its extremity.

(68.) The ordinate to the conjugate axis of an ellipse or

hyperbola being produced until the produced part is equal

to the line connecting the extremity of the ordinate with the

focus, to find the locus of the extremity of the produced

ordinate.

(69.) To investigate the line or lines represented by the

equation

y
3 — ay2x -\- x2y — ax3 + bx* + by*— cy + cax -f 6c= 0.

(70.) To determine the locus of the equation

y
3 — xif -f yx

x — x3 - %rxy -f %rx2 = 0.

(71.) To determine the locus of the equation

y
4
-f y®xz — py

qx — px3 — r
2

j/
2 + pr2x — 0.

(7^.) To determine the locus of the equation

as

y
3 - azby

zx — ab 2x*y + b3x3 + a3by — tfb3x = 0.

(73.) To determine the figure and inflections of the curve

represented by the equation

x* — ay -f a xx z = 0.

(74.) To determine the figure and inflections of the locus

of the equation

x 3 — ay* -\- azx = 0.

(75.) To determine the figure and inflections of the locus

of the equation

Sx5 ~ Sax4 + 110 a*x3 - 180 a3x% + a4y = 0.

(76.) To determine the figure and quadrature of the locus

of the equation

x%y — a^y + a3 — 0.

(77.) To determine the inflection of a curve in which

y
3 oe sc,

(78,) To determine the locus of the ^vertex of a triangle

on a given base, the square of the altitude of which varies

as the quote of the segments. And to show the inflections

of this locus.
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(79.) To find the curve in which the rectangle under

perpendiculars from two given points on the tangent is of a

constant magnitude.

(80.) To find the curve in which the subnormal is

constant.

(81.) To find the curve in which the perpendicular from

the origin on the tangent is constant.

(82.) To find the curve in which the perpendicular from

the origin on the tangent varies in the subduplicate ratio of

the radius vector.

(83.) To find the curve in which the locus of the inter-

section of the perpendicular through a given point and the

tangent is a right line.

(84.) To find the curve in which the locus of the inter-

section of a perpendicular through a given point with the

tangent is a circle.

(85.) To find the curve in which the locus of the ex-

tremity of the polar subtangent is a straight line.

(86.) To find the locus of the intersection of tangents to

an ellipse or hyperbola which intersect at a given angle.

(87.) Two tangents to an ellipse or hyperbola intersect

the transverse axis at angles, the difference of which is given,

to determine the locus of their point of intersection.

(88.) Investigate the figure and properties of the class of

curves included under the polar equation zn = cos. nw.

(89.) If three right lines in the same plane move angu-

larly round three fixed points, and two of the three points of

intersection describe right lines, the third will describe a line

of the second degree ; to determine its species, centre, axes,

&c.

(90.) If three lines revolve round three fixed points in the

same manner, and one of the points of intersection describes

a line of the mth order, and another one of the nth order,

the third will describe a line of the mnth 9
neither of the lines

F F
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of the mth or nth order being supposed to pass through the

centres of rotation.

(91.) To determine the locus of the intersection of the

rectangular tangents to the cardioide.

(9&.) The line joining the points of contact of rect-

angular tangents to the cardioide passes through a fixed

point.

(93.) To determine the equation of the class of curves

distinguished by the property, that tangents through the

extremities of a chord passing through a given point shall

intersect at a given angle.

(94.) To determine the equation of a class of curves in

which all chords drawn through a given point are of a given

length.

(95.) To determine the inflections of the curve repre-

sented by the equation

A3
y

% 4- b 3#3 = A3B 3
.

(96.) To find the multiple point of the curve repre-

sented by

af — cc\b + w) = 0.

(97.) To determine the singular point of the curves

represented by the equations

y* + ax +
X

y
x\az

-

a

-x2

)

3 ?

tf = P*>

dhf = O2 ~ b*) (x* ~~ c*\

y
6 = px,

y
6 =zpX,

y
5 ~px\

x* — ayx1 + by* = 0,

^4 + Jt *~ %<*y* + %hx*y = 0,
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x4 - 2ay3 - 8a*y2 - 2aV -f «4 = 0,

^ = 6 + cjt2 + (# — &)%

y = (x — af (x - 6),

y» = (# — af (x — 5)

y
b + &#4 — 62^2 = 0,

o?y
% — Qribx^y — #5 ~ 0,

.a; = a sin. 2w.

(98.) Given the angle of elevation at which a cannon is

fixed, to find the strength of the charge necessary to make

the ball strike a given plane perpendicularly.

(99.) To find the elevation which will require the least

quantity of powder to cause a ball of a given weight to

strike a given object.

(100.) Two circles, described upon the same vertical plane,

with their centres in the same horizontal, are given in mag-

nitude and position, to determine a point from which tan-

gents to the two circles will be described by falling bodies

in the same time, and to find the locus of all such points.

(101.) To find the point in a planet's elliptical orbit,

where its velocity is an harmonic mean between its velocities

at the apsides.

(102.) To determine the points in the moon's elliptic orbit,

where her angular velocity round the remote focus is ac-

curately equal to her angular velocity on her axis.

(103.) To find the latitude at which the vertical line is

most inclined to the line drawn to the centre.

(104.) In all curves described by a body moving round a

centre of force, the velocity of the body is equal to that of a

body in the equidistant circle at that point at which the

angle under the radius vector and tangent, or the angle of

projection, is a minimum.

(105.) A body being supposed to fall from any distance

towards a centre of force, the law of which is the inverse

f f 2
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square of the distance ; if a cycloid be described on the line

of descent as axis, the ordinate to the axis which passes

through the body is always proportional to the time of its

fall, and the tangent of the angle at which this ordinate is

inclined to the curve represents the acquired velocity.

(106.) In the hyperbolic spiral the centripetal and centri-

fugal forces are equal.

(107.) To express the times of the successive revolutions

of the radius vector passing through a body moving in a

logarithmic spiral, and also the time of arriving at the

centre.

(108.) To apply the same investigations to a body moving

in an hyperbolic spiral.

(109.) A body revolves in an ellipse or hyperbola, the

centre of force being at the focus, the place of the body

being given, to determine the ratio of its velocity to that of a

body moving in a circle at the same distance.

(110.) In the same case, the place of the body being given,

to determine the ratio of the centripetal to the centrifugal

force.

(111.) In the same case, to determine the maximum para-

centric velocity by means of the polar subtangent.

(112.) In the same case, to determine the point at which

the velocity is a geometrical mean between the velocities at

the apsides.

(US.) In the same case, to determine the point at which

the angular velocity equals the mean angular velocity.

(114.) To determine the curve affected by a repulsive

force, parallel and proportional to the ordinate.

(115.) To determine the curve in which the attractive

force is proportional to the ordinate.

(116.) A body is moved in a cycloid by the attraction

of the points of the base, to determine the law of the at-

traction.
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(117.) To determine the period in this case, and show its

analogy to the periods of bodies moving in a line of the

second degree with the force at the focus.

(118.) Jets of water spout from apertures at the same

depth below the surface of the reservoir at different eleva-

tions; to determine the locus of their points of greatest

ascent without regard to the resistance of the air.

(119.) Jets of water spout from apertures at different

depths, but with the same elevation, to determine the locus

of their highest points.

(ISO.) Given the place of the aperture, to determine the

direction of the jet, so that the area included by the curve

and its chord shall be a maximum.

(121.) Jets of water at the same depth below the surface

in the reservoirs spout with different elevations, to determine

the locus of their foch

(122.) Jets of water at different depths spout with the

same elevationa to determine the locus of their foci.

(123.) What would happen to the earth if the sun's mass

were diminished one half?

(124.) If all the bodies of a system but one be quiescent,

and that one describe any given curve, to find the curve

which the centre of gravity of the system will describe.

(125.) Rays diverging from a luminous point are re-

fracted by a spherical surface, to find the point at which

each refracted ray intersects the diameter of the sphere

passing through the luminous point.

(126.) An object is placed between two mirrors, the

planes of which are not parallel, to find the line on which

all the images are placed.





NOTES ON PART I-





N OTES.

Art. 13.

The method of determining the number and order of the

terms of a general equation is explained in Sect. XXI.

Art. 14

In the general equation of the right line, and, indeed, in

every general equation, the constant co-efficients a, b, &c.

must be supposed to represent such quantities as render the

entire equation homogeneous ; that is, so that all the terms

which compose it shall be composed of the same number of

linear factors. Thus, in the general equation of the first

degree, if c be supposed to represent a line, a and b must

represent numbers. In the general equation of the second

degree,

az/2 -f Bay + c#a + vy + E# + F = 0,

if f be supposed a quantity of two linear dimensions, and

therefore to represent a surface, all the other terms must

also represent surfaces ; therefore d and e must represent

lines, and a, b, and c, numbers. If -f be a quantity com-

posed of three linear factors, D and e must be quantities

composed of two, and a, b, and c, of one.

It may be observed, that in the equation of a right line,

the inclination to the axes of co-ordinates depends on the
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value of —, and the points where it meets the axes on

c . c— and —

.

A R
Art. 15.

If the axes of co-ordinates be rectangular sin./y = cos.te,

and therefore —,—- = tan. Ix.
A

Art. 28, et seq.

It may be interesting to students accustomed to geome-

trical investigations, to see how some of the formulae found

in this section analytically may be obtained by geometrical

principles. The application of geometrical principles to esta-

blish formulae is not, however, a habit in which the young

analyst should indulge ; it sometimes appears to give greater

facility and clearness than the analytic process, but in many

more cases it embarrasses and perplexes the student, and

always contracts and particularises his conclusions.

The result of art. (23) may be found geometrically thus.

Let the equations of /Y //
the lines be as in the / T /^
text. We have by the VJ ^/}

similar triangles cab //%* \

and cmi,
yytfJATw xT"

-

ca : ab : : cm : mi.

And by the similar triangles c fABf and cfMi,

c'a : ab' : : c'm : mi.

Hence, by compounding the ratios,

ca x ABf
: c'a x ab : : cm : c'm ;

but by (17),
c , d

CA = , CA = — —: ,
B B'

c d
BA-~--, B'A = r,

A Af
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Hence we find

cc

a'b

cc

ab'

. . x _ _. x .

And by division^

cc' cc'

Ib7
cc

^7

From this proportion., x -—~ is determined geometrically
5
and

thence the value of x.

In a similar way the value ofy may be found.

The result of art. 26 may be thus found geometrically:

Let v' be the given

point through which

the line is required to

pass, and whose co-or-

dinates are y'x*. Let

p be any point on the

right line, the co-ordinates of which are yx. Since the

angles pp'm and pfpm are always the same, the species of

the triangle ijmp f
is independent of the position of the point

p, and therefore the ratio vm : ?fm is independent of it. Let

this constant ratio be a : 1, v
vm : vhn : : a : 1,

or y "~ y : x — °°
l

: ' « : 1,

v (j/ - y') ~ a(x — rf) =0;

and if a = -, we have

a (j/ - y) + »(#

If the right line

be required to pass

through two points

p fp", we have the ratio

iW : p"rf always the

same as pW : p"m', ""

a?') = 0.
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because the triangle pWV is always similar to pWp'':

hence

pm" : pW : : pW : p fW,
or ^/ — j/" : x — #" : : y

1 — y : a?' — #",

or (jr
f — x") (y - /) - (y ~ y )

(,r - #") = 0.

The formula in art. 50, for the length of the perpendicular,

may be found thus :

Let p be the point from

which the perpendicular is

supposed to be drawn to the

line cd. The triangles pdttj

and bac are manifestly si-

milar; therefore

pd : vm : : ca : bc,

or pd': pm — mw : : ca : bc.

c c
But ca =*- — "— , and ba == , and hence

b
' a'

bc — VA2 -j-B*;
AB

but also, since the equation of the line cd is

Ay + bx -f c =^ 0.

If x — x\ and y = mm, we have

BX ! -\- C
M7il =

PM
AT/

1+ BX 1

-f C

And by these substitutions, the proportion becomes

a^+ bx' + c c c -—u
: : :

— y^A2 + B2
5

B AB

Ay + B#' -f c

pd :

A

PD
v/A2 + B 2

The preceding examples show the student how some of
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the results may be obtained geometrically. They also give

striking proofs how inferior both in brevity and facility that

method is to the analytic process.

Art. 57.

A formula is said to be symmetrical with respect to any

quantities, when their denominations being interchanged

the formula remains unchanged. Thus, in the value of r, if

the denominations of the three sides be changed, the formula

remains the same ; for example, let c be changed into d,

vice versa,

dec"
R =

"i—

,

4a'

which is the same as before. Or if c be changed into d!

9

and vice versa, the formula still remains the same.

Art. 69.

This proposition, with the various modifications of which

it is susceptible, is given by Apollonius (see note on art. 89)

in his treatise De Locis Planis, a remarkable collection of

curious properties of the circle and right line. This treatise

was first restored by Fermat, though his work was not pub-

lished until after his death. Schooten afterwards published

a work on the same subject; but his demonstrations are alge-

braical in many cases, and not in the spirit of the original.

The best work extant on the subject is Robert Simpson's

JpoIIonii Loca Plana restituta, an excellent specimen of the

style of the ancient geometry.

Art. 80, et seq.

A more general definition of diameters of a curve will be

found in Section XXI.
We shall here explain the algebraical principles assumed

in this and the following articles*

In an equation of the form
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ax9
-

-f- bx + c = ra,

the values of #, 6, and c, being supposed given, the sign of

m will depend on that of a
9 and the nature of the values of

x which render m = 0.

1°. Let the values of x
9
which render m = 0, be real and

unequal, and be represented by x ! and #rV
. The above

equation may, by a well known property of equations, be

expressed thus

:

(x — x1

) (x — x11

) = — .
v 'a

See Wood's Algebra, Part II.

If <r
f/ be considered the greater, and x ] the lesser root, all

values of x > x1 and < xn must give the factors x — x f

and x — x}

' different signs, and therefore render their pro-

duct negative ; and all values. of x > x,!

, or < x\ must give

these factors the same sign, and therefore render their pro-

duct positive. Hence, for all values of x between the roots

7)1

x1 and x'f

,
— must be negative, and therefore m and a must

have different signs ; and for all values of x beyond the

7YI

limits x! and *r
f

', the quantity — must be positive, and

therefore m and a must have the same sign.

2°. If the values of x which render m = be impossible,

let the equation

ax2 + bx -f c = m
be solved for x, and we find

—
- b± Vb*— 4<ac + 4<am

x » — -.

Since the value of # is by supposition impossible, when

<m = 0, we have the condition

5
2 — 4ac < 0,

and therefore am > 0, and hence a and m must always have
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the same sign, and therefore the quantity — must be po-

sitive for all real values of x, whether positive or negative.

8°. If the values of x
9
which render m = 0, be real and

equal. The equation can, in this case, be reduced to

a{oc — oc
!y = m.

Hence, for all values whatever of x, except that which gives

Til

m = 0, the value of — must be positive, and therefore m

and a must have the same sign.

In an equation of the form

bx + c = m,

the sign of m will depend on that of 5, and the value of x

which renders m = 0. Let this be xf

5
and we find

-—
•

r

Hence the equation may be expressed

Hence it appears that all values of x < x1 render —

-

negative; and all values > x' render — positive, and there-

fore in the one case m and a have different signs, and in the

other the same sign.

These principles may be applied to the cases in the text,

by supposing a = b2 — 4ac, and b = 2(bd — 8ae), or

= £(be — £cd), and m ~ R 2
, or = k/*.

It may be observed, that the condition b2 — 4ac =
renders the first three terms of the general equation a com-

plete square.

Art. 89.

It should be remembered, that these conditions involve

the supposition that a and c are finite.
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The curves represented by the general equation of the

second degree are the same as those which are produced by

the section of a conical surface by a plane, as will be shown

in the second part of this work. They have hence been

called Conic Sections. These curves originated in the Pla-

tonic school. Some suppose Plato himself to have first con-

ceived them ; others Menechme, a distinguished geometer of

that time, and a pupil of Plato. The first properties which

were discovered, were those of diameters and their ordinates,

the centre and foci, the parallelism of the diameters of a

parabola, the value of the subtangent, the properties of the

lines from the foci in (S1Y), and the similar property of the

parabola in (%55), the property proved in (209), and the

properties of the asymptotes of the hyperbola.

Even at so early a period as the time of Plato, Menechme

displayed a considerable knowledge of the properties of

the conic sections in his solutions of the famous problem

of the duplication of the cube by the intersection of two

parabola?, and by the intersection of a parabola and hy-

perbola. Aristaeus, the teacher of Euclid, and pupil of

Plato, also at that time wrote two works, one consisting of

five books on the Conic Sections, the other consisting also of

five books on Solid Loci. Pappus prescribes these books as

a study for his son in geometry. These works were un-

fortunately lost in the general wreck of letters.

The principal treatise which the ancients have handed

down on the properties of lines of the second degree is that

of Apollonius Perg.eus, who flourished about the middle

of the third century before the Christian era. He was

distinguished among the ancients by the title of The

Great Geometer, and was decidedly the second geometer

of antiquity. According to Pappus, it would appear that

he was not so liberally endowed with the qualities of the

heart as those of the head. He represents his character as
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marked by arrogance, envy, and as seizing with avidity

every opportunity of trampling upon the claims and lower-

ing the merits of others. His principal work is the treatise

on Conies. He defines the lines of the second degree by the

section of the cone. The treatise consists of eight books,

the first four of which have been handed down in the

original Greek ; the fifth, sixth, and seventh, we have

through an Arabic version, and the eighth has been lost.

Halley has attempted to restore the eighth book in his

edition of Apollonius. The last four books contain the

principal discoveries of Apollonius, the subject of the first

four having been previously known. Among his dis-

coveries are, the first notion of osculating circles and evo-

lutes, the results of prop, lii., prop, lxxiil, and several

propositions relating to maxima and minima.

Art. 132.

The method of determining the equation of a tangent

used here is the invention of Descartes. It is not con-

fined in its application to curves of the second degree, but is

generally applicable to all curves.

Let the equation of any curve be

y(i/x) = ;

when ~${i/x) means any function of the variables ?/#. And

let the equation of a right line intersecting this curve be

a(y - ij) + b(x - x l

) = 0.

Eliminating y by these equations, the result will be an

equation involving only x, the roots of which will be the

values of x for the points where the line intersects the

curve. If two of these points unite, two of the roots

will be equal, and the line will become a tangent. The

method by which Descartes determined the condition

under which two of the roots would be equal, was by as-

suming an equation of the same degree, having two equal

G G
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roots, and comparing with it the proposed equation. In

the case of lines of the second degree this ingenious artifice

is rendered unnecessary, the solution of the equation being

sufficient.

This method of determining the equation of a tangent is

that which appears in the letters ofDescartes. That which

he gives in his Geometry is somewhat different, and nearly

as follows. Let

y + (x — w fY - r2 =
be the equation of a circle, the centre of which is on the

axis of x. Let y be eliminated by means of this equation

and that of the curve, and the roots of the resulting equa-

tion will be the values of x for the points where the circle

meets the curve. The centre of the circle being supposed

fixed, and the radius r arbitrary, let it be supposed to have

such a value as will render two of the roots of the equation

equal ; the circle will then touch the curve, and will there-

fore have the same rectilinear tangent. The value of r3

wrhich renders the roots equal, may be found by the artifice

mentioned above.

These methods are both founded on the same principle

;

and though we cannot but admire the ingenuity they

display, yet they must in general yield to the more simple

and direct method furnished by the Calculus. We have

used one of them here, as it is thought desirable that the

study of a part of algebraic geometry should precede that of

the Calculus,

Art 154.

The principle on which the solution of this problem de-

pends is, that if the relation between the co-ordinates of any

two points upon a right line be expressed by the same equa-

tion of thefirst degree, that equation will express the re-

lation between the co-ordinates of any point on the right
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line, and is therefore the equation of that right line. This

principle is evident from the consideration that two points

are sufficient to determine a right line.

Art. 16%

The names ellipse, hyperbola, and parabola, originated

from a property expressed by the equation

p~~ is positive for the ellipse, negative for the hyperbola,

and = for the parabola. Hence the proper equations of

these three curves are

By these equations it appears that the square of the semior-

dinate to the diameter falls short of the rectangle under the

parameter, and absciss in the ellipse, and exceeds it in the

hyperbola by the quantity -£~x %
; and in the parabola the

square of the ordinate is equal to the rectangle under the

parameter and absciss. Hence the names ellipse (defect),

hyperbola (excess), and parabola (equality).

The parameter was formerly called the lotus rectum.

The ancients called the focus punctum comparationis.

Art. 168.

This beautiful property was discovered by Apollonius,

and is one of the propositions of the seventh book of his

ConicSo
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Art. 189.

This corollary points out

a method -of drawing geome-

trically a tangent to an eh

lipse, or hyperbola, from a

point outside it. Let h be

the point. Draw hc to the centre, and take ci, a third

proportional to hc and CAf and draw pi an ordinate to the

diameter ca, the line dh will be the tangent.

Art. 196.

This proposition proves the disc of a planet, except when

in opposition or superior conjunction, to be a figure bounded

by a semicircle and semiellipse, the ratio of the axes being

that of the cosine of the angle subtended by the earth and

sun at the planet to radius*

Art. 205.

In the equilateral hyperbola, if a represent the semiaxis,

and Af any semidiameter,

A "

sm. 9 = ——

.

Art. 207.

The result of this proposition was discovered by Apol-

lonius, and is contained in the seventh book of his conies.

Art. 209.

By an extension of this property, Descartes invented a

class of curves, of which the ellipse is a particular instance,

and which have been called the ovals ofDescartes. As in

the ellipse, the radii vectores vary so that the increment of

one shall always be equal to the simultaneous decrement of

the other, and in the hyperbola, the simultaneous increments
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of both are always equal, so in the Cartesian ovals these

increments are in an invariable ratio. If z and z1 be two

lines drawn from the two foci to any point in the curve, the

condition

dz 4- ?ndz' =
will always be fulfilled ; which being integrated, gives

z + mz! = 2a,

2a being any arbitrary constant. These curves may there-

fore be defined, the locus of the vertex of a triangle on a

given base, one of whose sides bears a given ratio to the sum

or difference of a given line and the other side. The

equation of this class of curves may easily be determined.

Let 2c be the distance between the foci, and co the angle

under z and 2c ; hence

4icz cos. co = z
z + 4c2 — z 2

.

By eliminating z ! by means of this and the former equation,

we find

(m? - l)z
z + 4(a - m2c cos. w)z + 4(raac

2 — az
) = 0,

which is a curve of the fourth order, except when m = 1, in

which case, after reduction, it becomes

g(l-gg
)

1

—

e cos w

which is the polar equation of an ellipse or hyperbola.

The circumstance which occasioned the invention of these

curves was the investigation of the figure of the surface,

which must divide two mediums of given densities, so that

rays of light emerging from a given point shall be all re-

fracted accurately to another given point. Descartes proved

that the surface must be one generated by the revolution of

these ovals upon the line joining their foci. And he showed

that if the focus of incident rays be at an infinite distance,

or if the pencil of rays be parallel, the oval becomes an el-

lipse. See art. 665, For a more detailed account of these



454 ALGEBRAIC GEOMETRY.

curves and their optical properties, see Huygens de Lumine,

and Kabuel's Commentary on the Geometry of Descartes.

Art. 212.

The polar equations found in this proposition are of con-

siderable use in physical astronomy. The variable z ex-

presses the distance*of the planet from the sun, (w — <p) the

anomaly, and <p the direction of the apsides.

Art. 215.

From this proposition it obviously follows, that the per-

pendicular from the focus of an hyperbola on the asymptote

is equal to the semiconjugate axis; the asymptote being

considered as the tangent to a point at an infinite distance.

Art. 227.

This property is used by some geometrical authors to

distinguish the species of lines of the second degree. See

Leslie's Geometry of Curve Lines.

Art. 257.

The focal tangents are those which touch the curve at the

extremity of the focal ordinate.

The property expressed in this proposition is not peculiar

to the parabola, but common to all lines of the second

degree. See art. SI 5.

Art. 281.

This proposition might also be investigated in a manner

similar to art. 282.

Art. 298.

This principle has furnished means of describing an ellipse

mechanically. Let ab and Ac be two fixed rulers, and bc

another ruler with rings at b and c capable of running upon



ALGEBRAIC GEOMETRY, 455

the fixed rulers, and a pencil at any point p, which, upon

moving the ruler bc, will describe an ellipse.

Art. 80S.

This property extends to all similar curves; for if the

radii vectores of any curve expressed by a polar equation be

all increased or diminished in a given ratio, they will pro-

duce a similar curve, and vice versa. It should be observed

that the curves are supposed to have a common vertex and

one common axis.

Art. 318.

The equation of a tangent drawn from a given point out-

side a curve may be found thus: Lety
]od be the point, and

?/V the point of contact. The equation of the tangent is

dip
(y-y!

) ~~cw^
x~ x^

= °*

By means of this equation, the equation of the curve, and its

first differential, and by the condition

the quantities j/V and their differentials may be eliminated,

and the resulting equation will be that of the tangent

sought.

The method ofdrawing tangents to curves explained here,

and founded on the principles of the differential calculus, has

superseded the other solutions for the same problem given

by Descartes, Fermat, Roberval, and others. The methods

given by these geometers were either limited to particular

classes of curves, or in some cases so incommodious as to

amount nearly to impracticability. The determination of

the equation of a tangent by the calculus is at once simple

and general. It depends merely on differentiating the

equation of the curve, and therefore extends to every curve

capable of being expressed by an equation, and whose
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equation is capable of differentiation, The methods of

Descartes, which have been explained in the note on art.

1 8$, require that the conditions on which two roots of the

equation resulting from the elimination of one of the va-

riables shall be equal should be determined. These methods

extend at most only to algebraic curves.

The method of Roberval deserves notice, as well on ac-

count of the elegance of the conception on which it is

founded, as of its close analogy to the fundamental principle

of the Newtonian fluxions. He considered a curve de-

scribed by a point affected with two motions, the variation

in the quantity and direction of which are to be determined

by the nature of the curve. At any point of the curve he

supposed a parallelogram constructed, the sides of which are

proportional to and in the direction of the generating velo-

cities, and laid it down as a principle, that the diagonal

which represents the direction of the resultant is the di-

rection of the element of the curve at that point, and there-

fore the direction of the tangent. There are many instances

in which this method may be applied with great clearness

and facility; but in most cases its application is either

totally impracticable, or attended with very perplexing

difficulties, owing to the intricacy of the investigations ne-

cessary to determine the component velocities of the gene-

rating point. We shall give some examples in which its

application is effected with great clearness and beauty.

1°. To determine the tangent to a point in an ellipse or

hyperbola.

In the ellipse the sum

of the distances f'p and

fp of the describing point

from the foci is invaria-

ble; therefore one in-

creases with the same ve-
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locity that the other diminishes. Hence the velocity of the

describing point in the directions va and va! are equal;

therefore if va = va1

, the diagonal is the tangent which

bisects the exterior angle.

In the hyperbola the difference of the distances from the

foci is constant, and therefore the two distances increase

with the same velocity. Hence, va! should, in this case, be

taken as well as pa on the produced part of the focal di-

stance, and therefore the tangent bisects the angle under the

radii vectores from the focus.

2°. To draw a tangent at a given point in a parabola.

Let Au be the directrix,

and ax the axis, and f

the focus. By the pro-

perties of this curve,

fp = be, v the velocities

in the directions va and

va! are equal; therefore, as

before, the tangent bisects

the angle ava1
.

3°. To draw a -tangent at a given point in a cycloid.

Let p be the given point. By the definition of the

cycloid, the generating point at p has two motions, one in

the direction of the tangent va! to the generating circle, and

the other in the direction va parallel to the base ; and these

two motions are equal, because the generating point moves

uniformly round the circumference of the gererating circle

in the same time that the circle itself is carried along the

base through an equal space. Hence, if va and m1 repre-
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sent the two motions, pa = pa', and therefore the tangent

bisects the angle aval, and is parallel to the correspond-

ing chord p'v of the generating circle described upon the

axis.

The method of Roberval is peculiarly applicable to curves

which can be described mechanically by motion.

Barrow subsequently invented a method of tangents which

approached as near the principle of the differential calculus

as Hoberval's did to the fluxional principle. He inves-

tigates an infinitely small triangle composed of the incre-

ments of the absciss and ordinate, and the elementary arc of

the curve. The student will readily perceive this to be in

effect the spirit of the method used in the text ; but both this

and the method of Roberval want what constitutes the prin-

cipal excellence of the methods in the fluxional and dif-

ferential calculus, that uniform algorithm by which a general

formula expresses the equation of a tangent to any curve,

and the general rules by which the particular values of the

quantities composing this general formula can be found in

particular cases.

It should be observed, that the method of Barrow is very

nearly the same as that of Fermat.

Art. S28.

The polar subtangent is a line drawn from the pole

perpendicular to the radius vector, and terminated in the

tangent.

Art. 321.

The value of the second differential co-efficient given by

the equation (1) is here understood to be substituted

in (4).

Art.. 837.

Although the first idea of the evolute of a curve is to be

found in Apollonius, yet Huygens must be admitted to be
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the inventor of the theory of evolutes in general. It forms

the third part of his De Horologium Oscillatormm. He
defines the evolute by the property in art. 342, and from

this definition deduces its other properties. The first curve

to which he applied this theory was the parabola. This

consideration led him to the discovery of the property of the

.cycloid, on which its tautochronism depends.

Art. 338.

The involute of a curve, whose equation is given, may be

found by eliminating y
]x] and their differential co- efficients

by means of the equations of the curve and its differentials

combined with the values y
!x!

, and the condition

dy dxf

dx dyr

Art. 364

It may be observed, that the condition

d2iu
also indicates a point of inflection, since the sign of -—^

changes in passing through this value.

Art. 368*

A multiple point in general is characterised thus : the

equation of the curve

Hyv) = ^

being differentiated
5
let the result be

vdy -f Q.dx = ;

if the same values of y and x give more than one value of

dit~, there will necessarily be at the point, whose co-ordinates

are these values, an intersection of as many different branches
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of the curve as there are different values of — for the same
p

value ofy and x. In this case there must be always one or

dv
more radicals in -~, which do not appear in the equation of

the curve solved for y. The possibility of this may easily

be conceived, when we consider that a variable multi-

plier of a radical may be removed by differentiation, and,

consequently, any value of «r, which would render that mul-

tiplier = 0, will make the radica 1 disappear from the equa-

tion of the curve, but not from -—.

A difficulty, however, of a different kind presents itself

here. If the equation of the curve be cleared of irrational

functions of the variables, and then differentiated, its dif-

du
ferential co-efficient -y will be necessarily also a rational

function of the variables. How then can this, for one and

the same value of #, and one and the same value of j/, have

different values ? This is explained by showing that in this

case the value of ~ must assume the form -^-, which may

be proved thus : Let two of the values, of which -7- is sus-

ceptible, be p, p'. Hence we have the equations

q + pp = 0,

By subtraction, we find

?(p ~ p') = ;

but since by supposition p and^> f are unequal, we infer

p = 0,

which, substituted in the first equation, gives

Q = 0,

dy ^
dx ~~

°
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The true values of ~~~ may be found in this case by sub-

stituting the value of y resulting from the solution of the

equation of the curve in the value of -^
:
, which then be-

comes a function of x alone. If it continues of the form

~, its values may be determined by the general method

furnished by the calculus for determining the true values of

functions of this form, or we may frequently obtain the result

without substituting the value of y with greater facility by

finding the successive differentials of the equation of the curve

until we find one from which all the differential co-efficients,

except the first, will disappear by the particular values of?/

and x which render ~- = — . The foots of this equation
ax L

dy
will give the true values of ~~. An example will render

ax

these observations easily apprehended. Let the equation of

the curve be

if + 9mfx - axs == (1).

By differentiating, we find

ty_ _ fl(3a?s- ay a

)

dx 4z/(?/
2 -f-^r) ^

By substituting for y in this, its value in the equation of the

curve, it becomes

dy Sax+Qcf + Qa \/tr+ ax
~~r~ = ~~~ ~

w).ax
^sJos-\~ax . \/ — ax ± ^/a (Zx2 -j~ax3

If y and x be supposed = 0, the values of-—-become, one

infinite and the other — . The true values of the latter

may be determined by differentiating the numerator and

denominator of (3), which gives, when x = 0,



462 ALGEBRAIC GEOMETRY,

dx
+
V&

or more readily by differentiating the equation (2) reduced

to the form

4ii/\/a
z + ax dy — (Sax + 2&3 — 2a ^/a2 + ax)dx = 0,

which gives

8j/O
a + ax)*d zy + H(a°~ + ax)*dyz — (4as + 3a*x)dx*=0,

which, when y and x both = 0, becomes

8a3dy2 — 4a 3dx2 = 0,

&/ 1

dx ~ ~ ^oj

Art. 374.

Conjugate points derive their existence from some par-

ticular value being given to one of the constants in the

equation of a curve, one part of which is an oval^ which

value, rendering the diameter of the oval = 0, causes it to

vanish into a point. Thus the curve represented by the

equation

ay* — a? + (b - c)jt2 + hex =
has this figure in general. But if c be supposed = 0, the

oval ab vanishes into a point, and the other branches of the

curve continue unchanged.

"Y

B X

There is another species of singular point called a point of

undulation ; its nature, and the circumstances which produce

it, are explained in the XXth section.
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Art. 375, 378.

It appears, from the results of these articles, that the qua-

drature and rectification of the circle are two problems de-

pending on each other, , so that the solution of either neces-

sarily involves that of the other.

The quadrature of the circle is a problem which has

exercised and baffled the ingenuity of geometers from the

remotest ages of mathematical record. The earliest at-

tempts at its solution were merely tentative. Amongst these

are mentioned those of Anaxagoras, Hippocrates, Bryson,

and Antiphon. The first attempt to ascertain demonstra-

tively the limit of the ratio of the diameter to the circum-

ference was that of Archimedes, who proved that the cir-

cumference is less than the diameter multiplied by 3-fJ, and

greater than the diameter multiplied by 3~. Archimedes

might easily have carried his approximation farther, but his

object was only to obtain the ratio with sufficient accuracy

for practical purposes. A nearer approximation was sub-

sequently made by Apottonius*

After the invention of the differential calculus, various

mathematicians gave series for calculating the ratio within

any proposed limits of accuracy.

Art. 378.

The result of this proposition may be extended. Let a!

and b ! be any system of semiconj ugate diameters, and 6 the

angle under them, and let two ellipses be constructed, the

equal conjugate diameters of each being inclined at the

angle 0, and those of one being equal to 2a', those of the

other to QV ; the area of the given ellipse will be a geome-

trical mean between the areas of these. Thus the pro-

position will have the same result if the lines in the cut re-

presenting the axes be supposed to represent any conjugate
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diameters, and the two circles to be ellipses, of which these

are the equiconjugate diameters respectively.

Art.. 886.

Amongst the discoveries of Archimedes, none is more con-

spicuous than the quadrature of the parabola. He effected

this in two ways ; one by mechanical, the other by mathe-

matical principles. He showed by the principles of Statics,

independently of any experiment, the relation between the

weights of a lamina of matter bounded by right lines, and a

parabolic arc, and a rectilinear space. It has been erro-

neously stated by some that his proof depended on actually

weighing the one against the other ; but, on the contrary, the

demonstration is founded on the abstract principles of

Statics, totally independent of any tentative means. He
also gave a geometrical solution to the same problem.

This solution is memorable for being the first complete one

which was given for the quadrature of a curve.

Art. 896.

The semicubical parabola, which is here proved to be the

evolute of the common parabola, is remarkable for having been

the first curve which was rectified. The discovery of this

is contended for by William Neil, an English geometer,

and Van Huraet, a Dutch mathematician, who was very

active in the cultivation of the Cartesian geometry. They

each seem to have a right to the invention, as there is every

reason to suppose that neither was aware of the other's dis-

covery. It seems, however, that the English geometer

has the priority in publication. The method used by Van

Huraet merits notice, as it is a general one by which rec-

tification is reduced to quadrature.

Let app' be the curve whose rectification is sought, and
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m -n MT

let pm be an ordinate

to any point of the

axis ax, and pn the

normal, and let m be

any given right line.

Assumepu so that

pm : PN : : m : pm,

and all the ordinates being thus produced, let the curve Af

pp
!

be the locus of the extremities of the produced ordinates.

The rectangle under the line m and the arc ap is equal

to the area ABpm, and therefore if the curve ^pp ]

is susceptible

of quadrature, app' can be rectified.

m

Let pm = 3/, and pu ~y\ v pn = y
*/dy*+dx*

dx

y m
Vdif+dx*

dx

v y
fdx = m ^dy L + dx*,

\*Jy'dx = mf^/dy* + dx*.

One side of this equation is the area apm, and the other is

the rectangle under the arc ap and the given line m. Hence,

If the curve be the semicubical parabola represented by

the equation

py* = .r
3
,

by differentiating, we find

%pydy = Sx^dx,

t/dyz+dx*'•'

vj^+if
dx ""

%</p

By this substitution, we find

H H
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which is the equation of a common parabola, the co-ordinates

of whose vertex are

4
V = 0, x = - -g-jo.

Hence the rectification of the sernicubical parabola depends

on the quadrature of the common parabola, which can be

effected geometrically.

If the curve be the common parabola represented by the

equation

by differentiating

a? = py,

dy 2x

dx~~ p
*

\/dyz+ dx%

__
p" 4- 4j?»

da? "~ p2

Hence, by substituting this in the general formula, we find

'•* p
z

y
12 — 4w^2 = 9/z

ap%

which is the equation of the hyperbola. The rectification

of the parabola therefore depends on the quadrature of the

hyperbola.

To find the axes £a and Sb of the hyperbola, let a? and y
successively = in the above equation, and we find

a2 = ma
,

— — 4
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Hence, if ap be

sl parabola, and Ap

an hyperbola, whose

conjugate or second

axis is equal to the

parameter of the

parabola^and whose

centre is at a, the

rectangle under aa',

and the arc ap is

equal to the area

AA^M.

Art. 397.

The logarithmic curve was first proposed by James Gre-

gory, the celebrated inventor of the reflecting telescope : see

his work entitled Geometrice Pars Universalis. Professor

Leslie states that Gregory, of St. Vincent, was the in-

ventor. He does not, however, give his authority for this

statement, nor does he mention in what work of that geo-

meter the invention is to be found. Its leading properties

were very fully investigated by Huygens. It is of con-

siderable importance in its applications to physical science,

particularly to the relations and properties of elastic fluids.

For example, since the density of the atmosphere decreases

geometrically as its height increases arithmetically, its

density may be represented by the ordinate to a logarithmic,

the altitudes being measured upon the asymptote.

Art. 408.

Nicomedes, a Greek geometer, who lived about two cen-

turies before the Christian era, and shortly after the time of

h h g
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Archimedes, invented this curve for the solution of the

famous problems of the duplication of the cube and the tri-

section of an angle. He invented also an instrument which

has been called the trammel for describing it by continuous

motion.

Let ab be a flat ruler in which there is a groove en. At-

tached to the middle e of this is another flat ruler ef per-

pendicular to it, in which at I there is a fixed pin, which is

inserted in the groove of a third ruler gh, in which there is

also a fixed pin at k, which is inserted in the groove cd.

The system being thus adjusted, let a stem of any proposed

length hp be attached to h, carrying a pencil at p, and the

rectangular rulers ab and ef being fixed, let hg be moved,

so that the pin at k will move in the groove cd, the pin at i
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continuing in the groove of the moveable ruler, the pencil at

p will trace the superior conchoid. And if another pencil

were fixed to the moveable ruler at the same distance on the

other side of the pin K, it would describe the inferior

conchoid.

To apply the conchoid to the bisection of an angle.

Let abc be the angle to be trisected. With the vertex b

of the given angle as pole, and any perpendicular ca to one

of its sides ba as rule, and a modulus av = £bc, let a con-

choid be described, and let ce be drawn parallel to av

meeting the curve in e, and draw be. Let bf be drawn

bisecting the angle cbe. The angle abc will be trisected

by bf and be.

For let ge be bisected at d, and draw DC. Since gcd is a

right angle, cd = de = gd, v en = cb. Hence the angle

cbd is equal to cdb, which is equal to twice ced. But ced

is equal to dbv, therefore cbd is equal to twice dbv ; and

since cbd is bisected by bf, it is plain that abc is trisected

by be and be.

To find two geometrical means (b and c) between two

given lines {a and d) by means of the conchoid.

Let a rectangle be constructed, the sides of which are

equal to the extremes ab == a, ac = d. On ab construct an

isosceles triangle bda, the side of which bd is equal to half of

ac. Produce ba so that ae = ba, and connect d and e, and
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2>-

through b draw bi parallel to de. Through b produce ab,

and with d as pole, bi as rule, and bd as modulus, describe

a conchoid meeting ab produced in F, and draw fg inter-

secting ac produced in h. Then bf = h, and ch = c.

For since bi and de are parallel, pi : if : : eb : bf, or

di ; \d : : %d : bf. But also on account of the similar

triangles, hc : d :: d : bf, v.hc = di. Since bda is isos-

celes, the square of df is equal to the rectangle under af

and fb, together with the square of bd. But also the

square of df is equal the square of the sum of hc, and half

of AC, or to the rectangle under ah and hc, together with

the square ofhalf of ac. Taking away this last from both, it

follows that the rectangle under ah and hc is equal to the

rectangle under af and fb. By this and the similar tri-

angles we have the proportions

AH : af : : AC : BF,

Ah : af : : bf : hc,

AH : AF : : He : AB,

.' AC : BF :: hc : AB,

or a : b :: c : d.
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Montucla in his history has fallen into an error in giving

the construction for the solution of this problem. He con-

structs the isosceles triangle in an altitude equal to half the

line Ac.

The conchoid is the only monument of the labours of

Nicomedes which has descended to us. In the appendix to

his Universal Arithmetic, Newton approves of it highly

for the construction of the roots of equations of the third

and fourth order. For these purposes he prefers it to the

means which the lines of the second order present.

The intercept of the superior conchoid between the vertex

and the point of inflection is sometimes used in architecture

as the figure of the shaft of the Corinthian column.

The etymology of the name conchoid is from the Greek

word kw%0S) a shell.

¥&

Art. 412.

Diocles, a Greek geometer, who lived in the fifth century

after Christ, was the inventor of this curve. The occasion

of its invention was the solution of the problem of the inser-

tion of two mean proportionals. Pappus had previously

shown that this problem might be solved by the following

construction. Let the extremes

AC and cb be placed at right

angles, and with c as centre

and the greater ca as radius,

describe a circle and join db,

and produce it to meet the

circle at E, and produce cb to

meet the circle at f. Let a chord AG be inflected so that

hg shall be bisected by cf, and ci will be the first of the

two means.

Thus the solution of the problem is made to depend upon

the possibility of inflecting ag so as to be bisected by cf,
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This led Diodes to investigate the locus of the point h, ac

being considered constant and cb variable, and which is

evidently equivalent to supposing ak always equal to ld.

To attain the object for which the cissoid was invented, it

was still, however, necessary to be able to describe this

curve mechanically, and here the inventor failed. Newton,

however, gives a very simple and elegant method of effecting

this.

Produce the axis da of the curve until ae = ac, and

through the centre draw ci perpendicular to ab. Let an

indefinite fixed ruler be placed upon ci, and let a square,

having one leg gf equal to ad, and the other gh indefinite,

be so moved, that the indefinite leg gh shall always pass

through e, and that the extremity f of the other leg shall

move along the indefinite ruler ci ; if a pencil be attached

to the middle point p of ge, it will trace out the cissoid.

For the proof of this see (6%6).

The quadrature of the cissoid has been inadvertently

omitted in the text. It is easily effected. By the equation

of the curve solved for y>
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X z

(2r ~ x) z

v j/J#

3_

x zdx

{Qr—xY

If the angle p'ca = p, # = (1 — cos. p)r? where r = &c
9

and v&ro? — a? = r sin. p. Hence

a?
a
cfar —(1—cos. p)*dcos. <p

fy&x ~j- — —j- -.—

—

. r%

orjydx = r£(l —• cos. <p)
2

. d<p,

•sjy&x = r2
(|p -f i- sin. p cos. <p — 2 sin. p) 5

which, taken between the limits <p = and <p = S^y gives

fydoc — 3r2tf,

which shows that the area included between the cissoid and

its asymptote is equal to three times the area of the circle,

whose radius is cb.

The name of this curve is derived from the Greek word

xi<r(ro$, ivy.

Eutocius attributes to Diodes the solution of the problem

" to divide a sphere by a plane into two segments in a given

ratio ;" a problem which at that time presented considerable

difficulty. The solution given proves him to have been a

most able and profound geometer. It is however subject to

the same objection as most of the ancient solutions, as he

employs two conic sections instead of using one and the

circle. The work from which Eutocius quotes the solutions

was entitled De Pyriis, from which Montucla thinks that

Diodes was probably an engineer.

Art. 418.

The properties of this curve were first considered by

James Bernouilli, of whom see note on art. 430. It be-
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longs to a general class of curves which are investigated in

(631) and (682).

Among the physical properties of this curve, we may ob-

serve that a body moving in it, by the influence of a force

directed to its centre, would be attracted by a force varying

as the inverse seventh power of the distance, and that its

velocity would bear to that in a circle at the same distance

the invariable ratio 1 : ^/S.

The chord of the osculating circle passing through the

pole is two-thirds of the distance of the point of osculation

from the centre, and hence the locus of the point where the

osculating circle intersects the radius vector is the lemniscata

represented by the equation

z* = ±a* cos. 2cv.

Art. 42$, et seq.

The trigonometrical curves took their origin probably

from " the extension of the meridian line by Edward

Wright, who computed that line by collecting the successive

sums of the secants, which is the same thing as the area of

the figure of secants." Hutton, Math. Diet. art. Figure.

Under this point of view, the area of the curve of sines

determines the sum of all the sines in the semicircle to be

equal to twice the square of the radius.

This curve differs only apparently from the companion of

the cycloid. See note on art. (497).

If the ordinates of the curve of sines be increased or

diminished in the same ratio, the harmonic curve will be

produced. The areas of these curves will be evidently as

their ordinates ; and tangents from the extremities of coin-

cident ordinates have the same subtangent. Taylor de

Incrementis.

If the points of the axis be endued with an attractive

power which would cause a material point to move in the
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sinusoid, the force would vary as the ordinates. The curve

enjoys this property in common with the logarithmic, in

which, however, the force must be repulsive.

If a sinusoid be described on paper, and the paper wrap-

ped on a cylinder, the radius of which is equal to the axis of

the curve, or to the radius with respect to which the curve

is constructed, and so that the base of the curve shall co-

incide with the circumference of a circle made by the section

of the cylinder by a plane perpendicular to its axis ; all the

points of the curve will lie in the same plane intersecting

the axis of the cylinder at an angle of 45°, and therefore the

curve will be coincident with the ellipse made by the section

of that plane with the cylinder. The rectification of the

sinusoid depends therefore on that of the ellipse, its length

being equal to the circumference of an ellipse, of which the

semiconjugate axis is equal to the axis of the sinusoid, and

the semitransverse axis to the semiconjugate in the ratio of

V& * 1. This beautiful property is nearly evident from

the consideration that the axis, which in the original curve is

considered as the circumference of a circle extended into a

straight line, is, when wrapped round the cylinder, restored

to its proper form, and the sines of the corresponding arcs

are equal to the ordinates, being the sides of a right angled

triangle having an acute angle of 45°.

I am not aware whether it has been noticed that this pro-

perty extends to all harmonic curves. This class of curves

is represented by the equation

y = m sin. x.

If a curve of this kind be rolled round a cylinder in the

manner before described, it will coincide with an elliptical sec-

tion of the cylinder by a plane inclined to the axis at an angle

1
whose tangent is — , Thus the rectification of the har-

ts m
monic curves and ellipses depend on the same principles.
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Art. 430.

The earliest notice we find of this curve is in the works of

Descartes, who must be considered as possessing all the

credit of its invention. In the investigation of the motion

of bodies on inclined planes, he observed, that the part of

the force of gravity which accelerates a body down an in-

clined plane cannot be rigorously considered constant, inas-

much as the direction of the force of gravity is continually

changing, and the direction of the plane continues un-

changed. This suggested the investigation of the figure of

a line on which a body would be uniformly accelerated by

the influence of an uniform force directed to a fixed point.

He therefore inferred the true line of descent to be a spiral

described round the centre of the earth. Being afterwards

solicited by Father Mersenne to give a more explicit account

of what he meant, he answered that the characteristic pro-

perty of the curve was that which has been proved in (433).

Upon this being made known to the mathematicians, the pro-

perties proved in arts (431) and (437), and their consequences,

were immediately discovered. But a complete discussion of the

properties of this curve was reserved for James Bernouilli.

This great geometer was born at Basils £7th Dec. 1654,

and died at the age of 50. He was the first to apply the

new calculus to geometrical investigations, and to bring it

into general use. One of the first curves which he examined

in this manner was the logarithmic spiral. He discovered

it to be its own evolute and involute, its own caustic and peri-

caustic, both by reflection and refraction, the focus of in-

cident rays being at the pole. His enthusiastic admiration

of this curve may be conceived from the following passage

from a paper of his published in the Leipsic acts, and quoted

by Mr. Peacock in his excellent collection of examples on

the calculus.

" Cum autem ob proprietatem tarn singularem tamque



ALGEBRAIC GEOMETRY. 477

admirabilem mire mihi placeat spira hasc mirabilis, sic ut

ejus contemplatione satiari vix queam ; cogitavi, illam ad

varias res symbolice repraesentandas non ineoncinne adhiberi

posse. Quoniam enim semper sibi similem et eandem spiram

gignit, utcunque volvatur, evolvatur radiet; hinc poterit

esse vel sobolis parentibus per omnia similis emblema;

simillima jilia matri, Vel (si rem seternae Veritatis Fidei

mysteriis accommodare non est prohibitum) ipsius seternss

generationis Filii, qui Patris veluti imago, et ab illo ut

lumen a lumine emanans, eidem o^oovciog existit qualiscun-

que adumbratio. Aut, si mavis, quia curva nostra mira^

bilis in ipsa mutatione semper sibi constantissime manet

similis et numero eadem, poterit esse, vel fortitudinis et con=

stantiae in adversitatibus ; vel etiam carnis nostra? post varias

alterationes et tandem ipsam quoque mortem, ejusdem

numero resurrecturae symbolum ; adeo quidem, ut si Ar-

chimedem imitandi hodiernum consuetudo obtineret, libenter

spiram hanc tumulo meo juberem incidi cum Epigraphe

:

Eadem numero mutata resurgo?

It might be further observed, that if a planet moved in a

logarithmic spiral, the sun being in the pole, the curve of a

star's aberration in a plane parallel to the plane of the orbit

would be also a logarithmic spiral. Also, if a body moving

in a logarithmic spiral, the force being at the pole, be

stopped at any point, and allowed to descend towards the

pole, the locus of the point at which it will acquire the

velocity in the curve is a logarithmic spiral. See arts.

(688) (655).

If the pole of a logarithmic spiral be a centre of force, the

law of the force necessary to retain a body in the spiral is

the inverse cube of the distance.

Professor Leslie has described an instrument for

tracing this curve mechanically. See his Geometry of Curve

Lines, p. 436.
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If a logarithmic spiral be described upon the plane of a

great circle of a sphere with the centre as pole, and per-

pendiculars be drawn from every point in it to meet the

surface of the sphere, the extremities of those perpendiculars

will trace out a loxo&romic curve, or, in other words, the

projection of the loocodromic curve on the plane of the

equator is a logarithmic spiral. The loxodromic curve

is the track of a ship which continues sailing towards

the same point of the compass, provided that point be

not one of the cardinal points. Its distinctive property

is that it cuts all the meridians at the same angle. The

properties of this cuirve were fully investigated by James

Bernouilli, being one of those on which the powers of the

calculus were first tried.

The loxodromic curve may be looked upon as a kind of

logarithmic spiral described upon the surface of the sphere,

of which the pole is the pole of the sphere, and of which the

radius vector is the arc of a meridian intercepted between

the point and the pole.

The genesis of the logarithmic spiral may be derived

from the logarithmic. Let a logarithmic be represented by

the equation

y = a*.

With the origin of co-ordinates as centre, and a radius equal

to the linear unit, let a circle be described, and a tangent

to this circle be drawn parallel to the asymptote. Suppose

this tangent a flexible string to which the ordinates y are

attached, so as to continue perpendicular to it, and let it be

wrapped round the periphery of the circle. The ordinates

still retaining the same length, and still continuing to be

perpendicular to the string, will all meet in the centre,

and the portions of them which before were intercepted be-

tween the asymptote and parallel tangent become radii

of the circle emanating from the centre, the parts which lay
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above the tangents being the productions of the radii.

The values of x become arcs of the circle with the radius

unity, so that, if x be changed into w9
and y into r9 the

equation of the curve found by the extremities of the ordi-

nates which have now become radii vectores is

r = a<*9

which is that of the logarithmic spiral.

It is plain that this reasoning is not confined to the

logarithmic spiral* All curves represented by equations

related to rectangular co-ordinates have corresponding

spirals^ whose equations may be derived in the same

manner.

Thus the equations

y
z = poc

%

yec = p,

give two spirals.,

rz = puj*,

rev = p5

called^ for the same reason , the parabolic and hyperbolic

spirals.

Or, as the class of parabolse and hyperbolae in general are

represented by the equations

y
n = px n

\

where m and n are positive integers, so the general classes

of parabolic and hyperbolic spirals are included under the

general equations

r
n = poA

rnco
m = p a

Art 445.

This spiral was first imagined by Conon, a friend of Archi-

medes. A point being supposed to move uniformly towards

the centre of a circle, and at the same time the radius passing
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through it to revolve round the centre with an uniform

angular velocity ; by the combination of these two motions,

the point will describe the spiral. But Conon advanced no

further than merely to imagine its description. All its pro-

perties were discovered by Archimedes, and it has been

hence called the spiral ofArchimedes, because, as Montucla

says, " Celui qui penetre fort avant dans un pays inconnu,

meYite a plus juste titre de lui donner son nom, que celui

qui ne fait que le reconnoitre."

Archimedes was a native of Sicily, born about three cen-

turies before Christ. He was the most illustrious of the

ancients in both geometry and mechanics. Of the latter, as

a science
5
he may be justly styled the father; for until his

time almost no general principles of mechanics were known.

Amongst his most remarkable geometrical discoveries may

be enumerated the relation between spheres, cylinders, and

cones ; the approximation to the quadrature of the circle (see

note on art. 876) ; his discoveries of the properties of conoids

and spheroids, and his quadrature of the parabola. In me-

chanics he first established the condition of equilibrium, that

the weights must be inversely as their distances from the

centre of motion, and the properties of the centre of gravity,

and the methods of finding it. His discoveries in Hydrostatics

were occasioned by the well known circumstance of the

golden crown of Hiero, in which an alloy of silver was sup-

posed to be mixed by the artist, and which fact Archimedes

discovered by weighing it in water, and ascertaining the

specific gravity by the loss of weight. When Syracuse

was besieged by the Homans, he assisted the citizens in de-

fending it by the invention of offensive machines, which

struck such horror into the besiegers, that they were obliged

to discontinue their attack, and turn the siege into a block-

ade. The Syracusans slumbering in too great security, left

part of the walls unguarded on some occasion, whereby the



ALGEBRAIC GEOMETRY. 481

Romans were enabled to scale them and possess themselves

of the town, and Archimedes fell by the hand of a Roman

soldier in the seventy-fifth year of his age.

Art. 454.

The hyperbolic spiral is one of a general class of spirals,

in which, if a material point were to move attracted by a

force directed to the pole, the law of its variation would be

the inverse third power of the distance. One of the most

remarkable circumstances attending the motion in this curve

is, that the centripetal and centrifugal forces are equal, and

therefore the paracentric velocity is uniform.

If the earth's orbit were an hyperbolic spiral, the sun

being at the pole, the curve of aberration of a star in a plane

parallel to that of the earth's orbit would be the involute of

the circle.

Art. 47.1.

The cycloid has been so remarkable for the dissensions it

has created amongst those mathematicians who discovered

its properties, that it has been called the Helen of geometry.

It was first imagined by Galileo, who long sought its qua-

drature without success. Upon this failure he attempted

to discover its relation to the area of the generating circle by

describing a cycloid and its generating circle on a lamina of

matter of uniform thickness, and ascertaining their weights.

The result of this experiment showed the cycloid to be

nearly but not exactly three times the area of the generating

circle, and finding several repetitions of the experiment agree,

he abandoned the inquiry, concluding that the ratio could

not be expressed by rational numbers. This circumstance,

i i
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which certainly does not reflect much honour on the

memory of the great Italian philosopher, has been de-

fended by the example of Archimedes in his quadrature

of the parabola; but this was effected in a very different

manner. Archimedes founded his solution on the abstract

principles of equilibrium, axioms nearly as general and

certain as those of mathematical science itself.

About the year 1630 the same problem was proposed by

Mersenne to Roberval, who, after a period of six years

spent in the cultivation of the geometry of the Greeks, and

particularly the works of Archimedes, gave the solution of

it, and proved the area three times that of the generating

circle. Descartes being apprised by Mersenne of the dis-

covery of Koberval, declared that any one tolerably skilled

in geometry would have solved the problem, and, on the

instant, himself gave a solution for it. This was the founda-

tion of a quarrel between Descartes and Koberval.

Descartes next discovered the method of drawing tangents

to the cycloid, and challenged the mathematicians of the day

to solve the problem, which was effected by Fermat, a geo-

meter who may be considered to rank almost with Descartes

himself.

Subsequently Pascal discovered the quadrature of any

segment of a cycloid, and the contents of the segments of

solids of revolution formed by a cycloid revolving round its

base or axis, and their centres of gravity.

The rectification of the cycloid was discovered by Sir

Christopher Wren, who also discovered the dimensions of the

surfaces of solids of revolution of the cycloid, and the

centre of gravity of a cycloidal arc.

The rectification of the curtate and prolate cycloids was

proved by Pascal to depend on the rectification of an

ellipse.
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The evolute of the cycloid was discovered by Huygens,

who also discovered the remarkable physical property that a

cycloidal pendulum is tautochronous. A cycloid is the

line of swiftest descent between two points so placed, that

the line which joins them shall be neither vertical nor

horizontal.

It is remarkable, that if a material point describe a cycloid

by the attraction of a force parallel to the axis, the law of

the force is the inverse square of the ordinate; a law

analogous to that of universal gravitation. And further,

the times of describing different cycloids, whose bases coin-

cide, observe the harmonic law, their squares being propor-

tional to the cubes of the axes.

Art. 477.

The notation cos.""
1 A signifies the angle, the cosine of

which is a. This very convenient notation is the invention

of Mr. J. F. Herschel, of Cambridge. It is used in the

valuable collection of examples on the Calculus of Finite

Differences, lately published by him-.

Art. 497.

The discovery of this curve followed that of the cycloid.

Its properties were investigated by Roberval, Wattis
9

Lahuere, and others. It is the curve of sines presented

under another point of view ; for the equation

y — r cos. — — r =

being put under the form,

x
y- — r = r cos. —

,

and the origin transformed to the middle point of the axis,

gives

i i 2
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fiC'

y = r cos.
r

which may be expressed,

y = r sin,

\2 ~ r /
which is the equation of the curve of sines.

It is therefore a species of the more general class called

harmonic curves. See note on art. 422.

Art. 506.

The invention of epicycloids is due to Roemer, the Danish

astronomer, illustrious for the discovery of the progressive

motion of light by observations on the satellites of Jupiter.

He invented this class of curves in Paris, about the year

1674, and showed that an epicycloid is the proper figure for

the teeth of wheelwork, so as to prevent as much as possible

the friction arising from their action. The first who gave a

solution for their rectification was Newton, in the first book

of his Principia. Their properties were subsequently in-

vestigated by John Bernouilli. The epicycloids are re-

markable for being among the caustics of the circle. See

art. 668*

Art. 516.

This curve has a remarkable physical property. If a

material point be supposed to move in it attracted by a force

directed to its cusp, the law of the force will be the inverse

fourth power of the distance. Also> the velocity in it bears

to the velocity in a circular orbit, at the same distance^

the invariable ratio a/2 : -v/3.

If a chord be drawn through the cusp of the cardioide, it

will always be equal to the axis; for in its equation, if

if 4- (jo be substituted for w, and the two values of z added^

their sum will be equal to the axis, since
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cos. w = — cos. (# + w).

Also, if tangents be drawn through the extremities of any

of these chords, they will intersect at right angles ; for if

and 3' be the angles under the radius vector and tangent,

we have the condition,

TT-f-a;

0' =

2

CO

and — ;
is obviously equal to the angle under the

tangents.

This curve derives its name from the similitude of its

figure to a heart.

Art. 529.

Dinostratus^ a pupil of Plato, applied this curve to the

quadrature of the circle and the multisection of an angle.

Although the curve has been distinguished by the name of

this geometer, there is some reason to suppose its invention

was antecedent to his time. Proclus mentions the qua-

dratrix as the invention of Hippias. Now the only ancient

geometer of this name was a contemporary of Socrates, and

therefore prior to the time of Dinostratus, The mere cir-

cumstance of the curve being named from Dinostratus is no

more a proof of its being his invention than the name of the

spiral of Archimedes proves it the invention of that geo-

meter.

Art. 5B9.

This curve is named from its inventor TsMrnkausen, a

German mathematician of the seventeenth century. He is

celebrated for having been one of the first to adopt and
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apply the modern inventions of the differential calculus and

the geometry of Descartes. He was also the inventor of

caustics.

Art. 545.

For the origin of the name of this curve, see note on

art. 65%

Art. 5m.

The tractrix has been very erroneously identified with

the catenary. See Hutton's Mathematical Dictionary,

Tractrix. The tractrix received its name from a sup-

position that it is the curve which would be described by a

weight drawn on a plane by a string of a given length, the

extremity of which is carried along the directrix. Euler

has shown that this conclusion is wrong, unless the mo-

mentum of the weight which is generated by its motion be

every instant destroyed. The real track of the weight he

has shown to be a semicycloid with its vertex downwards.

See Euler, Nova Comm. Petrop., 1784. The tractrix was

invented by Huygens.

An instrument is described by Professor Leslie for de-

scribing mechanically the tractrix or its involute the cate-

nary.

Art. 580, et seq.

The method of determining the roots of equations was

probably suggested to Descartes, who appears to have been

the first who used it, by the method of the ancients for

solving determinate problems by the intersection of geo-

metric loci, which originated in the Platonic school. In his

Geornetrie, Descartes constructs equations of the third de-

gree by multiplying them by x == 0, as in art. 585, and
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thereby reduces them to the fourth degree, and constructs

them by the intersection of the circle and parabola. He
also gives similar methods of constructing equations of

superior orders by a curve of the third degree, called the

parabolic conchoid and the circle. Descartes supposed that

the most simple mean of constructing equations by the inter-

section of curves was to select from the different curves

capable of fulfilling the required conditions, those whose

equations were of the simplest form. Newton, however,

was directed in his choice by a different principle. He con-

sidered that the principle of Descartes would make the

parabpla more proper than the circle, since the equation

y* =f px is simpler than any form which the equation of the

circle can assume. He therefore selected those curves as

fittest for the purpose which were most easily described by

continued motion. In this respect he conceived the conchoid

of Nicomedes to be the most proper for the purpose next to

the circle, as the instrument by which it is described (see

note on art. 408) is next in simplicity to the compass.

Newton, however, seems to have overlooked the instrument

described in the note on art. #98 for tracing the ellipse by

continued motion, and which is certainly simpler than the

trammel of Nicomedes.

Art. 588.

The resolution of (jv
m + am) into its factors was first effected

by Cotes, and published in his Harmonia Mensurarum, in

the year 1722, being six years after his death. In the same

year the more general theorem by which

x2m — 9,x
m cos. 9 + 1

is resolved into its factors was published by Moivre in the

Philosophical Transactions. The elegant theorem expressed

by the equation
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(cos. x -f \/ — 1 sin. x)m = cos. mx -f V — 1 sin.«
is also the discovery of Moivre, and that on which the former

depends. It may be established thus : Let

y = sin. x^ v = cos. #,

•.• Jj/ = cos. #&, dv = — sin. ardlr,

J*/ ;±= ^flb, d^x? = — ydx.

If the first be multiplied by */ — 1, and added to the

second, the result is

Ji> -f V — 1^= {— «/ + ^a/~1}^
V cfo + V — 1 4y = (y a/ — 1 + tf)cfa? V — 1

?

... ^±43*=* -i,
v + V—1 y

which, by integration, becomes

log. [v + V — 1y) = ^V- — 1,

W-lv v + </ —ly - e

No constant is added, because when x = 0, j/ = 0, and

v = 1. The values of v and j/ being substituted, we find

cos. x + V — 1 sin. x=:^" 1

,

and therefore in general,

cos. <p + V — 1 sin. <p = ^v=r.

let <p = mx9 and we find

cos. mac — V — 1 sin. w#

and by raising the former equation to the ?wth power,

(COS. X -\- a/ '— 1 sin. x)m = mxV— 1

V (cos. 57 + >v/ — 1 sin, a?)™ = cos. mr -f- \/-~ I sin. m,r.

In the whole range of analysis there is probably no

formula which exhibits more simplicity and elegance in its
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form, and extensive utility in its various applications, than

this. It may be considered as implicitly involving the whole

science of trigonometry. Although it may be somewhat

foreign to the subject of the text, we trust the student will

excuse us for giving him here a few examples of its fer-

tility.

By multiplying the equations

cos. x -f V — 1 sin. x — e
x "~

,

cos. y -V sj — 1 sin. y = e y
l

1>

we find

cos. x cos. y —
- sm. x sm. y + V — 1

(sin. x cos. y + sin. y cos. x) = ^* +
2/) - 1 .

but we have also

cos. (a? + y) + V~l sin. (*+#) = e^^" 1

,

*.• cos. # cos. ?/ — sin. # sin. y -f V — 1

(sin. # cos. 3/ -}~ sin. 3/ cos. a?)= cos. (#+«/) + V— 1 sin. (#4-j/).

The real and impossible parts of this equation must be re-

spectively equal, and therefore

cos. x cos. y — sin. x sin. y = cos. (# 4- y),

sin. # cos. y + sin. «/ cos. # = sin. (x + y).

From these equations may be deduced all the other

formulae of trigonometry.

We can find expressions for the sine and cosine of an arc

in terms of the arc itself from the same formulae by adding

and subtracting the equations

W-i
cos. x + a/ — 1 sin. x = e

cos. x — a/ — 1 sin. x — e~~
x " l

,

the results of which are
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COS.

sin.

X

X

exV-.i±e--xV—i

exV -]

2

\—e--«V—

i

Prom these beautiful formula may easily be deduced the

series for the sin. x and cos. x in powers of x. Euler de-

rived the above expressions from comparing these series

with the developement of e*. See Vol. VII. Misc. BeroL

He also deduced them from the series for multiple arcs. We
shall pursue the results of this formula no farther, having

said enough to excite the young student to further in-

quiry.

Art. 592.

Curves represented by equations, in which the exponents

of the variables, or any of them, are rational numbers, are

called by Leibnitz interscendental, as holding an interme-

diate place between algebraic and transcendental curves.

Art. 593.

In the geometrical treatises on curve lines by Professor

Leslie, the degree of a line is determined by the greatest

number of points in which a right line can intersect it.

This, however, is not any criterion for the degree of a curve

;

for there are many curves of the fourth degree, which no

right line can intersect in more than two points. For ex-

ample, the curve which is discussed in art. 631, when c< b.

It is true, that in this case the curve has a conjugate point

through which a line passing is equivalent to two points of

intersection ; but the existence of conjugate points cannot

be recognised geometrically.

Art. 602.

The principle assumed here, that the equation found by
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eliminating one of the variables from two equations
5
one of

the mth, and the other of the nth degree., cannot exceed the

ninth, degree^ may be thus established : Let the two pro-

posed equations be

xn + a'*"
-" 1 + B !xn"2

. . o V = (2),

in which the co-efficients a
5
b, . « • v and a', B f

? . . • v;

are functions ofy of the following forms

:

a= ay +b,

B = C«/s + Jj/ + £5

Af = aJy + 6'
5

B f = dy- + <py + ^,

Now it is evident that the degree of the final equation

will not be diminished^ if these co-efficients be supposed

only to consist of that term in each
5 which involves the

highest dimension of y. By this condition the several co-

efficients are reduced to

a = ay
3

b = cy\

v = py
m

9

A! =. dy
3' = e f

y%

v' = p
fy?

\

And the equations are reduced to the forms,
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xm + axm~1y+bxm-2
y

2 -\-cxm
-3
y

3
. . . ixym

-1 + vym=0 {S) 9

xn ^axn~ ly-^b]xn~2y-^c]xn~Hf . . . txyn
~1+ v !

y
n= (4).

These equations are less general than (1) and (2) ; but as

far as respects the final equation resulting from the elimina-

tion of either of the variables, its degree is not diminished by

the deficiency of the terms, including the inferior dimensions

of the variables.

Let (8) be divided by y"\ and (4) by y
n
, and the results

are

GM7r + *er-'G) + »*

X
Considering — as the unknown quantity, let the roots of

the first equation r, r\ rf,

3 ... and those of the second

Pi P^ PV
-> • • • a]Qd they may be expressed

(f
-
') G -) (f

-) ••-*

(H.(MG -');••-*
which being multiplied by y

m and y
n respectively,

(x — ry) (oc — r'y) (x — ruy) . . > =0,
(x — py) (x — p'y) (% — p"y) ... = 0.

If the values which fulfil the latter be successively sub-.

stituted in the former, the results are

y
m
(p — r) (p - V) (p - r'O ... =0,

y»(pf - r) (tf—r') (p'~ r") . . . = 0,

^»(p"—r) (p"—r!

) (f—r1

') . . . = 0.

And since the number of roots of the latter cannot exceed

n, the number of these equations cannot exceed n. The

product of these equations is necessarily the equation which
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would result from the elimination of x ; for it becomes '=

for those roots which make its several factors vanish, and

only for those.

It is obvious that the condition which has been intro-

duced affects the numerical values of each 'system of values

ofy and x which fulfil the equation, but it does not increase

or diminish the number of such values, which is the only

object of the present inquiry. This is only a particular

case of a much more general algebraical theorem respecting

the final equation found by eliminating (n — 1) variables

by means of n equations of any proposed degrees. What
has been proved here is sufficient for the particular applica-

tion of the principle made in the text. Students desirous of

inquiring further will find extensive information on this

subject in Gamier s Elemens (FA/gehre, Chap. XXV. His

Analyse Algebrique, Chap. VIII. Also an Essay by M.

Bret, published in the Journal of the Polytechnic School?

Cah. 15, Tom. VIII. The extension of the principle to an

equation involving any even number of variables has been

effected by M. Poisson : see Journal de VEcole Polytech-

niqae> Cah. 11.

Art. 608.

Those who are desirous of further information concerning"

the general properties of algebraic curves are referred to

Cramer, Int. a VAnalyse de Lignes Courbes. Euler's Ana-

lysis Infinitorum. Stirling on Newton's enumeration of

lines of the third order. De Gua, V Usage de VAnalyse, &c.

We conceived that entering further on the subject in the

present treatise would be swelling the volume without offer-

ing any adequate advantage.

Art. 629.

This curve is called the witch. It is the invention of an
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Italian lady, M. Maria Gaetana Agriesi, a celebrated mathe-

matician. She is the author of a work on the algebraic and

transcendental analysis, entitled Analytical Institutions. She

subsequently, according to Montucla, retired to a convent.

Art. 631.

These articles contain a full investigation of the properties

of the general class of curves, of which the lemniscata of

Bernouilli is a very particular case. I am not aware whether

the properties of these curves have been ever investigated.

Art. 633.

This curve was invented by the celebrated Cassini, and is

sometimes called Cassini's ellipse.

Art. 635.

This proposition and its applications were suggested to

me by an article in the works of John Bernouilli. He ap-

plies it to show the relation between the parabola and the

spiral of Archimedes. John Bernouilli derived the idea

from a paper published by his brother James in the Leipsic

acts, in which he supposes the axis of a parabola wrapped

upon the circumference of a circle and its ordinates, there-

fore to converge towards the centre, and proposes to in-

vestigate the spiral so produced.

Art. 636.

This question is solved by Delambre, by considering that

as the suri in the course of each day describes a parallel of

declination, a ray passing through the top of the perpen-

dicular style will describe a conical surface, the intersection

of which with the horizon will be the path of the shadow.

The method given in the text, however, seems more

analytical.
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Art. 638.

Ill this and the following propositions the effect of the

projection of the aberration on the surface of the sphere is

not taken into account. The curve whose plane is parallel

to the ecliptic being determined, its projection may easily be

found.

Art. m&.

The equation of the path of a projectile in "vacuo may be

determined thus: Let the axes of co-ordinates be ver-

tical and horizontal, and the force of gravity be repre-

sented by %m9 the velocity it produces in the unit of time.

This force acting parallel to the axis of y, and there being

no force acting parallel to the axis of x, we have

&— **> dT-°-
By integrating these

JL=: c -Zmt (1), dx = ddt (2),

c and d being the arbitrary constants introduced in the in-

tegration.

By integrating a second time,

y = ct — mtz
, x — cH.

By eliminating t by these equations, we find

c m
y = —05 — -j^X

,

which is the equation of the path of the projectile. Each of

the integrations has its peculiar signification. The value of

—^ determined by the first integration, expresses the ver-

dso
tical velocity, and -=- the horizontal velocity of the pro-

jectile. The equation (9) shows that the horizontal velocity
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is uniform, and expressed by the constant c'. The equation

(1) shows that the constant c expresses the velocity of pro-

jection resolved in the vertical direction.

If h be the height due to the velocity of projection, that

velocity is 2 Vmn. Hence we have

c = £</Hm sin. s,

c 1 = J2 s/mn cos. e.

By these substitutions, the equation of the path of the

projectile assumes the form given in the text.

No constant has been introduced in the second integration,

because y9 #, and t, are supposed to vanish together.

The subjects of this and the next two propositions are

taken from an introductory essay on Central Forces, pub-

lished by the author of the present work, for the use of the

students in the university of Dublin.

Art. 65% 653.

These demonstrations are taken from WheweH's Me-

chanics, where a very detailed account of the various species

of catenaries is given.

The catenary, which has received its name from the pro-

perty proved in this proposition, was first solved by James

Bernoulli. Long before this, Galileo had directed his at-

tention to the curve into which a perfectly flexible string

forms itself, and very inconsiderately, and without any good

reasons.* concluded it to be a parabola. A German geo-

meter, Joachim Jungius, showed by experiment the error of

Galileo, and proved that it was neither a parabola nor

hyperbola. He, however, did not make any attempt at the

true solution of the question. Four great geometers share

the honour of its solution ; the two Bernouillis, James and

John, Leibnitz, and Huygens. The remarkable physical

properties of this curve are,
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1°. Of all curves of the same length joining two given

points, the centre of gravity of the catenary lies the lowest.

This property is very apparent from the mechanical prin-

ciple, that every system of particles of matter will move

amongst themselves, until they settle themselves into that

position in which their centre of gravity will be at the lowest

point which the law of their connexion admits. This phy-

sical property points out a very remarkable mathematical

one, scil., that of all solids of revolution derived from a

curve of a given length joining two given points, that derived

from the catenary has the greatest surface.

£°. The catenary is the figure in which an infinite number

of voussoirs should be placed, in order to form an arch^

which would sustain itself by its own weight.

If the wind acted upon a sail by impact instead of pressure^

the curvature of the sail would be that of the catenary.

James Bernouilli prosecuted the inquiry further, and

assigned the form of catenaries on the supposition that the

thickness and weight of the string were different in different

parts of its extension, and that it was differently extensible,

and also, that the force acting on different parts of it was

different, and varied according to any proposed lawc

Art. 654, 655.

The subjects of these articles are taken from Lardner on

Central Forces.

Art. 657.

This elegant property of the semicubical parabola was

proposed for solution to the mathematicians of Europe by

Leibnitz. The solution was effected by James BernouillL

K K
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ibid.

Note, 454.

(282.) The locus of the intersection

of tangents to an ellipse or hyperbola

inclined to the axes at angles, the pro-

duct of whose tangents is given in an

ellipse or hyperbola, 121.

(283), etseq. Particular applications

of the preceding, 1 22,

(289.) A similar investigatiorfapplied

to the parabola, 1 24.

(290), et seq. The locus of the centre

of the circle inscribed under the focal

radii vectores of an ellipse and hyperbola?

125.

(292.) Given the focus and a tangent

of a parabola, the locus of the vertex is

a circle, 129.

(293.) Given the vertex and tangent,

the locus of the focus is a parabola, 130.

(294.) Given a diameter of a para-

bola and the distance and its parameter,

the locus of the focus is a circle, 13 1.

(
c295.) Given the point where a para-

bola intersects a given diameter, and also

the parameter of that diameter, the locus

of the vertex of the curve is an ellipse,

ibid.

(296), et seq. Given the diameter of

a parabola and a tangent through its

vertex, the loci of the vertex and focus

are right lines, 132.

(298.) A right line of a given length

is terminated in the sides of a given

angle, the locus of a given point upon

it i s an ellipse, ib.
x

Note. On the elliptic compasses, 454.

(299.) A right line passes through a

given point, and is terminated in the

sides of a given angle, the locus of a

point which divides it in a given ratio is

an hyperbola, 133.

(300.) To find a curve of such a na-

ture, that the intercept of a parallel to

the axis of x between the radius vector

and a parallel to the axis of y shall have

a constant magnitude, 134.

(301.) A right line being drawn

through a given point intersecting the

sides of a given angle, a part is assumed

from the given point equal to the part

intercepted between the sides of the

angle, to determine the locus of its ex-

tremity, 135.

(302.) Similar lines of the second

degree having a common axis and ver-

tex, divide secants through the vertex

proportionally, 136.

Note, 455.

(303.) Two similar ellipses or hy-

perbolae have a common centre and co-

incident axes, and through the vertex of

the smaller a tangent is drawn inter-

secting the other ; any two chords of the

greater passing through the point where

this axis meets it, and equally inclined

to this tangent are together equal to two
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chords of the' smaller ellipse parallel to

them and passing through the vertex,

138.

(304.) Three unequal circles being

given, if to every two of them common
tangents be drawn, the three points of

intersection of the tangents to each pair

of circles will lie in the same straight

line, 139.

(305.) Two circles being given, a tan-

gent to one of them intersects the other,

the locus of the intersection of tangents

to the second passing through the points

of intersection, is a line of the second

degree, 140.

(306.) To find the equation of a line

of the second degree touching the three

sides of a given triangle, 141.

(307.) To determine the locus of its

centre, 142.

(308.) To inscribe an ellipse or hy-

perbola in a triangle so as to touch its

base at the middle point, and also to

touch one of the sides at a given point,

144.

(309.) The locus. of the centre of an

ellipse or hyperbola inscribed in a tri-

angle, and touching one side of a given

point, is a right line, ib.

(310.) Given the base of a triangle,

one of the base angles being double the

other, the locus of the vertex is .an hy-

perbola, 145.

(311.) Given in magnitude and po-

sition the vertical angle of a triangle,

whose area is also given, the locus of a

point which divides the opposite side in

a given ratio, is an hyperbola, 146.

(312.) The locus of the extremity of

a portion, assumed upon the sine of an

arc equal to the sum or difference of its

chord and versed sine, is a parabola, ib.

(313.) The ordinate to the axis of a

Jine of the second degree being produced

until the part produced equals the di-

stance of the point where it meets the

curve from the focus, the locus of the

extremity of the produced part is a line

of the second degree, 147.

(314.) The locus of the middle point

of the normal is a line of the second de-

gree, 149.

(315.) A line being inflected from

the origin on the ordinate of a right

line equal to that ordinate, the locus of

the point when it meets it is a line of the

second degree, 150.

(316.) A line being inflected from

the centre of an ellipse upon an ordinate

to the axis equal to that ordinate, the

locus of the point where it meets it is an

ellipse, 151.

SECTION XV.

Of the application of the differential

and integral calculus to curves,

(318.) General method ofdetermining

a tangent to a curve, 152.

Note. On the different methods of

tangents. Roberval's method; exam-
ples of it applied to lines of the second

degree and the cycloid, 455.

(323), et seq. General formulae. for

the subtangent, normal, and subnormal,

155.

(326), et seq. Formulae for passing

from rectangular to polar co-ordinates,

and vice versa, 156.

(327.) The angle under the radius

vector and tangent, 157.

(328.) Note on polar subtangent, 458,

(329.) Method of rectification, 158.

(330.) Method of quadrature, 159.

(331.) Of osculating circles and evo-

lutes, ibid.

Note, 458.

(333.) Centre and radius of osculating

circle, 162.

(337.) Note, 458.

(338.) Evolute determined, 164,

Note, 459.

(340.) Normal of the curve is the

tangent to the evolute, 165.

(342.) Radius of osculating circle

equal to the arc of the evolute, ib.

(344.) The evolute of every alge-

braic curve rectifiable, 166.

(345.) Method of determining asym-

ptotes, 167.

SECTION XVI.

Of the general principles of contact

and osculation.

(347.) Conditions which determine

the degrees of contact, 168.

(352.) Contact of the nth. order, 1 72.

(354.) Order of osculation determined

by the number of constants, 1 73.

SECTION XVII.

Of the singular points of curves.

(363.) Point of inflection, 175.

(364.) Note, 459.

(368.) Multiple points, 177..



CONTENTS, 507

Note. On the determination of mul-

tiple points, 459.

(370.) Double, triple points, &c. 178.

(372.) Cusps of the first and second

kind, ib.

(374. ) Conjugate points, lb.

Note. On the origin of conjugate

points, 462.

SECTION XVIII.

Of the rectification, quadrature, and
curvature of lines of the second de-

gree.

(375.) The rectification of the circle,

179.

(376.) The quadrature of the circle,

181.

Note. On the quadrature of the

circle, 463.

(378.) The quadrature of the ellipse,

ibid,

Note, 463.

(383.) The quadrature of the hyper-

bola, 183.

(386.) The quadrature of the para-

bola, 184.

Note. This quadrature discovered

by Archimedes, 464.

(387.) The osculating circle to a

point in an ellipse or hyperbola, 1 84.

(390.) The osculating circle to a

point in the parabola, 1 85.

(393.) The evolute of the ellipse or

hyperbola, 186.

(396.) The evolute of the parabola,

188.

Note. Van Huraet's rectification of

this curve, and the application of this

method to the parabola and hyperbola,

464.

SECTION XIX.

Of the properties of the logarithmic,

conchoid, cissoid, and other curves
,

both algebraic and transcendental.

(397.) The logarithmic, 189.

Note. Inventor and physical pro-

perty of this curve, 467.

(398.) Equidistant values of y in

geometrical progression, 190.

(400.) The axis of x an asymptote,

ibid.

(401,) The tangent and subtangent,

19L
(403.) The osculating circle and point

of greatest curvature, ibid.

(405.) The quadrature of this curve,

192.

(408.) The conchoid of Nicomedes,
193.

Note. Of the invention ofthis curve.

Description of the trammel of Nico-

medes, an instrument for describing it

by continuous motion. The trisection of

an angle, and the insertion of two mean
proportionals by this curve, 467.

(410.) The tangent and singular

points, 194.

(412.) The cissoid of Diodes, 196.

Note. Of the invention of this curve*;

An instrument for describing it by con-

tinuous motion invented by Newton.
The quadrature of the cissoid. Other
inventions of Diodes, 471.

(4 1 4. ) Of the figure of the cissoid and

its tangent, 197.

(418.) The lemniscata of James Ber-
noulli, 198.

Note. Physical properties of this

curve, 473.

(421.) Its figure and quadrature?

200,

(422.) The curve of sines, its figure

and quadrature, 200.

Note. Of the invention of these

curves. Of harmonic curves, and their

connexion with trigonometrical curves.

The rectification of harmonic curves re-

duced to that of the ellipse, 474.

(427.) The curve of tangents, its

figure and quadrature, 202.

(429.) The curve of secants, 204.

(430.) The logarithmic spiral, 205 o

Note. Of the invention of this curve,

and its several properties. Its physical

properties. Instrument for describing it.

Its relation to the loxodromic curve.

Its genesis derivable from the logarith-

mic. This method generalised and

shown to apply to curves in general,

476.

(431.) Equidistant radii vectores in

geometrical progression, 205.

(434.) Tangent and polar subtangent,

ibid.

(437.) Its rectification and quadra-

ture, 206.

(441.) Its osculating circle and evo-

lute, 208.
'

(445.) The spiral of Archimedes, 209.

Note. Of the invention of this curve

by Conon. Its properties discovered by
Archimedes. Of the other discoveries

of Archimedes, 479.
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(447.) Equidistant radii vectores in

arithmetical progression, 209.

(448), et seq. Its tangent and qua-

drature, 210.

(453.) General class of spirals of

which this is a species, 211.

(454.) Hyperbolic spiral, ibid.

Note. Physical properties, 48 1 •

(456), et seq. Its asymptote and

tangent, 212.

(460), et seq. Its polar subtangent

and quadrature, 213.

(464.) The lituus, its asymptote and

tangent, 214.

(471.) Of cycloids, 215.

Note. Of the inventors of these

curves, 481.

(472), et seq. The prolate, curtate,

and common cycloids, 216.

(477.) The intercept of the ordinate

to the axis between the generating circle

and cycloid, bears a given ratio to the

corresponding arc of the generating

circle, 218.

Note. On the notation cos. _iA, 483.

(479.) The tangent and figure of the

cycloid, 219.

(481.) Geometrical methods of draw-

ing tangents, normals, &c. 220.

(487.) The quadrature rectification

and evolute of the cycloid, 222.

(496.) Remarkable relation between

the common cycloid and the involute of

the generating circle, 2-25.

(497.) The companion of the cvcloid,

ibid.

Note. This curve identical with the

sinusoid, 483.

(502), et seq. The tangent figure and

quadrature of this curve, 226.

(505.) General equation of cycloidal

curves, 228.

(506.) Of epitrochords and epicy-

cloids, ibid.

Note. The inventor of epicycloids,

484.

(510), et seq. Tangent, rectification

and evolute of these curves, 231.

(516.) Of the cardioide, 236.

Note. Physical properties, 484.

(520.) The tangent, quadrature, rec-

tification and evolute of this curve,

238.

(529.) The quadratrix of Dinostra-

tus, 240.

Note. On the inventor of this curve,

485.

(530), et seq, The properties from

which this curve derives its name,
242.

(538.) The multisection of an angle

by this curve, 244.

(539.) The quadratrix of Tshirn-

hausen, ibid.

Note. On the inventor of this curve,

485.

(541), et seq. The figure and qua-

dration of this curve, 245.

(544.) The multisection of an angle

by it, 247.

(545.) The catenary, ibid.

Note, 486.

(547), et seq. Its tangent and rectifi-

cation, 249.

(551), et seq. Its osculating circle

and evolute, 251.

(554.) Its quadrature, 252.

{555.) The involute of the circle, its

tangent and quadrature, 252.

(561.) Its rectification and polar sub-

tangent, 254.

(566.) Remarkable relation between

this curve and the spiral of Archimedes,

255.

(567.) Of the tractrix and equitan-

gen rial curves, ibid.

Note, 486.

(569), et seq. The tangent, figure,

and quadrature of the tractrix, 256.

(572), et seq. The rectification and

evolute of the tractrix, C25S.

(576.) The syntractrix, 261.

SECTION XX.

The nature and properties of the roots

of equations illustrated ly the geo-

metry of curves.

(580.) General method of construct-

ing the value of y for any given value

of a1
, 265.

Note, 486.

If two numbers, substituted for x in

any equation produce results with op-

posite signs, there must be an odd num-
ber of real roots between them, and at

least there must be one, 268.

If two numbers, substituted for ,r in

any equation' give results affected with

the same sign, there must be either no

real root or an even number of real roots

between them, ibid.

If two numbers, whose difference is

less than the least difference of two con-

secutive roots ofan equation, substituted

for ;i' in the equation, give results affected
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with different signs, one and only one

real root lies between them ; and if they

give results affected with the same sign

no real root lies between them, 269.

If two numbers, which include be-

tween them an even number of real and

equal roots, be substituted for x in any

equation, they will give results affected

with the same sign, 270.

If two numbers, which include be-

tween them an odd number of real and

equal roots, be substituted for x, they

will give results with different signs,

ibid.

If numbers greater than the greatest

root of an equation, whether positive or

negative, be substituted for #, they will

continually give results with the same
sign, 271.

Equations ofan even order have either

an even number of real roots or none,

ibid.

Equations of an odd order have al-

ways an odd number of real roots, 272.

Impossible roots exist by pairs, ibid.

Every equation which wants the last

term has a root — 0, ibid.

An equation of an even order, with

the last term negative, has at least two

real roots with different signs, ibid.

By changing the value of the last term

ofan equation, real roots passing through

equality become impossible, and vice

versa, 273.

The equation of limits and its pro-

perties, 274.

(581.) Method of constructing the

roots of equations by the intersection of

curves, 275.

(582.) Constructions for the roots of

a quadratic equation, 276.

(583.) Constructions for the roots of

an equation of the third degree, 278.

(585.) To find a cube which shall

bear a given ratio to a given cube, 285.

(5S6.) To find two mean propor-

tionals, 286.

(587.) The trisection "of an angle,

ibid. •

(588.) The resolution of (xm ± a™)
into its simple factors, 288.

Note, 487.

SECTION XXI.

Of the general properties of algebraic

curves.

(592.) Division of curves into alge-

braic and transcendental, 295.

Curves classed by the degrees of

their equations, 296.

Note, 490.

(595.) The analytical parallelogram

of Newton, 298.

The analytical triangle of De Gua,
299.

(596.) The number of terms in a
general equation, 300,

(597.) How far the angle of ordina-

tion affects the curve, ibid.

(598.) Complex curves, 301.

(600.) An algebraic curve of the nth

, ,
* , n (n + 3)

degree may be drawn through —

-

points, 304.

(601.) The greatest number of points

in which a right line can meet an alge-

braic curve is expressed by the exponent

of its order, 305.

(602.) Two algebraic curves of the

mth and nth order can only intersect in

mn points, 306.

Note. On the degree of a final

equation, 490.

(606.) If two right lines parallel to

two right lines given in position inter-

sect a curve of the n\h order, the con-

tinued products of their segments inter-

cepted between their point of intersection

and the curve will be in a constant ratio,

309.

(607.) Diameters in general, 310.

Curvilinear diameters, 3 1 2.

An absolute diameter, ibid.

Counter diameters, ibid.

Centres in general, 313.

(608.) Classification of lines of the

third order, 314.

Note, 493.

SECTION XXII.

Geometrical problems, illustrative of
the application of the preceding

parts of algebraic geometry*

(609.) Given the base of a triangle

and the ratio of the rectangle under the

sides to the difference of their squares

to determine the locus of the vertex,

315.

(610.) Two right lines, each passing

through a given point, intersect in such

a manner as to. intercept between them

a given magnitude of a right line given

in position to find the curve traced by

their intersection, 316.
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(611.) Given the base and locus of

vertex of a triangle, to investigate the

loci of the points where the inscribed

square meets its side, and also that of

the centre of the inscribed square, 317.

(612.) A given right angled triangle

is so moved, that the vertex of the right

angle, and one extremity of the hypo-

tenuse, describe right lines perpendi-

cular to each other, and given in posi-

tion ; to find the nature of the curve de-

scribed by the other extremity of the

hypotenuse, 319.

(613.) To determine the curve in

which the sine of the angle of projection

varies inversely as the square of the ra-

dius vector (equilateral hyperbola), ibid.

(614.) To find the locus of a point

from which several right lines being

drawn to several given points, the sum
of their 2mth powers will be given, m
being supposed a positive integer, 321,

.

(6 1 5. ) To find the locus of a point,

the difference of the 2mth powers of

whose distances from two given points

is given, m being supposed a positive

integer, ibid,

(6 1 6.) To find the locus of a point

from which the sum of the mth powers

of right lines drawn at given angles to se-

veral given right lines shall be given, m.
being supposed a positive integer, 322,

(617.) To find the equation of a

curve of a given species passing through

any proposed number of given points,

323.

(618.) To investigate the figure and

area of a curve represented by the equa-
ls _ W2,r« .tion cfiij* — y*&'- 16#4= 0, 327.

(619.) To investigate the figure and

quadrature of the curve represented by
the equation #4 — a*aP + aay

2 = 0,

328.

(620.) The ordinate to the axis of a

cycloid being produced until it becomes
equal to the cycloidal arc intercepted

between it and the vertex; to find the

locus of its extremity, 329.

(621.) A circle and a right line inter-

secting it, are given in position, the part

of a radius, or produced radius, inter-

cepted between the circle and right line,

is divided in a given ratio, to determine

the locus of the point of division, 330.

(622.) To investigate the figure and

quadrature of the curve represented by
&*y - x*y — «3 = 0,331.

(623.) To find the equation of the

curve whose subtangent varies as the

rectangle under its co-ordinates, 332.

(624.) To find the equation of a curve

whose area equals twice the rectangle

under its co-ordinates, ib.

(625.) To find the spiral whose area

is proportional to the logarithm of the

radius vector, 333.

(626.) Of two right angles one is

given in position, and the other is so

moved that while one of its sides inter-

sects a side of the fixed angle at a given

point, the intercept of the other side, be-

tween its vertex and the other side of the

fixed angle shall be of a given magni-
tude, to determine the curve traced by
the middle point of this intercept, ib.

(627.) To find the locus of the inter-

section of a tangent to a given circle,

and a line perpendicular to it passing

through^ given point on the circle, 334.

(628.) Two equal parabolas being

placed in the same plane, and so as to

touch at their vertices, let one of them
be supposed to roll upon the other, to

find the loci of its focus andvertex> 335.

(629.) The ordinate to the diameter

of a circle being produced, until the rec-

tangle under the whole produced ordi-

nate, and the absciss, shall be equal to

the rectangle under the original ordinate

and diameter, to investigate the locus of

its extremity, 336.

Note. On the name and inventor of

this curve, 493.

(630.) To investigate the figure of

the curve, whose equation is #4 — cPxP

- V*>sfl + cPl* — <% = 0, 339.

(631.) To find the locus of the inter-

section of the tangent to an ellipse, with

a perpendicular to it passing through

the centre, 340.

Note, 494.

(632.) To determine the locus of the

intersection of-the tangent to an hyper-

bola, and a perpendicular to it through

the centre, 345.

(633.) Given the base and rectangle

under the sides of a triangle, to deter-

mine the locus of the vertex, 347.

Note, 494.

(634.) Given the base and area of a

triangle, to find the locus of the centre of

the inscribed circle, S49.

(635.) Two given curves, one re-

ferred to rectangular, and the other to

polar co-ordinates, are so related that

the ordinates of the one are equal to the
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corresponding radii veetores of the other,

to determine the conditions by which the

equation of either of these curves may
be found from that of the other, 355.

Note, 494.

SECTION XXIII.

Propositions illustrative ofthe applica-

tion of the preceding part of Alge-
braic Geometry to various parts of
Physical Science*

(636.) A right line of a given length

being erected perpendicular to an hori-

zontal plane, to find the nature of the

curve traced out by the extremity of its

shadow, 360.

Note, 494.

(637.) To find the curve traced by the

vertex of the earth's conical shadow, 361.

(638.) If a body revolves in any pro-

posed curve, to find the curve of a fixed

star's aberration as seen from this body,

362.

Note, 495.

(639.) The orbit being a line of the

second degree with the centre of force

at the focus, to find the curve of aberra-

tion, 363.

(640.) The orbit being an ellipse or

hyperbola, with the centre of force at its

centre, to find the curve of aberration,

365.
(6*4 1 .) The orbit being a parabola, the

force acting along the diameters, to find

the curve of aberration, ib.

(642.) The orbit of the. planet being

supposed a circle, with the sun in the

circumference, to find the curve of aber-

ration, 366.

(643.) The orbit of a comet being

supposed parabolic, to find the place of

perihelion from two distances from the

sun, and the included angle, ib.

(644.) The parabolic orbits of several

comets having a common tangent, to

find the locus of the perihelia, 367.

(645.) The parabolic orbits of several

comets intersecting at the same point,

to find the locus of the perihelia, 3,68.

(646.) Projectiles being thrown from

a given point with the same velocity in

different directions, to find the loci of the

vertices, and foci of the parabolae de-

scribed by them, ib.

Note, 495.

(647.)Several projectiles being thrown

m the same direction with different velo«

cities, to find the loci of their- vertices

and foci, 370.

(648.) Given the velocity direction of

a projectile to find the point where it will

meet a given place, and also the time of

flight, ib.

(649.) Given the velocity ofprojection

to find the angle of projection, at which
the distance of the point where the pro-

jectile meets a given plane, shall be a

maximum, 371.

(650.) To find the locus of the empty
foci of the orbits of several planets

having a common point of intersection,

and at that point having the same velo-

city, 374.

(65 i .) To investigate the figure of the

earth from the horizontal parallax of the

moon accurately observed in different

latitudes, 375.

(652.) A perfectly flexible and ine-

lastic chain of uniform density and thick-

ness being suspended from two fixed

points, to find the curve into which it

will form itself by the effect of its own
weight, 376.

Note, 496.

(653.) A flexible and elastic chain is

attached to two fixed points, to find the

curve into which it will form itself by its

own gravity, 377.

(654.) A given orbit is described by a

body round a given point as centre of

force, and from any point in it a body is

projected with the velocity in the orbit

in a direction immediately opposed to the

action of the force, to find the locus of

the point at which it shall cease to recede

from the orbit, 379.

Note, 497.

(655.) A given orbit is described

round a given point as centre of force,

and a body being placed at any point in

the orbit, is moved by the action, and in

the direction of the force, until it ac-

quires the velocity it would have in the

orbit, to find the locus of the point at

which this velocity shall be acquired,

380.

(656.) A material point is moved by
its own weight on a curve, the plane of

which is vertical, to determine the per-

pendicular pressure on the curve, 383.

(657.) To determine a curve such,

that a material point constrained to move
in it by the force of gravity will descend

with an uniform velocity, 388.

Note, 497.
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(658.) A right line fixed at a point in

an horizontal plane is so fixed as to re-

volve in a vertical plane, to determine

the locus of a point in it such, that the

time of descent from it to the fixed point

shall be the same at all elevations, the

friction being supposed proportional to

the pressure, 389.

(659.) Two weights are connected by

a string which passes over a fixed pulley;

one hangs vertically, the other is sup-

ported upon a curve, the plane of which

is vertical, to find the point on the curve

at which the weights will be in equilibrio,

391.

(660.) To find the centre of gravity

of a plane curve, 393.

(661.) To investigate the centres of

gyration and percussion, or oscillation of

a plane curve, 403.

(662.) A vessel sails between two
light-houses, to find the track she must
describe so as to receive an equal quan-
tity of light from each, 416.

(663- ) To find the image of a straight

line in a spherical reflector, 417.

(664.) To find the image of a straight

line in a lens, 41 8.

(665.) To find a refracting curve such,

that parallel homogeneous rays incident

on it, shall be all refracted to the same
point, ibid.

(666.) To determine the caustic by re-

flection of a given curve, 419.

(667.) To find the caustic of the cir-

cle, the radiant being on the circum-

ference, 420.

(668.) To find the caustic of the cir-

cle, the rays being parallel, 421

.

(669.) To find the caustic of the cy-

cloid, the rays being parallel to the

axis, 422.

(670.) To find the caustic of the loga-

rithmic spiral, the radiant being at the

pole, 424.

SECTION XXIV.

Praxis.

This section contains a collection of

questions without solutions, adapted for

general exercise.
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ALGEBRAICAL GEOMETRY.

PART I.

APPLICATION OF ALGEBRA TO PLANE GEOMETRY.

CHAPTER I.

INTRODUCTION.

1. The object of the present Treatise is the Investigation of Geometrical
Theorems and Problems by means of Algebra.

Soon after the introduction of algebra into Europe, many problems in

plane geometry were solved by putting letters for straight lines, and
then working the questions algebraically ; this process, although of use,

did not much extend the boundaries of geometry, for each problem, as

heretofore, required its own peculiar method of solution, and therefore

could give but little aid towards the investigation of other questions.

It is to Descartes that we owe the first general application of algebra to

geometry, and, in consequence, the first real progress in modern mathe-
matical knowledge ; in the discussion of a problem of considerable anti-

quity, and which admitted of an infinite number of solutions, he employed
two variable quantities oc and y for certain unknown lines, and then

showed that the resulting equation, involving both these quantities, be-

longed to a series of points of which these variable quantities were the

co-ordinates, that is, belonged to a curve, the assemblage of all the solu-

tions, and hence called " the Locus of the Equation."

It is not necessary to enter into further details here, much less to point

out the immense advantages of the system thus founded. However, in the

course of this work we shall have many opportunities of explaining the

method of Descartes ; and we hope that the following pages will, in some
degree, exhibit the advantages of his system.

2. In applying algebra to geometry, it is obvious that we must under-

stand the sense in which algebraical symbols are used.

In speaking of a yard or a foot, we have only an idea of these lengths

by comparing them with some known length ; this known or standard

length is called a unit. The unit may be any length whatever : thus, if

it is an inch, a foot is considered as the sum of twelve of these units,

and may therefore be represented by the number 12 ; if the unit is a

yard, a mile may be represented by the number 1760.

But any straight line AB fig. (1) may be taken to represent the unit

of length, and if another straight line C D contains the line A B an exact

number (a) of times, C D is equal to (a) linear units, and omitting the

words " linear units/' C D is equal to (a).

B
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In fig. (l)CDs3 times A B, or C D = 3.

1 2

jl^. _jj ^ _^
£t - ___.£) C , D

If C D does not contain A B an exact number of times, they may have

a common measure E, fig*. (2) ; let, then, C D = m times E=rmE, and

A B =: n E, then C D has to A B the same ratio that m E has to n E, or

7TL 1TL

that in has to n, or that — has to unity ; hence CD= — times A B
n J n

m —
~~ n

In fig. (2) C D ~~ of A B - A
If the lines A B and C D have no common measure, we must recur to

considerations analogous to those upon which the theory of incommen-
surable quantities in arithmetic is founded.

We cannot express a number like *J 2 by integers or fractions consist-

ing of commensurable quantities, but we have a distinct idea of the magni-

tude expressed by J 2, since we can at once tell whether it be greater or

less than any proposed magnitude expressed by common quantities ; and

we can use the symbol jj 2 m calculation, by means of reasoning founded

on its being a limit to which we can approach, as nearly as we please, by

common quantities.

Now suppose E to be a line contained an exact number of times in

A B, fig. (2), but not an exact number of times in C D, and take m a

whole number, such that m E is less than C D, and (ra -f 1) E greater

than C D. Then the smaller E is, the nearer m E and (in + 1) E will

be to C D ; because the former falls short of, and the latter exceeds, C D,

by a quantity less than E. Also E may be made as small as we please
;

for if any line measure AB, its half, its quarter, and so on, ad infinitum,

will measure A B. Hence we may consider CD as a quantity which,

though not expressible precisely by means of any unit which is a measure

of A B, may be approached as nearly as we please by such expressions.

Hence C D is a limit between quantities commensurable with E, exactly

as /J 2 is a limit between quantities commensurable with unity.

We conclude, then, that any line C D may be represented by some one

of the letters a, b, c, &c, these letters themselves being the representatives

of numbers either integral, fractional, or incommensurable.

3. If upon the linear unit we describe a square, that figure is called the

square unit.

Let C D F E, fig. (1), be a rectangle, having the side C D containing

(a) linear units CM, MN, &c, and the side C E containing (b) linear

units C O, O P, &c, divide the rectangle into square units by drawing
lines parallel to C E through the points M, N, &c, and to C D through

the points O, P, &c. Then in the upper row COQD there are (a)

square units, in the second row OPRQ the same, and there are as

many rows as there are units in C E } therefore altogether there are (6 X«)
square units in the figure, that is, C F contains (a b) square units, or
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is equal in magnitude to {a b) square units ; suppressing the words
" square units," the rectangle C F is equal to a b.

If C D = 5 feet and CE = 3 feet, the area C F contains 15 square
feet.

M W

w

The above proof applies only to eases where the two lines containing

the rectangle can be exactly measured by a common linear unit.

Suppose C D to be measurable by any linear unit, but C E (fig. 2) not

to be commensurable with C D ; then, as has been shown, we may find

lines CM, C N commensurable with C D approaching in magnitude as

nearly as we please to C E.
Completing the rectangles C P and C Q, we see, that as C M and C N

approach to C E, the rectangles C P and C Q approach to the rectangle

C F, that is, the rectangle C E, C D is the limit of the rectangle C M,
C D, just as C E is the limit of C M. Let therefore a and b be respect-

ively the commensurable numbers representing C D and C M, and let c be

the incommensurable number expressing C E, then the rectangle C E,

CD = the limit of the rectangle CM,MP= the limit of the number a b,

by the first part of this article, =r the product of the respective limits of

a and 6 - c c.
*

Hence, generally, the algebraical representative of the area of a rec-

tangle is equal to the product of those of two of its adjacent sides.

If b =r a, the figure C F becomes the square upon C D, hence the

square upon C D is equal to {a X a) times the square unit = «2
.

We are now able to represent all plane rectilineal figures, for such

figures can be resolved into triangles, and the area of a triangle is equal

to half the rectangle on the same base, and between the same parallel

lines.

4. To represent a solid figure, it will be sufficient to show how a solid

rectangular parallelopiped may be represented.

Let a, 6, c 9 be, respectively, the number of linear units in the three adja-

cent edges of the parallelopiped ; then, dividing the solid by planes pa-

rallel to its sides, we may prove, as in the last article, that the number of

solid units in the figure is a "Xb Xc, and, consequently, the parallelopiped

equal to axbXc
The proof might be extended to the case where the edges of the paral-

lelopiped are fractional, or incommensurable with the linear unit.

If b ==: c =z a, the solid becomes a cube, and is equal to a X a X a, or a3
.

5. We proceed, conversely, to explain the sense in which algebraic ex-

pressions may be interpreted consistently with the preceding observations.

* That " the product of the limits of two incommensurable numbers is the limit of
their product," may be thus shown. Let v and w be incommensurable numbers, and
let v = m + m' and w = n 4- n1

, m and n being commensurable numbers, and m' and
ri diminishable without limit ; that is, v and w are the respective limits of m and w,

then vw = mn + mnf -f- nm> + m'n', the right-hand side of this equation ultimately

becomes mn
t
and the left-hand side of the equation is the product of the limits.

B 2
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Algebraic expressions maybe classed most simply under the form of

homogeneous equations, as follows :

—

x = a

x2 4~ ax = be

x3 + ax2 + bcx c= eZef

#4 + a#3 + te2 + defa =r gMZ

a?
M

-f «a?
wl™ 1 + bcx

m~ 2 + &c = j^rs ... torn terms.

In the first place, each equation may be understood as referring to

linear units; thus, if L be put instead of the words 'the linear units,' the

equations may be written

x times L == a times L,

a?
2 times 1L -\- ax times L, or (#

2+ ax) times L = 6c times L,

(a?
4 4* «£3 + bcx2 +. de/k) times L == gMZ times L, and so on. The

solution of each equation gives x times L in terms of (#, &, c, . . . ) times

L ; and thus the letters a, 6, c, . . . # are merely numbers, having

reference to lines, but not to figures.

This will be equally true if L is not expressed, but understood; and

it is in this sense that we shall interpret all equations beyond those of the

third order.

The same reasoning would equally apply if we assumed L to represent

the square or cubic unit, only it would lead to confusion in the algebraic

representation of a line.

6. Again, these equations may, to a certain extent, have an additional

interpretation.

For if we consider the letters in each term to be the representatives of

lines drawn perpendicular to each other, the second equation refers to

areas, and then signifies that the sum of two particular rectangles is equal

to a third rectangle ; the third equation refers to solid figures, and sig-

nifies, that the sum of three parallelopipeds is equal to a fourth solid.

Moreover we can pass from an equation referring to areas to another

referring to lines, without any violation of principle; for, considering the

second equation as referring to areas, the rectangles can be exhibited in

the form of squares ; and if the squares upon two lines be equal, the lines

themselves are equal, or the equation is true for linear units.

7. It follows as a consequence of the additional interpretation, that

every equation of the second and third order will refer to some geome-
trical theorem, respecting plane or solid figures ; for example, the second

equation, when in the form X* = a (a — x) is the representation of the

well-known [problem of the division of a line into extreme and mean
ratio.

By omitting the second and third terms of the- third equation, and giving

the values of 2a, a, and a to d, e and jT, respectively, we obtain the alge-

braic representation of the ancient problem of the duplication of the

cube.

8/ The solution of equations leads to various values of the unknown
quantity, and there are then ' two methods of exhibiting these values

;

first, by giving to a, b, c, &c\, their numerical values, and then performing
any operation indicated by the algebraic symbols.
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Thus, if a zz 4, b s= 5, and c = 9,

we may have <# :=: « -f c — 6 = 8 times the linear unit.

ab 20 2 „ , ..

a? = —-£=•—:= 2— of the linear unit,
c 9 9

a? = Vac === V36 s^ 6 times the linear unit.

We can then draw the line corresponding to the particular value of x t

This is the most practical method.

Again, we may obtain the required line from the algebraical result, by
means of geometrical theorems ; this method is called ' the Construction

of Quantities' ; it is often elegant, and is, moreover, useful to those who
wish to obtain a complete knowledge of Algebraical Geometry.

THE CONSTRUCTION OF QUANTITIES.

9. Let x = a -f b.

In the straight line AX, let A
be the point from whence the

value of x is to be measured

;

take A B == a, and B C — b,

then A C = A B + B C = a + b is the value of x.

Let a?=a — 6, in B A takeBD= 6, then A D = AB — B D = a-b.

ab

A D B X

Let then

and x is a fourth proportional to the

three given quantities c, b 9 and a ; hence

the line whose length is expressed by x,

is a fourth proportional to three lines,

whose respective lengths are c, b,

and a. From A draw two lines A C D,

ABE, forming any angle at A ; take

AB = c,BEr:«, and AC-6, join

BC; then, AB : AC::BE :.CD, or

required value of x.

abc be
Let x =r: —7— ; construct y =

B C, and draw D E parallel to

c : b :: a: CD /. CD is the

Let x ~

de

similarly for a?, zz —-, or

abc

gfi

= —, and then x :

ay

d
3

abc + def

gfi

ab'

dtf

gfi
'

a6

1?

abed

==. —— H—~, construct each term separately, and

then the sum of the terms.

10. Let x = *Jab,

Since x* = ab, x is a mean proportional

between a and 6. In the straight line

A B take A C = a, and C B s= b ; upon

A B describe a semicircle, from C
draw C E perpendicular to A B, and

meeting the circle in E ; then C'E is a

mean proportional to A C andC B, (Eu-

clid, vi. 13, or Geometry, ii. 51,) and

therefore C E is the required value of <r.
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The same property of right-angled triangles may be advantageously em-

a2

ployed in the construction of the equation a? = — ; for, take AC s b, and

draw C E perpendicular to AC and equal to a, join A E and draw E B per-

a2

pendicular to A E ; then CBs~,

Let oc =2 *Jab -f cd, x2 = 06 + c<i ss « (6 + — J ss ay by substi-

tution ; construct y, and then a? ss y #y.

Again, a? is a line, the square upon which is equal to the sum of the

rectangles ab, cd. This sum may be reduced to a single rectangle, and

the rectangle converted into a square, the base of which is the required

value of 3;.-—Euclid, i. 45, and ii. 14; or Geometry, i. 57, 58.

Let a?=2 fja? + b"
2

; take a straight line

AB-a, from B draw B C ( ==: 6) per-

pendicular to A B ; AC is the value

of X.

Let x = yV2 + b
2 + c\ from C draw

CD(sc) perpendicular to AC, AD is

the required value of x.

Let x =: V«a - & = J(a+b)(a-b) ;

a? is a mean proportional between a ~f h and a — 6 ; orby taking (in the

last figure but one) A B zz a, and AE^ 6, we have BE= V&2 — 62
-

Let x = ^{aa '+ 62 - c2 ~d2
}, find ^

2 = a? + b
2 and z

2 = c
2 + d«

and then a?.

Let a?—^ 2
-

, find ?/
2 = a8 + —r , and s2 = 62 - c

2
, and

then x ~~ —
2

11. Of course the preceding methods will equally apply, when instead

of the letters we have the original numbers, the linear unit being under-

stood as usual.

Thus<r= vl2 ~ V3. 4 is a mean proportional between 3 and 4
;

hence (see last figure but one) take A C equal four times the unit, and C B

equal three times the unit, C E is the value of x ; or since V 12 ~

^/l6 — 4 = v42 — 22
, by constructing a right-angled triangle of which

the hypothenuse is four times the linear unit, and one side twice that unit :

the remaining side zz vl2.

Similarly a? r= VT= V4~+4 - 1 = J¥~+~22~-~F, which is of

the form Va2 + b
2 - c

2
.
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Let x s= fj"3 ^ d 2- 4- 1. In the last figure let AB,BC, and C D

each be equal to the linear unit, then AD- Ve? ,

Let x = ^23 = V52— 1* — 1*T

L- =7T=\/l = v/|4 = \/&)* +
(î2.

then a; is the hypothenuse of a right-angled triangle, each of whose sides is

half the unit.

Let x = a / _; this may be constructed as the last.

Let x et a/— ^ a /— ; and so on for all numbers, since any finite

number can be decomposed into a series of numbers representing the

squares upon lines.

If the letter a be prefixed to any of the above quantities, it must be in-

troduced under the root.

12. In constructing compound quantities, it is best to unite the several

parts of the construction in one figure,

Thus if x ^ a ± *J~oT^~1j\
in the line A X take A B == a, C
from B draw B C (^ b) perpen-

dicular to A B ; with centre C and
radius a describe a circle cutting

AX in D and D' ; A D and A D'
are the values required :

for A D =,A B 4- B D = a + V^2 - b\

AD' = A B - B IT = a - V«2 - h\

This construction fails when b is greater than a, for then the circle never

cuts the line AX ; this is inferred also from the impossibility of the roots.

13. Since theorems in geometry relate either to lines, areas, or solids^

the corresponding equations must in each case be homogeneous, and will

remain so through all the algebraic operations. If, however, one of the

lines in a figure be taken as the linear unit and be therefore represented

by unity, we shall find resulting expressions, such as x = — , x z=z a/ a ,

x = V a1
-f 6,&c, in which, prior to construction, the numerical unit

must be expressed; thus these quantities must be written — X 1»

da x 1, Va2 +^ x I, and then constructed as above.
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CHAPTER II,

DETERMINATE PROBLEMS.

14. Geometrical Problems may be divided into two classes, Determi-

nate and Indeterminate, according as they admit of a finite or an infinite

number of solutions.

If A B be the diameter of the semi-

circle A E B, and it be required to find

a point C in A B such, that draw

ing C E perpendicular to A B to meet

the circumference in E, CE shall be

equal to half the radius of the circle,

this is a determinate problem, because

there are only two such points in A B,

each at an equal distance from the centre. Again, if it be required to

find a point E out of the line AB such, that joining EA, E B, the in-

cluded angle AEB shall be a right angle, this is an indeterminate

problem, for there are an infinite number of such points, all lying in the

circumference AEB.
The determinate class is by no means so important as the indeterminate,

but the investigation of a few of the former will lead us to the easier com-
prehension of the latter ; and therefore we proceed to the discussion of

determinate problems.

15. In the consideration of a problem, the following rules are useful.

1. Draw a figure representing the conditions of the question.

2. Draw other lines, if necessary, generally parallel or perpendicular to

those of the figure.

3. Call the known lines by the letters a, b, c, &c, and some of the

unknown lines by the letters #, y, z, &c.

4. Consider all the lines in the figure as equally known, and from the

geometrical properties of figures deduce one, two^, or more equations,

.each containing unknown and given quantities.

5. From these equations find the value of the unknown quantities.

6. Construct these values, and endeavour to unite the construction to

the original figure.

16. To describe a square in a given triangle ABC.
Let DEFGbe the required square

C H K the altitude of the triangle.

The question is resolved into finding

the point H, because then the position of

D E, and therefore of the square, is de-

termined.

Let C K = a,: A B — b y C H = cv
;

then by the question, DE^H K,

andDE : AB :: CH : C K,
or D E : b : : . x : a,

;.DE = —, and H K
a

a-~ oo
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bx = a

a + b

Thus, x is a third proportional to the quantities {a -f- &) and a.

In C A take C L =.«, produce C A to M so that LM = 6, join M K,
and draw L H parallel to M K ; C H is the required value of x.

17. In a right-angled triangle the lines drawn from the acute angles to

the points of bisection of the opposite sides are given, to find the

triangle.

Let C E = «, B D - 6, A D = C D = x, A E = E B = y.

Then the square upon C E ~ square upon C A + square upon A E,

or «2 = 4a?
2 + 2/

2

similarly 6 2 = a?
2"+4ya

whence y =s ± \/ J£lZl_2!* Make'any right angle A, and on one ofV
15

the sides take AFt= — , with centre F and radii b and 2 a, describe

circles cutting the other side produced in G and H, respectively ; draw

GI parallel to F H ; then'2A I is the required value of y. Hence AD,
and therefore AC and A B are found, and the triangle is determined.

18. To divide a straight line, so that the rectangle contained by the

two parts may be equal to the square upon a given line b.

Let A B == a
A T>

f
^- /y.

Then the rectangle A P, P B = 6*

or cc (a — x) ==: 6
2

- a l 2
. . x .

— ax = — o

t T) c

/ ''JTs

/
'/'

1
s

1

N
^

ff gj\ a; i»' yo j> J3 a

v,
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Upon AB describe a semicircle, draw B C ( =s b) perpendicular to

A B, through C draw C DE parallel to AB, from D and E draw D P,

E P', perpendicular to A B ; P and P ; are the required points.

If b is greater than —, the value of x is irrational, and therefore the

problem is impossible ; but then a point Q may be found in A B produced,

such that, the rectangle A Q, Q B = 62
.

Let AQ"i,
.*. co (x — a) ss b9j

From the centre O draw the line O C cutting the circle in R,' from R
draw R Q perpendicular to O R, then Q is the required point ; for

O Q = O C - V ("T + 6* / and therefore A Q =
"f"
+ \/—+b\

"" v 4-Let us examine the other root — — ^/ _ _j_ ^ wn icn ;s negative,
£

' 4

and may be written in the form — l\/— + &
2— iL[

; the magnitude

of this quantity, independent of the negative sign, or its absolute magni-

tude, is evidently BQorAQ'.

Now if the problem had been " to find a point Q in either A B pro-

duced, or B A produced, such, that the rectangle AQ, Q B t=z b
2 ", we

might have commenced the solution by assuming the point Q to be in B A
produced as at Q' ; thus letting A Q' = x, we should have x {a + x) ==62

,

and x = — — ± A/ JL '

jl £2, of which two roots the first or -

+ \f— + 6
2 = - <4" - */ — + b

2 \h the absolute value ofv 4 I » v 4
J

the negative root in the last question ; hence the negative root of the last

question is a real solution of the problem expressed in a more general

form, the negative sign merely pointing out the position of the second

point Q ;
. Both roots may be exhibited in a positive form by measuring

x not from A, but from a point F, AF being greater than b ; for letting

FA =: c, and F Q or F Q' = x, we find

a a"

The celebrated problem of dividing a given straight line in extreme and
mean ratio, is solved in the same manner ; letting A P = x we have the

rectangle AB, BP- the square upon AP, or a (a — x) rr <z
2
, whence

a
\/a* + 42 ^ V a2

-i

—

—
; here the negative root, which gives a
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point to the left of A, is a solution of the problem enunciated more ge-

nerally *. J^ .'J4w.ro> 7-z> £?-?c<?/<?
^ py-J- #? . yj .

19. Through a point M equidistant from two straight lines AA' and
B B' at right angles to each other, to draw a straight line P M Q, so

that the part P Q intersected by A A' and B B' may be of a given
length b.

From M draw the perpendicular lines MC, M D.

Let M D = a, D Q = a?, GPs y,

then PQ = PM + MQ,
or b t= Va2 + y*+ Va* + x\

and • — from the similar triangles PCM, M D Q„
y

:. b = */a*+~ +. V^2 + a?

= V^T^ (1 + —)

;

whence a?
4 + 2axB

-f (2&2 — 62) #2 + 2a3
or + a4 ~ 0.

A It Ar

We might solve this recurring equation, and then construct the four

roots, as in the last problems ; but since the roots of an equation of four

dimensions are not easily obtained, we must, in general, endeavour

to avoid such an equation, and rather retrace our steps than attempt its

solution. Let us consider the problem again, and examine what kind of a

result we may expect.

* Lucas de Borgo, who wrote a book on the application of this problem to architecture

and polygonal figures, was so delighted with this division of a line, that he called it the
Divine Proportion,
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Since, in general, four lines PMQ, P'MQ', R S M, R'S'M, may
be drawn fulfilling the conditions of the question, the two former, in all

cases, though not always the two latter, we may conclude that there will

be four solutions ; but since the point M is similarly situated with respect

to the two lines A A', B B', we may also expect that the resulting lines

will be similarly situated with regard to AA' and B B'. Thus, if there be

one line PMQ, there will be another F M Q' such that OQ'" OP, and
OP'=OQ.

Again O S will be equal to O S', and O R to O R'. Hence, if we take

the perpendicular from O upon the line SR for the unknown quantity

(2/), we can have only two different values of this line, one referring to

the lines S R and S' R', the other to P Q and P' Q' ; hence the resulting

equation will be of two dimensions only. In this case the equation is

by12 + 2a?y - ba* = 0.

Again, since MRrMR'we may take M H, H being the point of bi-

section of the line S R, for the unknown quantity, and then also we may
expect an equation, either itself of two dimensions, or else reducible to

one of that order.

LetMH=^#; .\MR= a? + — , M S = a? ~ —

,

and MR :MD ::RS:/0 =
ab

b

ab
MS : OD :: RS : RO~

*-y;
but the square upon RS= square upon RO + square upon S O,

/ ab \ 2 / ab

b*\ V cPb*

.\ a? = ±7 { 0' + 7- ± a Vo* + 62 }

an expression of easy construction ; the negative value of oc is useless : of

the remaining two values that with the positive sign is always real, and
refers to the lines M S R, MS'R'; the other, when real, gives the

lines PMQ, P'MQ'; it is imaginary if b* is less than 8«2
, that is,

joining O M and drawing PMQ perpendicular to O M, if b is less* than

-PMQ. ..: , .'•..vvw^>,-:J <//*•: r -:.-.- 1,

This question is taken from Newton's Universal Arithmetic, and is

given by him to show how much the judicious selection of the unknown
quantity facilitates the solution of problems. The principal point to be
attended to in such questions is, to choose that line for the unknown
quantity which must be liable to the least number of variations.

20. Through the point M in the last figure to draw P M Q so that the

sum of the squares upon P M and M Q shall be equal to the square upon
a given line 6.
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Making the same substitutions as in the former part of the last article,

we shall obtain the equations

** -fa
2 + 2/

2 + a9 = b% xy = a2
,

.\ a?
2 + y* + 2xy = 6

2
, and a? + 2/ ~ ± b,

'a? , . 5 /Ti
a? + — = ± 6, whence <*? = ± — ±4 / Ji flS

or

To construct these four values describe a circle with centreM and radius

—, cutting A Ar in two points L, U ; with centres L, 1/ and radius —
describe two other circles cutting A A' again in four points : these are the

required points.

21. To find a triangle ABC such that its sides A C, C B, B A, and
perpendicular B D, are in continued geometrical progression.

Take any line A B m a for one side, let B C == a?,

AC:CB :: CB:BA :: BA : BD;
hence the triangles A C B, A D B, are equiangular, (Eucl. vi. 7, or

Geometry, ii. 33,) and the angle ABC is a right angle ; also AC =
— , then
a
the square upon A C r= the square upon BC+ the square upon A B

;

x4,

.\ _— a« + a\ or x* - a2
J0

2 - a*'= 0,

whence a? = ± 4/
a9 ± V5«4

of these roots two are impossible, since

a2 v 5 is greater than aq
; and of the

remaining two the negative one is

useless.

and E F = —; uponAF
2

In A B produced take BE = fl V 5

describe a semicircle, and draw the perpendicular E G ; then EG =

4 / \~{a + a ^5)1=: 4 /- —— is the required value of #.

CHAPTER lit.

THE POINT AND STRAIGHT LINE.

22. Determinate problems, although sometimes curious, yet, as they

lead to nothing important, are unworthy of much attention. It was, how-

ever, to this branch of geometry that algebra was solely applied for some
time after its introduction into Europe.- Descartes, a celebrated French
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philosopher, who lived in the early part of the seventeenth century, was
the first to extend the connexion. He applied algebra to the consideration

of curved lines, and thus, as it were, invented a new science.

Perhaps the best way of explaining" his method will be by taking a sim-

ple example. Suppose that it is required to find a point P without a given

line AB, so that the sum of the squares on AP and P B shall be equal

to the square upon A B.

Let P be the required point, and let fall the perpendicular PMonAB,
Let AM = «, MP = y, and ABsa; then by the question, we

have

The square onAB ^ the square on A P + the square on P B.

= the squares on AM, M P + the squares on P M, M B,

or as = (a?
8

-f 7/2) + y
2 + (a — x) 2

- 2^ + 2a* - 2ax + a2

F
.". t/

2 — a x — a:
2

.

Now this equation admits of an in-

finite number of solutions, for giving to

a? or A M any value, such as— ,
—

. ,

~r , &c, we may, from the equation,

find corresponding values of y or MP, each of them determining a sepa-

rate point P which satisfies the condition of the problem.

Let C, D, E, F, &c, be the points thus determined. The number of

the values of y may be increased by taking values of x between those

above-mentioned and this to an infinite extent, thus we shall have an in-

finite number of points C, D, E, F, &c, indefinitely near to each other,

so that these points ultimately form a line which geometrically represents

the assemblage of all the solutions of the equation. This line A CDEF,
whether curved or straight, is called the locus of the equation.

In this manner all indeterminate problems resolve themselves into in-

vestigations of loci ; and it is this branch of the subject which is by far the

most important, and which leads to a boundless field for research*.

23, For the better investigation of loci, equations have been divided into

two classes, algebraical and transcendental.

An algebraical equation between two variables x and y is one which

can be reduced to a finite number of terms involving only integral powers

of #, y, and constant quantities : and it is called complete when it contains

all the possible combinations of the variables together with a constant

term, the sum of the indices of these variables in no term exceeding the

degree of the equation ; thus of the equations

ay -f hoc + c ~ o

ay2
-f- bxy '-\- c $2 + dy + ex +/— o

the first is a complete equation of the first order, and the next is a com-
plete equation of the second order, and so on.

Those equations which cannot be put into a finite and rational alge-

braical form with respect to the variables are called transcendental, for

* For the definition and examples of Loci, see Geometry, iii, § 6 j and the Index,

article Locus.
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they can only be expanded into an infinite series of terms in which the

power of the variable increases without limit, and thus the order of the

equation is infinitely great, or transcends all finite orders.

y == sin. x, and y = cf, are transcendental equations.

24. The loci of equations are named after their equations, thus the locus

of an equation of the first order is a line of the first order ; the locus of

an equation of the second order is a line of the second order ; the locus

of a transcendental equation is a transcendental line or curve.

Algebraical equations have not corresponding loci in all cases, for the

equation may be such as not to admit of any real values of both oo and y\
the equation y

2 + x2 + a2 = is an example of this kind, where, what-

ever real value we give to a?, we cannot have a real value of y : there is

therefore no locus whatever corresponding to such an equation.

THE POSITION OF A POINT IN A PLANE.

25. The position of a point in a plane is determined by finding its situ-

ation relatively to some fixed objects in that plane ; for this purpose sup-

pose the plane of the paper to be the given plane, and let us consider as

known the intersection A of two lines a?X and yY of unlimited length, and
also the angle between them ; from any point P, in this plane, draw P M
parallel to AY, and PN parallel to AX, then the position of the point P
is evidently known if AM and AN are known. For it may be easily

shown, ca? absurdo, that there is but one point within the angle Y AX
such that its distance from the lines A Y and AX is P N and P M re-

spectively.

AM is called the abscissa of the point P ; A N, or its equal M P, is

called the ordinate ; A M and M P
are together the co-ordinates of P ;

Xa? is called the axis of abscissas,

Y y the axis of ordinates. The
point A where the axes meet is

termed the origin.

The axes are called oblique or

rectangular, according as Y A X is

an oblique or a right angle. In

this treatise rectangular axes as the

most simple will generally be em-
ployed.

Let the abscissa AM = «, and

the ordinate MP=y, then if on

measuring these lengths A M and

M P we find the first equal to a
and the second equal to b, we have,

to determine the position of this point P, the two equations

os = a 9 y ==: b

and as they are sufficient for this object, we call them, when taken together,

the equations to this point.

The same point may also be defined by the equation

(y - b) 2 + (a? - af =
for this equation can only be satisfied by the values x sr: a and y ~ b.

Y

a Kr P

co j. A. M X

ar

P'

V
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And in general any equation which can only be satisfied by a single real

value of each variable quantity x and 3/, refers to a point whose situation

is determined by the co-ordinates corresponding to these values.

26. In this manner the position of any point in the angle Y A X can be

determined, but in order to express the positions of points in the angle

YA#, some further considerations are necessary.

In the solution of the problem, article (18), we observed that negative

quantities may be geometrically represented by lines drawn in a certain

direction. An extension of this idea leads to the following reasoning.

When we affix a negative sign to any quantity, we do not signify any

change in its magnitude, but merely the way in which the quantity is to

be used, or the operation to be performed on it. Thus the absolute mag-
nitude of — 5 is just as great as that of + 5 ; but — 5 m&ans that 5 is to

be subtracted, and + 5 ,that it is to be added. As the sign + is applied

to quantities variously estimated, the sign — will have in each of these

various cases a corresponding meaning, necessarily following from that of

the sign ~f . Whatever + means, we must always have — a + a — 0.

Hence we may define — a to be a quantity estimated in such a manner

that the altering it by the operation indicated by + a reduces the result

to nothing. This is properly the meaning of the sign — ; it depends

entirely on that of the sign -fr- in every case.

The symbol of positive quantity is used in a variety of ways; but in

every instance the above principle shows in what way the negative quan-

tity must, as a necessary consequence of the meaning of the positive

quantity, be used.

Thus, if we placed a mark on a pole stuck vertically into the ground, at

some point in the pole which was bare at low water and covered at high

water, and scored upwards the inches from that mark, we might express

the height of the surface by the number of inches above the mark, posi-

tively, when the surface was above the mark ; but at low water when the

surface is below the mark, 11 inches for instance, we should call the

height — 11 ; because when 11 inches were added to the height, (that is,

when the surface of the water was advanced ] 1 inches upwards, which is

the direction in which the positive quantities are supposed to be reckoned,)

the surface would be just at the mark, and would be no inches in height

reckoning from the mark.

Suppose a man to advance directly from a given point p miles in the

first 6 hours of a day, and to go back in the next 6 hours q miles ; at

the end of the 12 hours his advance from the given point would be

(p — q) miles. Thus, suppose p = 10, and q =: 6, he will advance

(10 — 6) or 4 miles. But suppose he recedes 10 miles, then his advance

will in the 12 hours be (10 — 10) or : he will be just where he was at

first. Suppose he recedes 15 miles, at the end of the 12 hours he will be

5 miles behind the original point. Here we say behind, because the move-

ment in the direction of the original advance was considered to he forward.

And it is clear that in this case, from an advance of 10 miles, and a recess

of 15, the advance is — 5; that is, it requires a further advance of 5

miles to make the, man exactly as forward as he was at starting.

Now let us consider a fixed point A, and a line measured from it by

positive quantities in the direction A X. Suppose the line to be described

by the motion of a point from A along

AX; and after the point has been _~-_~~iL~~^^
carried forward (that is, towards X) ^

m linear units, as to B, let it be carried
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A

back n linear units, as to C ; then altogether the advance of the point or

the length of A C will be (m —- n) linear units.

Again, suppose n to become = m
;

that is, let the point be carried back
exactly to A; then the advance of the

point along AX will still be measured
by (m — n) = m — m = 0.

Once more, let n exceed m ; that is, let B C exceed A B ; the advance

of the point will be expressed by
(m — 7i) still ; but this will now C ,___. .

be a negative number, showing by A JJ X
how many linear units the point

must be advanced in order to bring it forward to the original starting point

A. Now any line A C may be considered to be determined by the motion
of a point either simply along A C, or along first A B and then B C.

We see, therefore, if we begin by reckoning distances from A in the direc-

tion A X as positive quantities, we are compelled to consider distances from

A in the opposite direction as negative quantities.

Conversely again, having designated positive quantities by lines in one

direction from a given point, suppose the calculation produces a negative

result, what meaning are we to assign to it ? The negative result shows
how much positive quantity is required to bring the whole result to

nothing. Now positive quantity, by the hypothesis, is distance measured
in the original direction ; therefore the negative quantity shows how much
distance measured in the original direction is required to bring the result

to nothing. But if there be a distance from A, such that a linear units in

the original direction must be subjoined to bring the result to nothing,

(that is, to reduce to nothing the distance from A,) it is clear that this dis-

tance must be that of a linear units measured in a direction from A opposite

to the original direction. That is, the negative quantity must be repre-

sented by lines drawn in the direction opposite to that in which the lines

representing the positive quantities are drawn.

It is immaterial in which direction the line is drawn which we consider

positive : but when chosen, negative quantities of the same kind must be

taken in the opposite direction.

27. We are now able to express the position of points in the remaining

angles formed by the axes, by con-

sidering all lines in the direction

A X to be positive and those in A a;

to be negative: and similarly all

those drawn in the direction A Y
will be considered positive, and

therefore those in A y will be nega-

tive.

We have then the following table

of co-ordinates.

F in the angle X AY, 4- x
9 + y,

Q in the angle Y A #, - «z, + y,

Q' in the angle oc A #, — #,— y»

F in the angle X A y, + cc, — y.

Y

!sr p(1

V X A M

a'

V

V
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Hence the equations to a given point P are x = a, y =i

......... Q .. a? = - «, y =
. . . Q r

. . a? = - a, y =
P' . , a; t= a,y~

28. If, the abscissaAM remaining the same, the ordinate MP diminishes,

the point P approaches to the axis AX ; and when MP is nothing, P is

situated on that axis ; in this case the equations to the point P are

i^c,2/^0: or 2/

2 + (a? — a) 2
s=z 0.

Similarly when the point P is situated on the axis AY, its equations are

x = 0, y = b : or (y - bf -f- «z
2 = 0.

If both A M and M P vanish, we have the equations to the origin A,

x = 0, 3/ = : or y* + ^ = 0.

Ex. 1. The point whose equations are x ~ 4, 2/ — — 2, is situated in

the angle X Ay, at a distance AM^4 times the linear unit from the

axis of 2/, and MF^: twice that unit from the axis of x.

Ex. 2. The point whose equation is (y + 3)2 -f O 4- 2)2 — is situ-

ated in the angle xAy, at distances AL ==z 2, LQ' = 3, from the axes.

Ex. 3. The point whose equations are x z=z 0, y = — 3 is in the line

A y, at a distance = 3 times the linear unit.

Ex. 4. The point whose equation is y* -f (x + a) 2 = 0, is in A a;, at a

distance a from the origin.

The preceding articles are true if the co-ordinate axes be oblique.

29. To find an expression for the distance D between two points P
and Q.

Let the axes be rectangular and
let the equations to

P be x t==: a, y = b

Q x = a', y = b'
;

or in other words, let the co-ordi-

nates of P be A M = a, M P = 6,

and those of Q be A N z a',

N Q = &', draw Q S parallel to AX.
Then the square upon QP =; ^^^...^ ^

the square upon Q S + the square x

upon P S
;

and QS = NM = AM - AN = a -

also P S = PM - Q N = 6 - 6'

A B2 = (a - a') 8 + (6 - &') 8

If Q be in the angle Y A 00 we have AN = -a',

.% D3 = (a + a')
2 + (^ - 60 s

-

If Q be at the origin we have a! = and 6' =
D 2

~f 6
2
, or

&>, draw PM and
let P R be drawn

30. If the angle between the axes be oblique and =
Q N parallel to A Y, and Q S parallel to AX; also

perpendicular to Q S ; then the square upon Q P zz the square on Q S -f-

the square on P S 4- twice the rectangle Q S, S R ;
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and, Q S — a - a\

P S = b - V,

SR = PS cos. PSR
= PScos. YAX
= (6 — 6') cos. (x) ;

.\ D2 —\a - a')
2 + ~ &')

2 + 2 (a - a') (6 - 6') cos. w

;

and when the point Q is at the origin, and therefore af =
9
and 6' = 0,

D2 = a2 + b* + 2 a 6 cos. w.

THE LOCUS OF AN EQUATION OF THE FIRST
DEGREE.

31. To find the locus of an equation of the first degree between two

unknown quantities.

The most general form of such an equation is,

B C 7 .„ B
A 2/ -f B # + C ~ 0, or y z=t — -r- on • —, or 2/ c= «o? + o if — -^t-= «

C
and ~ =r 6 ; we will in the first place consider the equation in its most

A
simple form y = a a?.

Let AX, A Y be the rectangular axes, then a point in the locus will be

determined by giving to x a particular value as 1, 2, 3, &c. ; let AM, MP
and A N, N Q be the respective co-ordinates of two points P and Q thus

determined

;

since y ~ « #, we have

MP-«.AM
andNQ — «.AN
.\ MP: AM::NQ : AN;

therefore the triangles A MP, A N Q are similar, and the angles MAP,
NAQ, equal to one another : hence the two lines A P, A Q coincide. If

a third point R be taken in the

locus, then, as before, AR will

coincide with A P and A Q.

Consequently all the lines drawn
from A to the several points of ^ I V^'

the locus coincide ; that is, all the

points P, Q, R, &c, are in the

same straight line A R, and by

jrivino; negative values to x we
can determine the point S, &c,
to be in the same straight line

R A produced. Hence the

straight line R A S produced

both ways indefinitely, being the

assemblage of all the points de-

termined by the equation y = a <v,

is the locus of that equation.

C 2
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In considering the equation y ~ a x -f b, we observe that the new ordi-

nate y always exceeds the former by the quantity h ; hence taking A E in

the axis A Y equal to b, and drawing the line HEP parallel to S R,
the line H E F is the locus required.

Hence the equation of the first order belongs to the straight line.

32. To explain the nature of the equation more clearly, we will take the

converse problem. To find the equation to a straight line H F, that is, to

find the relation which exists between the co-ordinates, x and y t of each of

its points.

Let A be the origin of co-ordinates, AX, AY the axes ; from A draw
A R parallel to H F, and from any point P' in the given line draw FPM
perpendicular to A X and cutting A R in F.

Let A M = x, M F =r y, and A E = b ;

then MF = PM + PF
= AM tan. PAM + AE
= o? tan. FGX + &;

or y — a x + b, if tan. FGX= a.

If A G sr «, we haveAE- A G. tan. E G A, or b = a a, and there-

fore the equation to the straight line may be written under the form

y = a x + a a.

33. In general, therefore, the equation to the straight line contains two
constant quantities b and «; the former is the distance AE or is the

ordinate of the point in which the line cuts the axis of?/, the latter is the

tangent of the angle which the line makes with the axis of x, for the angle

FGA •=• the angle PAM: hence

tan. FGA= tan.PAMs=-
x

It is to be particularly observed that, in calling oc the tangent of the

angle which the line makes with the axis of x, we understand the angle

FGX and not F G x.

34. In the equation y = oc x + &> the quantities oc and b may be either

both positive, or both negative, or one positive and the other negative ; let

us then examine the course of the line to which the equation belongs in each

case. Now it is clear that the knowledge of two points in a straight line

is sufficient to determine the position of that line; hence we shall only find

the points where it cuts the axes since they are the most easily obtained.

1. a and b positive; /. y = a x Jr b;

Let x = ; ,\ y = 6 ; in A Y take AD =; h;

y = ; /.#= — —; in A x take AB =: —

;

a a

join BD; BD produced is the required locus.

2. a positive and b negative ; ,\ y zz a x — b

;

Let x =r ; ,". y = — 6, in Ay take A C = b ;

b b
y =r ; :. a? =2 — ;in AX take A E ~— ;

oc a

join C E 5 CE produced is the required locus.
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3. a negative and b positive; .'. y £^ — ax -f- b;

Let x = ; .\ y = 6 ; in A Y lake AD = 6

;

w = : ,\ x ^ — ; in AX take AE = —

;

a a

join D E ; D E produced is the required locus.

4. a negative and b negative ;
.'. y z= — a x — b ;

Let x ~ ; :. y =s — b ; in A y take AC -=z b ;

2/ — ; .*. a? = ;mA tT take AB=^—
;a a

join B C ; B C produced is the required locus.

35. The quantities a and b may also change in absolute value.

Let 6 — 0; .". y — rt a x ; and the loci are two straight lines passing

through the origin and drawn at angles with the axis of x whose respec-

tive tangents are ± a.

Let 0=0; ,\ y ~ x ± b ; .\ 2/ — i & and a? = ~r ; the former of

these results shows that every point in the locus is equidistant from the

axis of x, and the latter (or # = 0) that every value of x satisfies the

original equation ; hence the loci are two straight lines drawn through D
and C both parallel to the axis of x.

It has been stated (28), that the system of equations y ss &, x s^

refers to a point ; we here see that the system y t=: 6, x refers to a

straight line ; hence, although the equation x ~ — is generally omitted,

yet it must be considered as essential to the locus.

Let a rr — ; referring to article 32, the equation to the straight line

y . 1
may be written y r= ax ± act or — =r^-f«, which when a == —

becomes y = x ± a ; hence, as before, the system x = ± a, y =-^-»
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or more simply the equation <#= i a denotes two straight lines parallel to

the axis of 3/ and at a distance ± a from that axis.

Again let both a =^ 0, and &z0; and /. the equation y = a a? + 6

becomes ^/ = <r + ; and hence, y t=z 0, x ^z — , and the locus is

the axis of x.

If or s—, and 6 es 0, the equation becomes Qy sn a? + ; ;. « s

and ?/ ss —* Hence the equation <# es denotes the axis of 2/.

36. By the above methods the line to which any equation of the first

order belongs may be drawn.

In the following examples reference is made to parts of the last figure.

Ex. 1. 3 y -- 5 x — 1 sr; ; let # s: 0, ,\ 1/ = — ; on the axis A Y

take A D one-third of the linear unit, then the line passes through D :

again let y s 0, ,\ x =2 — •—
; on the axis Ax takeABs— of the unit,

then the line passes through B ; hence the line joining the points B and D
is the locus required.

Ex. 2. 10 y - 21 x + 6 = ; a line situated like C E.

Ex. 3. y — x is ; let a? t=z .'. y =z 0, and the line passes through

the origin ; also « or the tangent of the angle which the line makes with the

axis of x zz 1, therefore that angle z= 45°; hence the straight line drawn
through the origin and bisecting the angle Y A X is the required locus.

Ex. 4. 5 y — 2 x = 0. The line passes through the origin as in the

last example, but to find another point through which the line passes, let

x = 5; .'. y z=z 2 : hence take AE = 5, and from E draw E P (= 2)

perpendicular to AX; then the line joining the points A, P is the locus

required.

Ex. 5. ay + bx ^ ; a line drawn through A, and parallel to B C.

Ex. 6. y
2 — 3 x2 = ; two straight lines making angles of 60° with

the axis of x.

4
Ex. 7. 3y — 4 =0; take AD s=— of the unit, a line through D

o

drawn parallel to A X is the locus.

Ex. 8. x* 4* # — 2 s= ; take AE^l, and AB = 2, the lines drawn
through E and B parallel to A Y are the required loci.

Ex, 9. y Jr 2x = 4. The equation to a straight line may be put

v x
under the convenient form— -j si, and since when y ~ 0, x ~ #,

and when « s 0, ?/ s 5, the quantities 6 and # are respectively the dis-

tances of the origin from the intersection of the line with the axes ofy and x.

Thus Ex. 9. in this form is ~ + ~ = 1, take A D =s 4, and A E = 2,

join DE, this line produced is the required locus.

37. If the equation involve the second root of a negative quantity its

locus will not be a straight line, but either a point or altogether imaginary :
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thus the locus of the equation y+2xs/— 1 — azziOis a point whose
co-ordinates are x ~ and y = a, for no other real value of x can give a

real value to y ; but the locus of the equation y + x + a V~l = is

imaginary, for there are no corresponding' real values of x and y. (24)

38. We have thus seen that the equation to a straight line is of the

form y =s a x + b f
and that its position depends entirely upon a and b.

By a given line we understand one whose position is given, that is, that

a and b are given quantities ; when we seek a line we require its position,

so that assuming y =2 a x + b to be its equation, a and b are the two inde-

terminate quantities to be found by the conditions of the question : if only

one can be found the conditions are insufficient to fix the position of the

line.

By a given point we understand one whose co-ordinates are given ; we
shall generally use the letters xx

and yY for the co-ordinates of a given point,

and to avoid useless repetition, the point whose co-ordinates are xl and yl

will be called " the point xl} yv" Similarly the line whose equation is

y rr ax 4* b will be called " the line y ==^ a x + by

If in the same problem we use the equations to two straight lines as

y t=i a x + b and y z=i a! x + b
f

, it must be carefully remembered that x
and y are not the same quantities in both equations ; we might have used
the equations y .= a x -j- 6, and Y ^ a'X + b\ X and Y being the

variable coordinates of the second line, but the former notation is found

to be the more convenient.

39. We regret much that in the following problems on straight lines we

1/ x
cannot employ an homogeneous equation as -y- H =1 1. In algebraical

geometry the formulas most in use are very simple, much more so indeed

than they would be if homogeneous : moreover the advantage of a uniform

system of symbols and formulas is so great to mathematicians that it

should not be violated without very strong reasons. To remedy in some
degree this want of regularity, the student should repeatedly consider the

meaning of the constants at his first introduction to the subject of straight

lines.

PROBLEMS ON STRAIGHT LINES.

40. To find the equation to a straight line passing through a given

point.

The point being given its co-ordinates are known ; let them be xL yu and
let the equation to the straight line be y == a x + b ; we signify that this

line passes through the point x1 yu by saying that when the variable ab-

scissa x becomes x^ then y will become yx : hence the equation to the line

becomes

yx
s a x\ +

;.b i=iy
1
~ ax,

substituting this value for b in the first equation, we have

y zz a x + ]}i — a #1

or y - yl
= a (x ~~ x\)
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The shortest method of eliminating b is by subtracting the second equa-

tion from the first, and this is the method generally adopted.

Since a, which fixes the direction of the line, is not determined, there may
be an infinite number of straight lines drawn through a given point ; this

is also geometrically apparent.

If the given point be on the axis of a?, y i
^ 0, and /. y = a (x — xx);

and if it be on the axis of y, x
x
= ;. y — y l

z=i a x.

If either or both of the co-ordinates of the given point be negative, the

proper substitutions must be made : thus if the point be on the axis of x

and in the negative direction from A, its co-ordinates will be — x1 and ;

therefore the equation to the line passing through that point will be

y = a {x -{- xj.

41. To find the equation to a straight line passing through two given

points x\, y Y
and x^ y^

Let the required equation be y ~ a x + b (1)

then since the line passes through the given points, we have the equations

y l
=: ax

x ^ b- (2)

y2
zz ax2 + b (3)

Subtracting (2) from (1)

# — #i =s a (x - xj (4)

Subtracting (3) from (2)

#i — 3fe = « (#i - O
Vi ~~ 2/2

. . a = —
X\ i2?2

Substituting this value of of in (4), we have finally

x
l
— «za

The two conditions have sufficed to determine a and 6, and by their

elimination the position of the line is fixed, as it ought to be, since only

one. straight line can be drawn through the same two points.

This equation will assume different forms according to the particular

situation of the given points.

Thus if the point #2 , y2 be on the axis of <r, we have ?y2 ~ ;

•"• y - y

if it be on the axis oft/, x2
zz0

;

and if it be at the origin both y2 and x
t

.". y - yi = ^-C*-

?/l

..3,= -*.

This last equation is also thus obtained ; the line passing through the

origin, its equation must be of the form yzsax($l) where a is the tangent
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of the angle which the line makes with the axis of a?, and this line passing-

through the point x^ yl9 a must be equal to— /. yt=L — oc.

If a straight line pass through three given points, the following relation

must exist between the co-ordinates of those points : . ; \z^ </<.-, /

(y, <r2
— x\ ?/2) - (yx

<r3
— ocY 2/3) + (y2 «r8 - «r2 y3) = 0.

7
'

7/
;

42. To find the equation to a straight line passing* through a given

point «r3 , 2/3, and bisecting a finite portion of a given straight line.

Let the portion of the straight line be limited by the points ^ yx and

<r2 y25 and therefore the co-ordinates of the bisecting point are —^——-,

4L——£?. hence the required equation is

, > 2/1 + 2/2-23/3
y - 2/3 = * (* - *8) = ^ + g ,

8
„2"^U " ^

43. To find the equation to a straight line parallel to a given straight

line.

Let y ts a x + b (1) be the given line

y = «'# -{- b' (2) .... required line.

then since the lines are parallel they must make equal angles with the axis

of # or «'= a .'. the required equation is

yz=ax + V (3).

Of course V could not be determined by the single condition of the

parallelism of the lines, since an infinite number of lines may be drawn
parallel to the given line ; but if another condition is added, b' will be

then determined: thus if the required line passes also through a given

point x1 yu equation (2) is

y - yx = «' (* - j?0

.*. (3) becomes y— 2/1— a (a? — #0

44. To find the intersection of two given straight lines C B, E D.

This consists in finding the co-ordinates of the point O of intersection.

Now it is evident that at this point they have the same abscissa and ordi-

nate; hence if in the equations to two lines we regard a? as representing the

same abscissa and y the same ordinate, it is in fact saying that they are the

co-ordinates X,Y of the point of intersection O.

^0 /
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Let y=za$ + b be the equation to C B

and y=a'o? + b
f ED

then at O we have Y^aX + 6sa'X + 5'

• • J\, *—

-

"T

iv <v , t
#6' — a& , . ab' — ct'b

and Y = aX + & = ———7- + 6s
« —? a a —a'

Ex. 1. To find the intersection of the lines whose equations are

y == 3# + 1 and y ~ 2x - 4 =3 0. X =s 3 and Y = 10.

Ex. 2. To find the intersection of the lines whose equations are

y - x = and Sy - 2x = 1. X = 1 and Y = 1.

If a third line, whose equation is 7/ = «"# + b'\ passes through the

point of intersection, the relation between the coefficients is

(a V -a'b) - (<*&" - or" 6) + (a' 6" - a" 6') = 0. ^ •

;

45. To find the tangent, sine and cosine of the angle betwen two given

straight lines.

Let y =1 ax + b be the equation to C B

y s= a' x + 6' ED
and 6' the angles which they make respectively with the axis of a? ; then

tan. — tan. d 1 a — a f

tan. DOB = tan. EOC = tan. (0 - 0') ?=

also cos 8 DOB =s

l + tanV0tan.0' l'+'W

1 H«a'
sec. DOB Vr+'c'ta'n.'DOB) 8 ' V(l+a2)(l+a^

and sine DO B = tan. DOBx cos. DOB= a ZjL.
VI + a8

. Vl + a' 2

46. To find the equation to a straight line making a given angle with
another straight line.

Let y =z a x + b be the given line C B,

y ==: a' x + bf required line E D,

/3 = tangent of the given angle DOB.
Then «' = tan. DEC = tan. (B C X — BOD)

_ tan. B C X - tan. BOD _ a - /3

"~
1 +tan.BCX .tan. BOD ~~

1 + «/T

Substituting this value for «' in the second equation,

1 H-CKjb

If the required line passes also through a given point xly yl9 the equa-
tion is
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If D be considered the given point o?n y^ then not only the line DOE
but another (the dotted line in the figure) might be drawn, making a
given angle with B C, and its equation is found, as above, to be

y — 2/1 = r~

—

a v* ~" x^ ;

so that both lines are included in the equation

For example, the two straight lines which pass through the point D
and cut B C at an angle of 45° are given by the equations

y - Vi = —r-r O ~ *i)»
a -J- .

1

2/ — 2/i = 1 O - «0*
1 — «

Also the equation to the straight line passing through D and cutting

the axis of a; at an angle of 135° is

y - Vl
—

^3 O - <zj) = tan. 135° (x - #0 = - (a? - a^),

or 7/ + # = 2/i + *V

47. If the required line is to be perpendicular to the given line, /3 is

infinitely great ; therefore the fraction -~ ~ — ==z — — , or

? + «

a ' ^ _ _
; hence the equation to a straight line perpendicular to a

a

given line y ts «# -J- 6, is 7/ = — —- a? + b
f
.

This may be also directly proved, for drawing O E perpendicular to

B C, as in the next figure, we have a! == tan. OEX- - tan. OEC-
— cot. OCXs : hence in the equations to two straight .lines

a

which are perpendicular to one another we have a a! + 1 = ; and, con-

versely, if in the equations to two straight lines, we find oca' -\- 1 = 0,

these lines are perpendicular to one another.

If the perpendicular line pass also through a given point cc
x yly its

equation is

y — 2/1
= C» — *i)

;

and, of course, this equation will assume various forms, agreeing with the

position of the point x 1 y l ; thus, for example, the line drawn through the

origin perpendicular to the line y s= ax + 6, is one whose equation is

y rs — — a?, for here both xx
and y x

= 0.

48. To find the length of a perpendicular from a given point D {xx y x)

on a given straight line C B.
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Let y = a x -\-b (1) be the equation to C B,

then y — yx
zz — -— (,r — x\) (2) is the equation to the per™

a

pendicular line DOE,

Let |) = DO; then if X and Y be the co-ordinates of O determined

from (1) and (2) we have f, == (X - x,f + (Y - Vlf ; (29)

from (2) Y = y, - (X - x
v) =iaX + b from (1)

«
r= Of (X — ^O -f- Of^i 4*' 6,

/. (« 4 ) (X - a?0 = ^ - a a?i - &,
Of

a 1

(#i - «#i— 6), also Y - y, - - —(X - ct\)

.-. j/ = (X - x
xy + (Y - 2/0

2

= (X - ^)
2 + ~VX ~ ^

1 4- a2

- -^ (X - *,)'

(/ (1-f*
2
)
2 V,/1 J

1 + «2 J

:. P — ± —7= •

</i + «'

The superior sign is to be taken when the given point is above the

given straight line, and the inferior in the contrary case.

If the given line pass through the origin b ~ ; /. p = ± ~z '-.

Vl + «'2

If the origin be the given point, x
x
~ and y x

= ; /. _p = • _ -,

V 1 + cr

There is another way of obtaining the expression for ^?.

Since the equation y z=z a x + 6 applies to all points in C O B, it must
to Q, where M D or y x

cuts COB; :,MQ = « ^ + 6.

Now DO^DQ sin. DQ O,

but DQ = D M - M Q = y, ~ a x\ - b,

and sin. DQO ^ sin. CQM = cos. QC.M = tvtt-tjt ~
sec. QCM
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1

yfl + (tan. Q C M)a Vl + «

2/ L
- «#! - 6

D O or p =?'

V'l + VT
if D was below the

-t* «
line.

49. If the line D E had been drawn making a given angle whose tan-

gent was (3 with the given line C O, the distance D O might be found
;

for instead of equation (2) we shall have

y-yi~ * , p O ~ *i) (
46 ) ;

hence, following the same steps as above, we shall find

_
Vl + a2

This expression is also very easily obtained trigonometrically.

Let y =: sine of the. given angle, then

sin. DOQ

~~
Vi + a* '

y

'

50. The equation to the straight line may be used with advantage in the

demonstration of the following theorem :—
If from the angles of a plane

triangle perpendiculars be let fall

on the opposite sides, these per-

pendiculars will meet in one point.

In the triangle ABC, let A E,

BD, C F be perpendiculars from

A, B and C on the opposite sides
;

let O be the point where AE and
B D meet, then the theorem will

be established by showing that

the abscissa to the point G is A F.

Let A be the origin of co-ordinates,

A B the axis of x,

and A Y, perpendicular to A B, the axis of y.

Let the co-ordinates of C be x^ yx

B x2i :

we have then the following equations,

— Ml
0C X

to A C y (41)

to B D, 3/ = a (# — tfg) := •— — (a? - <r2) (47)

to B C, y - y%
= Vi -y*

(x - *,) (41)

or y
#i *""** x%

(# — #s) since y2 = 0.
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/. to A E, y = ax = — ~ x
;

for the intersection O ofB D and A E we have, by equating the values of y,

— — (X - X2) = - a?,

Z1 3/l _ —
that is, the abscissa of the point O is found to be that of C. "

v ' • Jy?/

In the same manner it may be proved that if perpendiculars be drawn

from the bisections of the sides, they will meet in one point.

Similarly we may prove that the three straight lines FC, KB, and A L,

in the 47th proposition of Euclid, meet in one point within the triangle

ABC.
51. We have hitherto considered the axes as rectangular, but if they be

oblique, the coefficient of x, in the equation to a straight line, is not the

tangent of the angle which the line makes with the axis of x.

Let w = the angle between the axes,

6 t=i the angle which the line makes with the axis of x
;

y — b sin. 9 . ..

then a = J- =-—r—— (33);
x sin. (w — 0)

h remains, as before, the distance of the origin from the intersection of the

line with the axis of y : hence the equation to a straight line referred to

oblique axes is

sin. 9

y
sin. (*>— 0)

Since this equation is of the form y ss a x + & all the results in the

preceding; articles which do not affect the ratio of -? —
- will ber &

sin. (o) -~ 6)

equally true when the axes are oblique.

Thus, articles 40, 41, 42, 43, and 44, require no modification.

To find the tangent (/3) of the angle between two given straight lines.

Let v^ia x + b K *u *•— f jl v\ equations ;

sin. 8 a sin. w .

from «=:-:—- — we have tan. = ———-—-; and, similarly,
sin. (w— 0j

- Y-Ya cos. w

a' sin. w , n . x (a—a f

) sin. o>

tan. 0'= _-——-.; hence /3 = tan. (e-0')= 73T^T7-^:~^ "
l-j~<rcos. o) L-f-cx a r+ (air

a

f

) cos. w

To find the equation to a straight line passing through a given point

x\ yx , and making a given angle with a given straight line.

Let j3 be the tangent of the given angle,

y r= a^ + &, the given line,

y — y y
zz a f {x — Xi), the required line.

From the last formula we have

f
a sin. o>— /3 (1-f-a cos. a>)

sin. w-f (j (a-j-cos. a>)

and the required equation is

a sin. (jj — 8 (l + « cos. w)
u Jl

sin. w-j~|3 (a+ cos. w) v u
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If the lines be perpendicular to each other (3 = — ;

,
l+# cos. to

and the required equation is

a+cos. o)

1+a cos. to

a +cos. u)

To find the length of the perpendicular from a given point upon a given

straight line.

Instead of equation (2), in article 48, we must use the equation just

found, and then proceeding as usual we shall find

(2/i
— a cc1

— h) sin. w
p ~ ~ J{i + 2 « cos. u+a*y

It will be concluded from an observation of these formulas, that oblique

axes are to be avoided as much as possible ; they may be used with ad-

vantage where points and lines, but not angles, are the subjects of discus-

sion. As an instance, we shall take the following theorem.

52. If, upon the sides of a triangle as diagonals, parallelograms be de-

scribed, having their sides parallel to two given lines, the other diagonals

of the parallelograms will intersect each other in the same point*

Let A B G be the triangle, A X, AY the given lines, EBDC,CFAG,

H A I B the parallelograms, the opposite diagonals D E, FG, and H

I

will meet in one point O.

Let A be the origin* AX, AY the oblique axes

x
x y x

the co-ordinates of B
<r2 2/2 . ......... C.

To find the equation to D E ;

let it be y = a x + b

2f2 = otx
l
-\- 6 at D

- y ~ y* — « (^ - ^1)

2/i — &== « 0*2 -ffi) at E

•••y-y. = Flr (*-*i) (1)-

<i 2
-" ^1
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To find the equation to F G

;

y = a x -\- b

y2
z=z + b at F

•• y - y* = a x

— y2 — d x2 at G

•••2/-2/2
'= -f* (2) -

To find the equation to II I ;

y ~ a x -{• b

2^= 0+6 at H
•'• y - Vi = aa?

—
?/i
= or ^ at I

•y-y^-T* (3)-

Equating the values of?/ in (1) and (2) we find X~ -li-1-—~-__^-
;

y x
x2 Xi y%

also equating' the values of y in (2} and (3) we find the same value for X
;

hence the abscissa for intersection 'being the same for any two of the lines,

they must all three intersect in the same point.

Similarly we may prove that if from the angles of a plane triangle

straight lines be drawn to the bisections of the opposite sides, they will

meet in one point.

CHAPTER IV.

THE TRANSFORMATION OF CO-ORDINATES.

53. Before we proceed to the discussion of equations of higher orders,

it is necessary to investigate a method for changing the position of the co-

ordinate axes.

The object is to place the axes in such a manner that the equation to a

given curve may appear in its most simple form, and conversely by the

introduction of indeterminate constants into an equation to reduce the

number of terms, so that the form and properties of the corresponding

locus may be most easily detected.

An alteration of this nature cannot in the least change the form ofthe curve,

but only the algebraical manner of representing it; thus the general equa-

tion to the straight line y — a x + b becomes y = a x when the origin is on

the line itself. Also on examining articles 46 and 51 we see that the sim-

plicity of an equation depends very much on the angle between the axes.
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Hence in many cases not only the position of the origin but also the direc-

tion of the axes may be altered with advantage. The method of perform-

ing these operations is called the transformation of co-ordinates.

54. To transform an equation referred to an origin A, to an equation

referred to another origin A', the axes in the latter case being parallel to

those in the former.

Let A a?, A y be the original axes

A' X, A' Y the new axes

M = cc)
original co-ordinates of P

new co-ordinates, of P

MP -y
A' N = X\

the co-ordinates of the new origin A'

,

AC = a\

CA' = &J

then MP = MN + NP, that is, y = b + Y,

A M r= A C +CM, x = a + X
;

substituting these values for y and cc in the equation to the curve, we have

the transformed equation between Y and X referred to the origin A',,

55. To transform the equation referred to oblique axes, to an equation

referred to other oblique axes having the same origin.

ii ' Mr

Let A#, At/ be the original axe?-,

AX, AY be the new axes,

7i/TT» r original co-ordinates ofM P = y) to

AN=Xl y ,
,-p

Yf new co-ordinates or r.NP
D
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Let the angle x ky zz w, ^AX = 0, ,2? A Y = S'

;

Draw N R parallel to P M, and N Q parallel to A M,
then « = MP = MQ + QP = NR + QP

""
sin. N R A + sin. P Q N

sin. (o sin. (a)

and a? == A M = AR + RM = A R + N Q

sin. A R N sm. N Q P

= V si "' ^ """ ^ + Y
sin

'
fo ~ ^

sin. w sin. oj

X sin. +'Y sin. &
.*. v — :

sin. (x)

^
_ X sin. (w ~ 0) + Y sin. (w - 0')

sin. w

56. Let the original axes be oblique, and the new rectangular, or

o' — e = 90°.

X sin. 0-f Y cos.
.\ 2/

=
:

_
sm. o)

X sin. (&> - 0) — Y cos. (w - 0)
# ^ .

sin. cj

57. Let the original axes be rectangular, or o) s= 90°.

.'. 2/ = X sin. + Y sin. 0',

<r s= X cos. <9 -J- Y cos. 0'

58. Let both systems be rectangular, or io == 90° and fl'— = 90°

.\ ^ s= X sin. -f Y cos. 0,

a? = X cos. — Y sin.

59. These forms have been deduced from the first, but each of them may
be found by a separate process. The first and last pairs are the most
useful. Perhaps they may be best remembered if expressed in the follow-

ing manner.

Both systems oblique, the formulas (55) become

y = {X sin. X A* + Y sin. ¥A4 .
*

A

sm. x Ky
«*= {Xsin. XKy + Ysin. YAy} ^-—

.

J sm. a? Ky
Both systems rectangular, the formulas (58) become

y — X cos. X A 2/ + Y cos. Y A y
x == X cos. X A a? ~f- Y cos. Y A x.

If the situation of the origin be changed as well as the direction of the

axes, we have only to add the quantities a and b to the values of x and y
respectively ; however, in such a case, it is most convenient to perform
each transformation separately,

If the new axis of X falls below the original axis of a?, the. angle must
be considered as negative, therefore its sine will be negative and its cosine
positive. Hence the formulas of transformation will require a slight al-

teration before applied to this particular case.
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Since the values of <r and y are in all cases expressed by equations of the

first order, the degree of an equation is never changed by the transforma-

tion of co-ordinates.

60. Hitherto we have determined the situation of a point in a plane by
its distance from two axes, but there is also another method of much use.

Let S be a fixed point, and S B a fixed straight line ; then the point P is also

evidently determined if we know the length S P and the angle P S B.

If S P= r and PSB = 0, r and 9 are called the polar co-ordinates of

P. S is called the pole, and SP the radius vector, because a curve may
be supposed to be described by the extremity of the line S P revolving

round S, the length of S P being variable. The fixed straight line S B is

also called the axis.

To transform an equation between co-ordinates x and y into another

between polar co-ordinates r and 0,

Draw S D parallel to A X, and let the angle B S D =r 0, and the angle

Let AM = a?,

theny=MP==M<; + QP:= b+r

AC- a,

sin. (0 + 0)

x~~ AM- AC -f SQ = a+r
sin.{w-(0+0)]

C S = 6,

(0

Let S B coincide with S D, or = ;

b + r
Sill. (O

0)

y>

a + r

Sill. 0)

sin. (oj

Sill. U)

61. Let the original axes be also

7T

rectangular, or w = —
;

- y-b + r sin. 01
(H)

s. e] wx = a+ r cos,

and if the origin A be the pole, we have a = and 6—0.
:.y = r sin. 0) ^

x = r cos. 0j '

Of these formulas (3) and (4) are the most useful.

62. Conversely, to find r and in terms of no and y:

from (1) we have

y

_ sin.-fftj— (0+0)} _
~~

sin. (0 + 0)

;. tan. (0 +0) =

£= sin. w cot. (0 +• 0) — cos. w :

(2/ —5) sin. (o

x — a + (y — b) cos. w

= tan -1
|
a? - a + (y •— 6) cos. w

J

?

where the symbol tan."" 1 ^ is equivalent to the words " a circular

whose radius is unity, and tangent «.''

also r2 = (x — a) 9 + (y - 5)
2
-f- 2 (a? - a) (y - 6) cos «. . . (30)

D 2
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7T

63. If the axes are rectangular, orw = — , the pole at the origin, and
z

V
therefore # ~ and b =s= 0, and also ^ 0, we have — = tan. 0, and

x
therefore A -y= tan.

- 1 —
and r* = a?

2 + 2/

s
. . . . (29)

and these are the formulas generally used.

y _ 1
. I

From tan. 6 = -- we have cos. 9 = ^ 1 + (ta„ e)2 *JTT]F
=

a?

(jc V
7 = and sin. = cos. 6 x tan. = > 9 ; hence the value of 9

VV-fo?'2 v 2/

2 + x

may also be expressed by the equations

. or c? - cub. t——

CHAPTER V.

ON THE CIRCLE.

64. Following the order of this treatise, our next subject of discussion

would be the loci of the general equation of the second degree; but there

is one curve among these loci, remarkable for the facility of its description

and the simplicity of its equation : this curve, we need scarcely say, is the

circle; and as the discussion of the circle is admirably fitted to prepare the

reader for other investigations, we proceed .to examine its analytical cha-

racter.

The common definition of the circle states, that the distance of any

point on the circumference of the figure from the centre is equal to a given

line called the radius.

If a and b be the co-ordinates of the centre, x and y those of any point

on the circumference, and r the radius, the distance between those points

is V { (V
""" t>Y + (# ~~ aY } (29) : hence the equation to the circle is

{y ~ by + O — a) 2 = r*

65. To obtain this equation directly from the figure,

let A be the origin,

A X, A Y the rectangular axes,

a:
N
A N = fll .i ,... , c lU
tvj- o — / (

co-ordinates or the centre,
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TV/["p — | those of any point P on the circumference;

BOQC a line, parallel

to the axis of x.

Then the square upon OP — the

square upon P Q + the square upon
OQ,
andPQ = PM-QM = y-6
alsoOQ=AM-AN = x—a\

;. r* = {y— &)* + O - a) 2

or (y- &)*+ (>— a) 5= r
2
(1)

If the axis oft/ or that of*» passes

through the centre, the equation (1)
becomes respectively

(y- *)' + *' = ^1(2)
or

2/
2 +(« — «)

s = n
If the origin be at any point of the circumference -as. E, we have then

the equation of condition a2 + 6 a = r2

; expanding (1) and reducing- it by

means of this condition, we have
y* - 2 6 ?/ + <r

2 _- 2 a a? = (3).

If the origin is at B, B O being the axis of a:, we have 6=0 and a=rr;

.\ ?/
3 -j-V- - 2r# =0

or 2/
3 = 2rx — x2

(4).

Again, placing the origin at the centre O, we have b s==0 and a = ;

•"• y
2+ z2 ~r2

(5).

The above equations are all useful, but those most required are (1), (4),

and (5).

66. Equation (1), if expanded, is

y* + x* -2by — Hax + a2 + 1r ~ r2 =e 0.

This differs from the complete equation of the second order (23) in

having1 the coefficients of a;
2 and y

2 unity, and by having no term containing

the product x y.

Any equation of this form being given, we can, by comparing it with the

above equation, determine the situation of its locus, that is, find the posi-

tion of the centre, and the magnitude of the corresponding circle.

Ex. 1. y
2 + x2 + 4 y — 8 x - 5 = 0.

here b = - 2, a = 4, and a2 + 6
2 - r5 =: - 5 ;

.\ r2 = a2 + ^ + 5 = 25.
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Let A be the origin of co-ordinates, AX, A Y the axes.

In AX take AN= 4 times the linear unit, from N draw NO perpendicular

to A X, but downwards, and equal to 2; then O is the centre of the circle.

With centre O and radius 5 describe a circle; this is the locus required.

The points where it cuts the axis of a? are determined by putting y z? ;

.'. x* - 8x — 5 = 0;

.\ cc = 4± JW} _
hence A B ~ 4 + VsT and AC = 4- JYh

Similarly putting x z=z 0, we find AD-1 and AE^5,
67. The shortest way of describing the locus is to put the equation

into the form (y - b) 2 + (a? — a) 2 = r2„

For example, the equation

y
2 + x* + cy + doc + e = 0,

c
2 d2

becomes, by the addition and subtraction of— and-—,
4 4

3/
9 + cy + -£ + of + dx + — + e - — - -j- = 0,

^ (y + ~-y + O + "gO
8 ^ ~4~" ~ c

'

d c
where we observe directly that — •— and — — are the co-ordinates of the

c
3 4- cZ

2

centre, and that ^ { j— — e} is the radius of the required locus,

Ex. 2.
2/

2
4- «2 + 4 ?/ - 4 x - 8 =

add and subtract 8, and the equation becomes

y
2 + 4 y + 4 -f a?

2 - 4 x +- 4 - 16 =
or (y + 2)

2
-f (a; - 2)

2= 16

hence the co-ordinates of the centre are a = 2 and 6 =s — 2, and the

radius is 4.

Ex, 3. 2 2/* + 2 a?* - 4y — 4a? + 1 = 0; a = 1, b — 1, r = yy-
4. 3/

2 + a;
2 - 6 */ + 4 a? — 3 = ; a = - 2, 6 = 3, r = 4.

2 7 13
5. 6?/ 2

-f 6a?s — 21#- 8 a? + 14 = 0; a — — ~ 6 = — , r = —

.

3 5
6. 7/

2 + o?
a + 4 y - 3a; = 0; a = — , 6= - 2, r = —-•

7. y
8 + a^ — 4?/ + 2a? = 0;a=-l, 6 = 2, rs= VX

In these last two examples there is no occasion to calculate the length of

the radius, for the circumference of the circle passes through the origin of

co-ordinates, as do the loci of all equations which want the last or con-

stant term.

8. #* + ^ -~ 4 y = 0; a = 0, b = 2, r = 2.

9. i/
2
-f a;

2 + 6 a; = ; a = - 3, 6 = 0, r = 3.

10. y
l + a;

2 - 6 j? + 8 = ; a z= 3, b =z 0, /• = 1.

In the last three examples the centre of the circle is on the axes.
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68. We have seen that the equation to the circle referred to rectangular

axes does not contain the product xy, and also that the coefficients of y
2

and x2
are each unity; we have, moreover, seen that generally an equation

of the second degree of this form has a circle for its locus, but there are

some exceptions to this last rule. .

For example, the equation y
2 + x2 -— &y — 12 x + 52 t= is

apparently of the circular form ; its locus, however, is not a circle,

but a point whose co-ordinates are x = 6 and y = 4, for it may be put

under the form (y —- 4)
2

-f- (x — 6)
2 =s 0, the only real solution of which

is x £= 6 and y == 4 ; and this will always be the case when r
2 zn 0, hence

a point may be considered as a circle whose radius is indefinitely small.

Again, the equation y
2

-f- x
2 — 4 y + 2 # -]- 9 = 0, may be put under

the form (y~2)2 + (# + l)
2 — — 4 ; but there are no possible values of

X and y that can satisfy this equation, therefore the locus is imaginary. (24),

69. To find the equation to the tangent to a circle.

Let the origin of co-ordinates be at the centre, and x\ y' any point on
the circumference.

Then the equation to the straight line through a/, y' is

y - y' — a (x - X (

) ;

the equation to the radius through x\ y
f
is y s= — #;

(2/

but the tangent being perpendicular to the radius, we haveas— —- (47.)

or y y' - y'2 ^ — a? a?' + #/2

;

*\ y y
f

-\- x xf = 2/'
2

-j- a?'
2

=r r2
.

The equation yy
f + x xf sr*, thus found, may be easily remembered,

from the similarity of its form to that of the equation to the circle, it

being obtained at once from y
2
-f x2 = r2 by changing y

2 or 3/7/ into ?/ y\
and #2 or a? x into a? a/.

If we take the general equation to the circle, (y — b) 2
-f- (4? — a) 2 == ?

,2

9

the equation to the radius is

- ^- y
'~ h

(.*-«). ...(41)

and the equation to the tangent is

y — y
l ^<x(x — x') = —

/ _ 6

l 0* — ar)

The equation (y
f—b) 2 + (a/— a) 2 = ?

>2 enables us finally to reduce the
equation to the tangent to the form

(y--&) (y'-b) + (a-a) (^-a) ™r2

70. To find the equation to the tangent of a circle parallel to a given
straight line.

Let y == ocx + b be the given line,

and y y' -f x xf
z=l r2 the required tangent, in which x\ y

f are unknown.

f

x'- a

Of: - af-- a

y'- b'

2/' irs a (*-*0
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Since these lines are parallel, —
;

=r, a, (43) or-— —,—— " tx9

y
r

y

:. y' ~ ±
a/1 + <*

2

Hence by substitution in the equation ys- — a? + —^ we have

consequently two tangents can be drawn parallel to the given line.

71. To find the intersection of a straight line and circle :

Let the centre of the circle be the common origin, and let the equations

be y = a x+ b, and y
2 +cc* ~ r2 ; at the point of intersection, y and cc must

be the same for both. .''. r2 — #a = (ax + &)
9
,

whence x == =

—

: — '

1 4- «

there being two values of a?, we have two intersections ; these values may
be constructed, and the points of intersection found.

If r
2 (l-j-«s

) === 62 the two values of x are equal, and the line will

touch the circle. If r
2
(1 -f «2

) is less than 6
2 the line will not meet the

circle.

Ex. 1. if + x* — 25, ?/ + a? =: 1 ; a? = 4 and -3, y = - 3 and 4

Ex. 2. ?/
2 + #a =25, y + a? = 5 ; a? = 5 and 0, y = and 5

Ex. 3. 7/
2 + ^2 = 25, 4 y + 3o? = 2«T; The line touches the circle.

We may observe that the combination of an equation of the first order

with any equation of two dimensions will, as above, give an equation of

the second order for solution ; and hence there can be only two intersec-

tions of their loci.

72. If the axes be oblique and inclined to each other at an angle w, the

equation to the circle is

(y — by + (x — af + 2 (y - b) (x — a) cos. io t= r
2
, (30)

and y
2 + #2 + 2tt/ cos. w = r2 , if the origin be at the centre

;

hence the equation y
2
-f cxy -f a? -f dy + eo? + /= 0, belongs to the

circle in the particular case where the co-ordinate angle is one whose

c
cosine =—

.

Comparing it with the general equation to the circle, we find

2 cos. o) = c, — 2 6 — 2 a cos. w = d,

- 2a — 2b cos. a) = <?, a8 + 6
a + 2a 6 cos. w - r2 = /;
2 e — c <2 2 d — ce

whence, by elimination, we obtain « = -— — , b =
c3 - 4 c

2 - 4

-"-- '';-;* -/i

hence the co-ordinates of the centre and the radius being known, the

locus can be drawn.

Ex. 1. if + ocy -j- or + y + x — 1 =-- ;

here 2 cos. w = ] ; ,\ o; = 60°; hence/ this equation will give a circle if
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the axes be inclined at an angle of 60° ; the co-ordinates of the centre are11 ,2
a = — — b = — ; and the radius =s ~—

^

3' 3
'

V3
The equation to this circle, when referred to the centre as origin, and

4
to rectangular axes, is obviously y

2 + a?
2 zzr* zz —

.

Ex, 2. 7/
s + V¥ . a y + a* - 9' = 0.

This will giv« a circle if the axes be inclined at an angle of 45°, the

centre is at the origin of co-ordinates, and the radius = 3.

Of course c must never be equal to, or greater than, ± 2, for cos. w
must be less than unity.

If the circle be referred to oblique co-ordinates, the equation to the

radius is y — b = y'-b
Co?— a) (41)

at —a
and the equation to the tangent is

(x'—a) 4- (jjj—b) cos. b)

(ay-arO . • . . (51)2/ 2/ ~ (y/_fc)-+ (£'_«) cos. w

and reducing as in article 69 we have the equation to the tangent

(V ~ &) (#' - 6 ) + Cr - «) (#' — a) 4- (a? — «) {y'-^b) cos. w 4- (V
(7/ - 6) cos. o) = r

2
.

«)

73* To find the polar equation to

the circle.

Let the pole be at the origin S, and
the angle P S M (= 0) be measured
from the axis of x.

[ > be rectangular co-ordinates of P

O

Let S M :

MP;
and SN = o

NO= b j"

Let SP- a, SO = c, and angle OSX"«; then by the formulas

(61) or by the figure yz=u sin. 0, x~u cos, 6, a=zc cos. oc, and 6=^c sin. oc.

Substituting these values of x and y in the equation to the circle,

y"+ x2 - 2by - 2 ax + a? + 6
2 - r

2 = 0,

we have

w2 (sin. #)
2
4- w2

(cos. e)
2 — 2 c?/ sin. a sin. — 2 cu cos. oc cos.0 4-

c2 (cos. «)
2
4- c

2
(sin. <x)

2 - r2 = 0,

or u2 — 2cu { sin. sin. 4- cos 9 cos. « } 4- c
2 — r

2 = 0,

or w2 — 2 cz^ cos. (O-a) 4- e
2 -r2 = 0.

74. If a and b are not expressed in terms of the polar co-ordinates

c and a, the polar equation is then of the form

11* - 2 { b sin. + fl cos. } u 4- a2 4- &
8 - rs = 0.
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If the origin be on the circumference we have a2 + 62 ^ r2
3
and there-

fore the equation to the circle becomes

u =z 2 (b sin. + a cos. 0)

If the axis of x passes through the centre, 5 = 0, and the equation is

u2 — 2au cos. 6 -\- a? - r5 =^ 0.

Whence w = « cos. ± V^2 — &2 (sin.#)'2
;

which equation may also be directly obtained from the triangle SPO,

CHAPTER Vie

DISCUSSION OF THE GENERAL EQUATION OP THE
SECOND ORDER.

75. The most general form in which this equation appears is

ay* -\- b oc y -\- c x* -\- d y + e x -\- fzz ;

where a 9
b, c, &c, are constant coefficients.

Let the equation be solved with respect to y and x separately, then

r=
_bj+e± _^_^ {ib,_ Aac)y, + 2Cbe_ 2cd) +_ 4c/} (2).

a C 4/ C

On account of the double sign of the root in (1), there are, in general,

two values ofy; hence there are two ordinates corresponding to the same

abscissa: these ordinates maybe constructed whenever the values of a?

render the radical quantity real ; but if these values render it nothing, there

is only one ordinate, and if they make it imaginary, no corresponding or-

dinate can be drawn, and therefore there is no point of the curve corre-

sponding to such a value of a?. Hence, to know the extent and limits of

the curve, we must examine when the quantity under the root is real,

nothing, or imaginary.

This will depend on the algebraical sign of the quantity

(#* _ 4^ c) x2 ^ 2 (b d — 2 a e) x + d2 — 4 af.

In an expression of this form, a value may be given to a?, so large that

the sio-n of the whole quantity depends only upon that of its first term, or

npon that of its coefficient W — 4 ac% since x2
is always positive for any

real value of x.

For, writing: the expression in the form m ($ + — x + — ) let q be the> o mm
absolute value of the greater ofthe two quantities — and ~ ; then sub-m m
stitutin°" r — i (<J + 1) for a?, the expression becomes
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9
, + 2g+l±— q±— + £-},m m m)

71 7)

which, whatever be the values of— and —-, is positive, and the same ism m
true for any magnitude greater than ± r ; hence the sign of the ex-

pression depends upon that of m.
When b2 —4ac is negative, real values may be given to x, either

positive or negative, greater than ± r, which will render y imaginary.

The curve will then be limited in both the positive and negative direc-

tions of x.

When b
2 — 4 a c is positive, all values of x not less than ± r will

render y real, and therefore the curve is of infinite extent in both direc-

tions of x.

Lastly, when b
2 — 4 a c is nothing, the quantity under the root

becomes
2 (bd~-2ae) x + d* - 4 af.

If b d — 2 a e be positive, real positive values may be given to x,

which shall render y real ; but if a negative value be given to x greater

than -————
, y is imaginary ; therefore the curve will be of in-

2{bd-2ae) ' * & J>

definite extent in the direction of x positive and limited in the opposite

direction.

But if bd — 2ae be negative, exactly opposite results will follow,

that is, the curve will be of indefinite extent in the direction of x negative

and limited in the opposite direction.

Taking equation (2) we should find similar results.

The curves corresponding to the equation of the second degree, may
therefore be divided into three distinct classes.

1. b2 — 4 a c negative, curves limited in every direction.

2. b2 — 4 a c positive, curves unlimited in every direction.

3. b* — 4 a c nothing, curves limited in one direction, but unli-

mited in the opposite direction.

76. First class b
2 — 4 a c negative.

b d _ . 62 - 4ac
Let — -— == «, — -— — I,

— = — fa
2 a 2 a 4 a2

and let x x
and x2 be the roots of the equation

(6
a - 4 a c) x2 + 2 (b d - 2 a e) x + d* - 4 a/= 0.

Then equation (1) or

bx+ d
,

Ab2-4ac
2 . bd-2ae d*-4af

\

becomes by substitution

yz=:ccx + l ± */{-/* O~^0 0~O}
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Let A be the origin of co-ordinates, AX, AY the oblique axes.

Let H B7 be the line represented by the equation y = a x + J, MO
one of its ordinates corresponding; to any value of x between xl

and x2 .

Along the line M O take O P and O F each equal to J { - /* Or—xx)

(x— #s)}, then P and P' are two points in the curve, for

MP -MO + OP= a a? + I + V i
~ f (*-^) 0~^) }

MF-MO - OF= c*tf + Z- Vi"-/* (^-^i) <>~<^) }

If we repeat this construction for all the real values of x which render

the root real we obtain the different points of the curve.

The line H H / is called a diameter of the curve, for it bisects all the

chords ¥¥' which are parallel to the axis of?/.

The reality of?/ depends on the reality of the radical quantity, which last

depends on the form of the factors (a? — a^) and (x — x2), that is, on the

roots xx
and x2. Now these may enter the equation in three forms—real

and unequal—real and equal— or both imaginary.

Case 1. Let x L and «r
a
be real and unequal, take A B = x ly

AB' = x2,

then if x =: xY or x2 the quantity — /a (x—x^) (x~-x2) vanishes, and the or-

dinate to the curve coincides with the ordinate to the diameter, therefore

drawing through B and B' two lines BR and B' IV parallel to AY the

curve cuts the diameter in R and R'.

For all values of a? between x
x
and x2 there are two real values of. ?/, for

x — xl
is positive and x — x2 is negative, and therefore — jjl (x— xj

(x— x.
2) is positive.

For all values of x > x2 or < x
x , — \i (x~x^) (x — x

2)
is negative, the

root being impossible cannot be constructed, hence there is no real value of

y corresponding to such values of #, and therefore the curve is entirely con-

fined between the two lines B R and B r R'.

Similarly by taking equation (2) in (75), we shall find that a straight

line Q Q' is a diameter ; that the curve cuts it in two points Q, Q f
: that

drawing lines parallel to A X through Q and Q' the curve is confined

between those parallels.

We have thus determined that the curve exists and only exists between

certain parallel lines : its form is not yet ascertained. We might by giving
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a variety of values to x between xx and x2 determine a variety of points

P, Q, &c, and thus arrive at a tolerably exact idea of its course, but inde-

pendently of this method, its form cannot much differ from that in the

figure, for supposing it to be such as in fig. (2) a straight line could be
drawn cutting it in more points than two which is impossible (71).

This oval curve is called the Ellipse*

If we require the points where the curve cuts A X
5
put y = 0, then the

roots of the equation ex2 -{-ex -\- fz=i are the abscissas of the points of

intersection, and the curve will cut the axis in two points, touch it in one,

or never meet it, according as these roots are real and unequal, real and
equal, or imaginary. Similarly putting xcOwe find the points, if any,

where the curve meets the axis of y.

Case 2. Let the roots xx and x2 be real and equal,

/. y zz a x + I + (x— Xj) v — /.i

which is imaginary except when x = x^ therefore the locus is the point

2ae — bd 2cd- be
whose co-ordinates are xx and ocxx -± I, or —— and

b2 — 4 a c fr
2 — 4c a c

Case 3. Let x
L
and <r2 be impossible, then no real value can be given to

x to make (a? — x x) (x — x2) negative, for the roots are of the form

dtp -f q "J ~ 1 and ± p — q V— 1 .'• O — #i) 0?-~O = x*zh2px +
p* -j- q

2 =i (x zhp)* 4- cf which quantity is always positive for a real value

of x. Hence in this case the radical quantity being impossible there is no
locus.

We have not examined the equation of x in terms of y at length, for the

results of the latter are dependent on those of the former. By comparing

equations (1) and (2) in (75), we see that c stands in one equation where

a stands in the other, and therefore that the radical quantities are con-

temporaneously possible, equal, or impossible, provided that a and c have

the same sign, which is the case when b
2 ~ 4ac is negative,

In discussing a particular example reduce it to the forms

2/~ ax + l± V{~~ h
l (*— *i) C*-^)}

x—a!y + V± */{-p'(y-yd (y-y*)}
there are then three cases.

Case 1. x
x
and x2 real and unequal. The locus is called an ellipse, its

boundaries are determined from x x , x2i 3/i an^ y* its diameters are drawn
from y = ax + I and x = a!y -j- I', and its intersections with the axes

found by putting x and y successively = in the original equation.

Case 2. x\ and x2 real and equal : the locus is a point.

Case 3. x
x
and x2 impossible: the locus is imaginary.

Ex. 1. 2/

2 - ^ xy + 2 x2 - 2 y - 4 x + 9 = 0. Case 1. Fig. 1.

A B = 2, A B'= 4, A C = 4 - */T, A C - 4 + a/T, A H = 1

Ex. 2. y
2 + xy + x* + y + «r - 5" 0. Case 1.

The curve cuts the diameters when ABr: 2
J-,
AB'= - 3,AC = 24-,

A G' - - 3, and it cuts the axes at distances 1 "7 and —2*7 nearly;

These six points are sufficient to determine its course.
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Ex. 3. i/
2 + 2 xy + 3x*-A.x~ 0. Case 1.

Ex. 4. ?/
2 - 2 (2?7/+3o?2 ~2z/ + 2 lr=0. Case 1.

Ex. 5. 3/
2
-f-2a?

2 -- 10 a? + 12 = 0. Case 1.

Ex. 6. 2/
2 - 2 j?y + 3 x2 — 2 2/

- 10 x + 19 ~ 0. Case 2. The in-

tersection of the diameters in Ex. 1.

Ex. 7. y
2 - 4=xy + 5 a?

2 + 2y— 4 x + 2 t= 0. Case 3.

It is to be observed that no accurate form of the curve is here found,

that will be hereafter ascertained, all that we can at present do, is to obtain

an idea of the situation of the locus.

77. Second class, b
2 — 4 a c positive.

Arranging and substituting as in (76) the equation becomes

y = a x -f I ±aJ {/x (a?—#0 (>-~a?2)}

Let H H' be the diameter whose equation is y = a x + £.

Then as before there are three forms of the roots xx
and x2 .

Case 1. Let xx and <.r2 be real and unequal, let AB ^ ^and AB' = x2 ,

draw B R, B'R7 parallel to AY, the curve meets the diameter in R and

7i-r

R'. The radical quantity is imaginary for all values of x between xx and

#2 but real beyond these limits, hence no part of the curve is between the

parallels B R, B' R', but it extends to infinity beyond them.
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Taking the equation for x in terms of ?/, we may draw the diameter

QQ' and determine the lines C Q, C Q' parallel to AX between which
no part of the curve is found, and beyond which x is always possible.

From this examination it results that the form of the locus must be some-
thing like that in fig. 1, consisting of two opposite arcs with branches pro-

ceeding to infinity.

This curve is called the Hyperbola.

We must observe that the second diameter does not necessarily meet
the curve, for the contemporaneous possibility or impossibility of the radical

quantities depends on the signs of a and c, and these may be different in

the hyperbola ; so that one radical quantity may have possible and the

other impossible roots.

Case 2. x l
and x2 real and equal.

y =z cc x -f- 1 + (x — Xy) vp
this is the equation to two straight lines.

Case 3. x
x
and x2 imaginary ; whatever real values be given to x the

radical quantity is real, and therefore there must be four infinite branches.

Also since \l (x— xx) (x— x2) can never vanish, (76, Case 3.) the diameter

H H ; never meets the curve, but we may draw the other diameter as in

the first case.

If neither diameter meets the curve, yet they will at least determine

where the curve does not pass, we must then find the intersections with

the axes. If these will not give a number of points sufficient to deter-

mine the locality of the curve we must have recourse to other methods
to be explained hereafter.

In discussing a particular example reduce it to the forms

y zz ax + I ±l aJ { /a (x—Xj) (x— x2)}

x^ody+v± V {/*(y-#i) (y-y*)}

there are then three cases.

Case 1. x\ and x2 real and unequal. The locus is an hyperbola, its

boundaries determined from x x , o?
2 , y l

and y2 , the diameters are drawn from

y = ax 4- I and x = a! y + Z', and its intersections with the axes found

by putting x and y separately equal nothing.

Case 2. x x
and x2t real and equal. The locus consists of two straight

lines which intersect each other.

Case 3, xl
and x2 impossible. The locus is an hyperbola, draw the

diameters, and find the intersection, if any, of the curve with either dia-

meter and with the axes.

Ex. 1. y* — Sxy + x2 + 1 — 0. Case 1. Fig. 1. The origin being

at the intersection of the dotted lines.

Sx 2x 2
The equations to the diameters are y = -— and y = — , AB'= —— *

2 3 V 5

AB ~ - —,AC'= ^AC-
\/ 5 V 5 a/ b

Ex. 2. y* — 2 x y — x° + 2 = 0. Case 1. The two diameters pass

through the origin and make an angle of 45° with the axes, the second

Q Q' never meets the curve, AB'^ 1 and AB- — 1 ; the curve inter-

sects the axis of x at distances ± V 2.
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Ex. 3.

Ex. 4.

Ex. 5.

Ex. 6.

Ex. 7.

Ex. 8.

4y B— 4#y— 3a?3 + 8 3/-+4,r+16 = 0. Case 1.

^a— 4o?y — 5a?a - 2y + 40* - 26 = 0. Case 1.

y
2 — 6 a??/ + 8 x2

-f 2 x — 1 — 0. Case 2. The equations

to the two straight lines are y — 4 x + 1 = 0, and

y — 2 # - 1 = 0.

2/2 + 3 a? y + 2 z* + 2 2/ + 3 a; + 1 = 0. Case 2.

y
2 - Axy — os

2 + 10 os - 10 = 0. Case 3. Fig-. 2.

2/

2 + 3 x y + <%
2 + 2/ + a? = 0. Case 3. Fig. 3.

Here neither diameter meets the curve ; but the curve passes through

the origin and cuts the axis of x at a distance — 1, and that of y also at

a distance — 1.

Ex. 9. ?/
3 — x2 - 2 y -f 5 a? - 3 = 0. Case 3.

The diameters are parallel to the axes, but the curve never meets that

5
diameter whose equation is x 1=1 —-.

Ex. 10. 2/
2 - #* — 2/ =-°' Case 3 -

78. Third Class, b* - 4 a c = 0.

In this case the general equation becomes

2/= ~ fea+ d
± Tr" VI 2(6d ~ 2«e) a + d2 - 4 a/} (1)2a

Let -

2a

h d _^ 7
bd — 2 ae ^

2a~
~ "' ~"

~2a~
" '

' 2^
And let ^ be the root of the equation

2 (6 d — 2 a e) a? + d2 - 4 cr/= 0.

Substituting equation (1) becomes

y = «jc + Z ± V{ v (^~^i)}

The locus of 2/ — a ^ + I is a diameter H H' as before.

Let v be positive, then if o; = «r
1

the root vanishes ; or if A B = x l

and B R be drawn parallel to

A Y, the curve cuts the diameter

in R. As «r increases from x Y
to

.od, 2/ increases to qd, hence there

are two arcs R Q, RQ' extending

to infinity. If x be less than #., y is

impossible, or no part of the curve

extends to the negative side of B.

Let v be negative, then the A s

results are contrary, and the curve only extends on the negative side

of B ; this case is represented by the dotted curve.

This curve is called the Parabola.

,
/( d2 - 4 a f

If'bd-2ae = 0, y = ax + I ± y/ \——^i
and the locus consists of two parallel straight lines; and, according as

c£s _ 4 af i s positive, nothing, or negative, these lines are both real, or

unite into one, or are both imaginary.

In discussing a particular example, reduce it to the form

y.7z ax ^l ± a/{v (>~^i)}
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Case 1. v positive or negative. The locus is called a" parabola; draw
the diameter and find the points where the curve cuts the axes and dia-

meter.

Case 2. v ==r 0. The locus consists of two parallel straight lines, or

one straight line, or is imaginary.

Ex. 1. y*~2xy + x*~2y - 1 =0. Case J.

Ex.2.
2/

2 ~~ 2xy + x* -< 2y - 2# = 0. Case 1.

Ex.3. ,y* + 2xy + x2 + 2y + a? + 3 = 0. Casel.

Ex. 4. y* — 2xy + x2 - 1 = 0. Case 2. Two parallel straight lines.

Ex. 5. f- - 2xy -|- a;
9 +'2y - 2j?+1=='o; Case 2. One straight line.

Ex. 6. ?/
a + 2x y + #9

-f 1 =0. Case 2. Imaginary locus.

79. Before we leave this subject, it may be useful to recapitulate the.

results obtained from the investigation of the general equation

a y
2 + b x y + c x2 + d y + e x + /= 0.

If b9 — 4ac be negative, the locus is an ellipse admitting of the fol-

lowing varieties :<

—

1. c = a, and —• = cosine of the angle between the axes, locus a

circle. (72.)

2. (bcl - 2a e)- = (6
2 - 4 a c) (d 2 — 4 af). Locus a point.

3. {bd— 2aeY less than (7/
2 — 4ac) (d2 — 4a/). Locus ima-

ginary.

If b
2 — 4 a c be positive, the locus is an hyperbola admitting of one

variety.

1. (b d - 2 ae) 2 = (b* - 4 cc) (d2 - 4 a/). Locus two straight

lines.

Lastly, if7>
2 — 4 ac = 0, the locus is a parabola admitting of the

following varieties,

—

1. b d — 2 ae =. 0. Locus two parallel straight lines.

2. bd — 2 a e =: 0, and c£
2 — 4 af— 0. Locus one straight line.

3. b d — 2 a e rz 0, and d2
less than 4 a/. Locus imaginary.

Apparently another relation between the coefficients would be obtained

in each variety, by taking the equation of x in terms of y ; but on exa-

mination, it will be found that in each case the last relation is involved in

the former.

E
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CHAPTER VII

REDUCTION OF THE GENERAL EQUATION OF THE
SECOND ORDER

80. In order to investigate the properties of lines of the second order

more conveniently, we proceed to reduce the general equation to a more

simple form, which will be effected by the transformation of co-ordinates.

Taking the formulas in (54.)

y z± y' -f n, and x z=z a? -\- m
and substituting in the general equation, we have

« (Y + nT + b 0^+ ™) (y' + n) + c (V + m) 2 + d (y
f + n) + e

(^ + m) + / = ;

or arranging

a y'2 + b x f y'+ c oc'
2 + (2 a n + b m + d) y

f + (2 c m + b n + e)

x r

-\- a n2
-{• bmn + ciTfl-t-dn + emf—O.

As we have introduced two indeterminate quantities, m and 7?, we are

at liberty to make two hypotheses respecting the new co-efficient's in the

last equation ; let, therefore, the co-efficients of x! and y
f each === 0.

.*. 2 a n -f b m 4- d = 0, and 2cm+b + e-0;

, /»i, ,. . ,. 2ae— bd
, 2cd—be

whence we iind by elimination, m — —— , and ?i — —-———

.

The value of the constant term, or /', may be obtained from the equa-
tion,

f'zzan2
~)r b m n + c m2

-J- cZ ?i + e m + / = ;

or, since 2 a n -f b m -f- cZ = 0, and 2 c ra + b n -\- e = 0,

Multiply the first of these two equations by tz, and the second by f2

;

and, adding the results, we have

2 a 7i
2 + 2 b m n 4- 2 c m2 + d n + em = ;

<i tz + era
& n2 + b rn n -\- c m2 r^ —

2

hence/' =3 « + tf ?i + e m +/ =—-~—- +/, which,
£ 2

by the substitution of the values ofm and n, becomes

nr_ a & + c d2 — b d e

The reduced equation is now of the form

a y>* + & #' y + c lt/2 + /' = 0.
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81. The point A, which is the new origin of co-ordinates, is called

the centre 'of the curve, because

"\p
every chord passing- through it is

bisected in that point. For the

last equation remains the same
when — x and — y are substi-

tuted for 4- x and -f y : hence,

for every point P in the curve,

whose co-ordinates are x and y,

there is another point P', whose
co-ordinates are — x and — y, or

A M' and M' P' ; hence, by com-
paring the right angled triangles,

A M P, A M' P', we see that the

vertical angles at A are equal, and
therefore, the line P A F is a straight line bisected in A.

Whenever, therefore, the equation remains the same on the substitution

of — x and — y for 4- x and -j- y respectively, it belongs to a locus

referred to its centre.

If the equation be of an even order, this condition will be satisfied if

the sum of the exponents of the variables in every term be even ; thus, in

the general equation of the second order, a y
2 + b xy + c a2 4- d y 4*

e x -\- f = 0, the sum of the exponents in each of the three first terms

is 2, and in the two next terms is 1; changing the signs of -a? and y, the

equation does not remain the 'same ; or for one point P, there is hot

another point P' opposite and similarly situated with respect to the origin ;

hence that origin is not the centre of the curve. But the equation a y*

4- b x y + c x2 +f = 0, refers just as much to the point P' as to P,

and thus the origin is here the centre of the curve.

If the equation be of an odd order, the sum of the exponents in each

term must be odd, and the constant term also must vanish ; for if both

these conditions are not fulfilled, the equation would be totally altered by

putting — x and — y for + x and 4- y respectively. Therefore a locus

may be referred to a centre if it be expressed by an equation which, by

transformation, can be brought under either of the two following condi-

tions :

—

(1) Where the sum of the indices of every term is even, whether there

be a constant or not, as a y
2

-f* b x y 4- c x2 4" f= 0.

(2) Where the sum of the indices in every term is odd, and there is no

constant term, as a y
z

-\- b x y
2 4* c x2 y -j- d x3 -j- e V ^fx = 0«

Now it has been stated (59) that no equation can be so transformed

that the new equation shall be of a lower or higher degree than the ori-

ginal one. Hence, if the original equation be of an even degree, the

transformed equation will be so too, and the locus can be transferred to a

centre only where the equation can be brought under the first condition ;

but if the original equation be of an odd degree, the transformed equation

also will be of an odd degree, arid the locus can only be transferred to a

centre when the equation can be brought under the second condition.

Hence we have a test, whether a locus with a given equation can be

referred to a centre or not. If the axes can be transferred so that (1) The
original equation being of an even degree, the co-efficients of all the terms,

the sum of whose exponents is odd, vanish. (2) The original equation

being of an odd degree, the co«eflicients of all the terms, the sum ofwhose
E2
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exponents is even, and also the constant term, vanish, then the locus may
be referred to a centre, and not otherwise.

Now in the transformation which we effect by making y — y' + ?i, and

x'== x f + m, we can destroy only two terms; we cannot therefore bring,

by any substitution, an equation of higher dimensions than the second

under the necessary conditions, unless from some accidental relation of

the original co-efficients of that equation. But in the case of equations of

the second degree, we can always bring them under the first condition,

unless the values of the indeterminate quantities, m and n, are found to

be impossible or infinite.

In curves of the second order, we see that the values of m and n are

real and finite, unless 62 — 4ac=0; consequently the ellipse and hy-

perbola have a centre and the parabola has not ; hence arises the division

of these curves into two classes, central and non-central.

In the case where b2 — 4 a c = 0, and at the same time 2 a e — b d
or 2 c d — b e vanish, the equation becomes that to a straight line, as

appears on inspecting the equations (1) and (2) in (75).

If by the transformation the term f should vanish, the equation be-

comes of the form a y* -f» b x y + c x2 = ; whence

and the curve is reduced to two straighty = { - b ± V 6* - 4 a c }— ;

lines which pass through the centre ; or if 6
2 — 4 etc is negative, the locus

is the centre itself (25).

82. The central class may have their general equation still further re-

duced' by causing the term containing the product of the variables to

vanish, which is done by another transformation of co-ordinates. Taking
the formulas in (58) let

Let y' ~ x" sin. -f y
ff
cos. 0,

x f = x fl cos. — y" sin. 0,

substituting in the equation ay'2
-f- b xf y f + ex'2 + f = 0, we have

a(x''smJ"ty'fcos $f -{- b(x"sind -{"y ffcosJ)(x"cosJ— y%mJ)+c(x"cosJ ~-y fim\.0)2+ff—0

.*. 2/"2 {a (cos. 0)
2 — b sin. cos. + c (sin. 0)

2
} + a/'2 {a (sin. 0)

2 +
b sin. cos. + c (cos. 0)

2

}

+ x''y"{2as'm. cos. 0+6 (cos. 0)
2 — b (sin. 0) 2- 2 c sin. 0cos. 0}

+ /' = 0.

Let the co-efficient of xf/
y ,f = 0,

/. 2 a sin. cos. 0+6 (cos. 0)
2 — 6 (sin. 0)

2 — 2c sin. 6 cos. 0-0,

or {a - c) 2 sin. cos. 0+6 {(cos. 0)
2 - (sin. 0)

2
} = 0,

.". (a — c) sin. 2 -f 6 cos. 2 = ;

and dividing by cos. 2 0, we have

- b
tan. 2 0= .

a — c

Here is the angle which the new axis of x makes with the original

one (58) ; hence, if the original rectangular axes be transferred through

an angle 0, such that tan. 2 9 = , the transformed equation will
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have no term containing the product x ff

y
ff

, that is, the equation, when
referred to its new rectangular axes, will be reduced to the simple form

a' 2/"
2 + c' x f > 2 +f~0.

83. As a tangent is capable of expressing all values from to oo
, posi-

tive or negative, it follows that the angle has always a real value, what-

ever be the values of «, b, and c, and thus it is always possible to destroy

the term containing xy.

The values of sin. 2 and cos. 2 are thus obtained from that of

tan. 2 0;

1 1 , a - c
cos, 2 =

± V 1 + (tan. 2 ey . / .

t
( b ^2 -± V(a ~0* + 6t

1 +
c
y

And sin. 2 = cos. 2 0. tan. 2 0=
t± V (a - cf + 62

Since must be less than 90°, and therefore sin. 2 Q positive, the sign

of the radical quantity must be taken positive or negative, according as

b is itself negative or positive.

84. To express the co-efficients a' and c
f of the transformed equation

in terms of the co-efficients in the original equation.

Taking the expressions for the co-efficients in article (82) we have

a' t=2 a (cos. 0)
2 — b sin. cos. -f c (sin. 0)

2

c' t=i a (sin. Of + b sin. cos. + c (cos. 0)
2

,

/. ^-c^a{(cos.0) 2 -(sin.O)2 }-26sin.0cos.0+c{(sin.0) 2—(cos.0) 8
}

rr a cos. 2 — b sin. 2 — c cos. 2

= (a - c) cos. 2 — b sin. 2 ;

bul. cos. 20 = -
, and sin. 2 0=

~"

± V (a - c) 9 + 62
. ± V (« — c)« +6«

hence substituting, we have

/— cf = (* - <0
8

+ ^
± ,sl~(a - c)

2 + 6
a ± V O^T) 2 + &*

_ (a - c)
8 + 62

"" ± V
(a - c)

2 + &
'

or a' - d = ± V (a - c) 2 + 68

Also a' -f c =: a + c,

.\ a' = I {a + c ± V(a~c)2
-f 62

.}

c' =: J {a + c qpV(a - c) 2"^2"?}

Hence the final equation is

The upper or lower sign to be taken all through this article, according;

as the sign of b in the original equation is negative or positive
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85. Hitherto in this chapter we have been making- a number of altera-

tions in theform of the original equation: the following figures will show

the corresponding alterations which have been made in the position of

the curve. The ellipse is used in the figure, in preference to the hyper-

bola solely on account of its easier description.

y' -,// Y

'

Y

U)

X A

fA-y x

X

Fig. 1. We have here the original position of the curve referred to rect-

angular axes A X and A Y, and the corresponding equation is

a y
2 + b xy' -\- c x2

-\> dy + ex + f == 0.

Fi£. 2. The origin is here transferred from A to the centre of the curve

A', the co-ordinates of which are m 2 ae bd
and n

2 cci —be
b 2 —Aac' ~"~ '"

62—Aac
The new axes A' X' and A' Y r

are parallel to the former axes
5
and the

equation to the curve is

ay'* + b x'y' + ^/2 +// ™ 0.

Fig. 3. The origin remains at A', but the curve is referred to the new
rectangular axes A'X" and A' Y;/

, instead of the former ones A'_X'

and A' Y'. The axis A' X' has been transferred through an angle X' A' X"
into the position Ar X;/

, the angle X' A' X", or 0, being determined. by the

equation tan, 2 =— , and the equation to the curve is now
tt "— c

a'y"*+ c'x"*+f r - 0,

86. In the ellipse and hyperbola the word " axis" is used in a limited

sense to signify that portion of the central rectangular axis which is

bounded by the curve.

To find the lengths of the axes, put a?" and y
,f
successively s= 0, we

then obtain the points where the curve cuts the axes, or, in other words,
we have the lengths of the semi-axes.

In the equation

a'y"* + c
f x" 2 +f = 0,

Let y"

Let x" i

0,

3

+ f = 0, and oc'
f

fa'y" s +f - 0, and J/"

In fig. 3, the semi-axes are A'C and A' B, so that A' C

id, A' B = ^/ . —
; putting for a', c', and/', their values in terms

y--/'
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of the original co-efficients (80, 84) we have the squares upon the semi-

axes both comprehended in the formula,

2 fa e2 + c d2 — bde \

(

«+c±V (a-cy + bA b*-4ac

Let the equation a'
y'ls + cV2 +/' = 0, be written in the form

-7y +(-j^ =i -

Then, if the curve is an ellipse, we must have 6
2 — 4#c negative,

or, since b zz in the present case, we must have — 4 f — ~
J

f — —}
\

a c
f

negative, and therefore — ~— and — -^ both positive ; thus both axes meet

a1 d
the curve, (the case where both — — and —

•
— are negative, would give

an imaginary locus). If the curve is an hyperbola, b
% — 4 a c is positive,

and therefore — 4 ( — -^
J

(
-—Ty )

must be positive, or one of the

values, (
— —

] positive, and the other I — —
j

negative ; hence,

one of the axe£ in the hyperbola has an impossible value, and therefore

does not meet the curve.

The relative lengths of the axes will depend entirely on the magnitude o*

a! , d

J
and j.
87. Hitherto the original co-ordinates have been rectangular, but if they

were oblique, considerable alterations must be made in some of the

formulas.

Articles 80 and 81 are applicable in all cases, but 82, 83, and 84, must
be entirely changed ; the method pursued will be nearly the same as in

the more simple case ; but on account of the great length of some of the

operations, we cannot do more than indicate a few steps, and give the

results *.

To destroy the co-efficient of the term containing the product of the

variables, take the formulas in (55)

, ce" sin. + y" sin. 0'

sin. w

, _ -x" sin. (<o-6) + y'! sin, (to— 1

)
"~

sin. w.

Substituting in the equation ay'2 + b x f

y
f

-f* ex'2 + f1'sa 0, we have

y
m

\ a (sin. 6'f + b sin. $' sin. to - 0' + c (sin, uT^Tf \ —— .

I J (sm. w)

+ a/'
2
\ a (sin. 0)

3 + b sin. 6 sin. oi -0 + c (sin. w —
' 0)

2
1 . „

I J (s^ 11
-

co
)
2

* This article, and the following ones marked with an asterisk, had better be omitted

at the first reading of the subject.
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xff y"\\2 a sin. 0. sin. 0'
-f b sin. 6' sin. w-0 + b sin. sin. w-0' +_ ,

_— i i +jr = o.
2 c sin. u> ~ 0. sin. w — r

> •— -

J
(sm. w) 2

Let the co-efficient of\v
f!
y ff = 0; expanding sin. w — 0, sin. w — 0' and

dividing by cos. 0. cos 0' we shall obtain the equation

{ a — b cos. w + c (cos. w)2
} 2 tan. 0. tan. + { 6 — 2 c cos. w } sin. w.

{ tan. + tan. 0'} + 2 c (sin. w) 2 = 0.

Whence for any given value of a value of r and consequently of

(0
r

-*> 0) may be found, so that there are an infinite number of pairs of

axes to which if the curve be referred, its equation may assume the form

Let us now examine these pairs of axes, to find what systems can be

rectangular:

For this purpose we must have 6' — = —- and therefore tan. Q 1 =s

tan. 9

By substituting this value of tan. 0' in the equation containing tan. and

tan. 0', we have — 2 {a — b cos. iv -f c (cos. w) 2
} + {2c cos. w — 6 }

2
sin. w. -- [- 2 c (sin. a>)

2 = 0.
tan. 2

c sin. 2 w — 6 sin. iv

.'. tan. 2 :

& — 6 cos. w + c cos. 2 tu •

There are two angles which have got the same tan. 2 separated from

each other by 180°, therefore there are two angles 0, which would satisfy

the above equation ; however, as they are separated by an angle of 90°,

the second value only applies to the new axis of y
rf

.

Hence there is only owe system of rectangular axes, and their position

is fully determined by the last formula.

*88. To find the co-efficients a' and c
f
in terms of the co-efficients of the

original equation, the new axes being supposed rectangular. Taking the

co-efficients in the general transformed equation given above, putting

7T

6 f = {- 0, and multiplying by (sin. w) 2
, we have,

a' (sin. w) 2 = a (cos. 0)
2 — 6 cos. cos. io — Q -\- c (cos. w — 0)

2

c
f
(sin. w) 2 ~ a (sin. 0)

2 + b sin. sin. w — + c (sin. oj - 0)'2

:. (a! — c') (sin. w) 2 = a {(cos. <9)
2— (sin. 0)

2

} — 6 {cos. cos. to — -j-

sin. 0sin. w - 0'} + c{(cos. w ~ 0)
2 -(sin.w - 0)

2

}

r= a cos. 2 — 5 cos. (w — 2 0) + ccos. (2 w — 2 0)

=r {« — 6 cos. w + c cos. 2 w} cos. 20 + (csin. 2 w— 6 sin. cS) sin. 2 9.

Also, following the method in (83) we find from tan. 2 that

a — b cos. & -f c cos. 2 w .
'. _ ' csin. 2 w— /;sin. w

cos. 2 = 7-iCr and sin. 2 = •±M • ±M
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Where M = ± V { «8 + ^ .+ c* — 2 b (a + c) cos
-
w + 2flC cos

-

"2 w
}.

or = ± ^ { '(a + c — 6 cos. w) 2
-Jr (6

2 — 4 a c) (sin. to)
1

j- .

Hence (af-c/

) (sin. w) a .= ± M
and (a' -f- c') (sin. w) 2 zn a — b cos. w -f c

.'. a' = { a - b cos. w + c ± M } ^-7-: r21 J 2 (sin. (oy

and c' == { a — 6 cos. w + c ^f M }
—— -

1 2 (sin. w) 2

Hence the final equation is

, « e
2 + c d2 — & d e '

fx+ —

-

2
-: +/ —

And the ± sign is to be used according as c sin. 2 w — 6 sin. w is positive

or negative, since 2 is assumed to be positive.

These analytical transformations may be geometrically represented as in

(85). In figures (I), (2), and (3) we must suppose the axes AX, AY,
and also the axes A'X' and A' Y', to contain the angle w.

The article (86) will equally apply when the original axes are oblique;

the value of the square on the semi-axis is,

- 2 (sin. uy /ae2
-{- c d* — bde \

a — b cos. w +~c ± M " \ b* — 4~ac V
89. We shall conclude the discussion of the central class by the appli-

cation of the results already obtained to a few examples.

The original axes rectangular,

aif + buy + c/u + dy + ex + jf= (1)

x * J
, > formulas to be used.

x = x' + m
j

• 2ae-bd
/

. 2cd-be .

m = -77—7 (2), » = -77 ; (3)

_. d?i + em ae2 + cd? — bde
/' - —

-

r- +/=
62"=TT^C
— +/ W

«3/'l+ 6a?V + ca/ + /' = ° (
5)

v f = a/' sin. + V cos. 0) ,. , . , ,^
,, n

j h .
fl > formulas to be used,

a* = y; cos. — 7/ SU1 - e
)

tan. 2 0== (6)
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a! == i-{« + c ± M } (7) «/=-!{ a + c T m} (8)

M ^ ± ^/ (a — c) 2+ 6% ± according as 6 is -f

(- f>•< -7) «*=> «»

(2) and (3) determine the situation of the centre, and together with (4)

reduce the equation to the form (5) ; (6) determines the position of the

rectangular axes passing through the centre, (7) and (8) enable us to

reduce the equation to its most simple form (9) : and the co-efficients of

y"2 and a/'
2 inverted are respectively the squares upon the semi- axes

measured along the axes of y
ff and x !f

\

Ex. 1. y
2— xy + <& + y + x — 1 = ; locus an ellipse.

m = — 1 ; n — ~
. 1 ;

/' = - 2
;

y
n—x'y'+ xn -~ 2 =

tan. 2 = — .'. 2 6> ~ 90° and = 45° ; & is negative, and .\ M = + 1

3'a >

l

a' zz •—
- and c' = —

2
J

2

3 1
or jf 8 + — a?"

2 t^ I

4
The squares on the semi-axes are — and 4 ; hence the semi-axes tnem-

4
selves are -~~ ana £, and therefore the lengths ot the axes are 4 and ~-z=..

V3 V3

9
Ex. 2. 3y* — 4,» 3/ + 3 a;

2
-f y — x - -s0; locus an ellipse.

10

The reduced equation is 5//2
-f a/'

2 = 1. The axes are 2 and
V 5

Ex. 3. 2 f + a? y + ^ - 2 2/ — 4 x + 3 = ; locus an ellipse.

The reduced equation is —-——-— y
f,2

~h ~~ ^—
• xr/2 r=l.

Ex. 4. by2 + 6xy + 5 a?
8 - 22y - 2 6a? + 2 9 - 0; locusan ellipse,

„ /., dn -\- em
m = 2, 71 = 1, / = —-£— +/=- - 8

. ' . 5 3/
,a + 6 a?'2/

; + 5 a?
/s - 8 =

tan. 2 6 ~z 00 .
•

. 6 s= 45°; hence the formulas of transformation are

*/' =
TJ— and a/ == -=L

%

V2. V2
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.
• . -| (*» + y"y + 6 _-^- + - <y - yy -8^0

or 4 #"2 + a?"
2 = 4

Ex. 5. 5 2/

2 + 2 # 2/ + 5 <£
2 - 12 ^ — 12 «r sj -0

; locus an ellipse.

Ex. 6. 2y2+x<2+&y — 2x— 6=0; locus an ellipse.

Let y~y f+n and xzzcc'+m, hence the transformed equation is

2 <y+ ?i)
2
-f (a/+ m)2 + 4 (y'+ w) - 2 (a/+ m) — 6 ~

or 2?/'2
-{-a/

2 -{-4 (n+1) 3/'+ 2 (m~l) tf'+2?i2+m2
-f 4 ™--2m--6= 0.

Let 71+1 = and m— 1 = .\ m~l and 7i=— 1 and /'==—,9;
hence the transformed equation is

2y,2+xf2 — 9

and no further transformation is requisite. The axes are 6 and 3^2.

Ex. 7. 3/

2— 10 xy+ x2+ y+ x+l=z0; locus an hyperbola.

6y" 2 ~~ 4o? //2 -f™-0.

Ex.8. 4?/
2 -8tr^-4o?2— 42/+ 28o;— 15= 0; locus an hyperbola.

Here the axes are each sj/2, that which is measured along the new
axis of a:" alone meeting the curve.

Ex. 9. y
2 — 2 xy -- <x

2 — 2 = 0; locus an hyperbola.

The origin is already at the centre, and thus only one transformation is

necessary.

tan. 2 0=1.\ 2 0=45°; M^J 8, a'~ A/2, c'-~V 2
> f^W 2 -

*90. The axes oblique.

The values of w, w, and /' remain as for rectangular axes.

c sin. 2 w — 6 sin. w
tan. 20- — —

a -~ b cos. w + e cos. 2 co

a' z=i \ a ~ b cos. w + c ± M } ^ , .. rr

.

1 i 2 (sin w) 2

c' ~ { a — h cos. w 4-
.
c =p M }

— r^ .

1 '
'

J 2 (sin. (w)

M = ± V {a2 + b2 + c2 — 2 6 (a + c) cos. w + 2 a c cos. 2 w}.

± asc sin. 2w-6 sin w is ±.

Ex. 1. ?/
2 + x y + a?

a + 2/ 4- a? — — = ; the angle between the

axes being 45°.

m ^ _ i_ n ~ ; tan.3 0?3l ?
-,3e==45°;M=s + (l- V 2).

3 3
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The reduced equation is

3(2 -
A
/'2)yw +(2 + V2)*""- 1.

The curve is an ellipse, and the squares upon the semi-axes are

and
3 (2 - V 2 ) 2 -f V 2

Ex. 2. 7 2/

2 + 16 a? y + 16 a* -f 32 2/ + 64 a? + 28 = 0. The angle

w = 60°.

i- a jp/
dn + emm r= — 2, 7i s 0, f =: _— + / = - 36.

The form of the equation is now

7 y'a + 16 a/ 2/' + 16 a/
2 - 36 = ;

since tan. 2 0^ 0, the reduction to rectangular axes is effected by merely

transferring the axis of y' through 30°
; hence, putting = 0, and w= 60,

the formulas (56) of transformation become

2y"
i / ;/

y"
?/ = —=-, and a?' = #" — -~=.J V 3 V 3

Substituting these values in the last equation, it becomes

4y"* + 16 a?" a -36 = 0;

Hence the axes of the ellipse are 3 and 6.

Ex. 3. f — 3 on y + d?
B +1=0; the angle w = 60°.

m = 0, n = 0, tan. 2 = V 3, .
' . = 30°; M = + 4.

«' = 5, c
r = —^—>f f = ^» and the reduced equation is

^
3

The curve is an hyperbola, of which the axes are 2 V 3 and ,— » tne

first of these, which is" the greatest, is measured along the new axis of #"•

The second axis never meets the curve.

91. It was observed, at the end of art. 81, that the curves correspond-

ing to the general equation of the second order were divided into two

classes, one class having a centre or point such that every chord passing

through it is bisected in that point, and another class having no such

peculiar point. This fact was ascertained from <the inspection of the

values of the two indeterminate quantities m and n introduced into the

equation by means of the transformation of co-ordinates, and for the

purpose of destroying certain terms in the general equation. The values

of m and n were found to be infinite, that is, there was no centre when
the relation among the three first terms of the co-efficients of the general

equation was such that b* — 4 a c = 0.

This relation 6
2 — 4 a c = being characteristic of the parabola, it

follows that the general equation of the second order belonging to a

parabola is not capable of the reduction performed in art. (80) ; that is,

we cannot destroy the co-efficients of both x and y, or reduce the equation
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to the form a y° + b x y + c x2 + / = 0, or, finally, to the form ay2 +
c a?

8
. + / == 0.

Although, however, we cannot thus reduce the parabolic equation, we
are yet able to reduce it to a very simple form, in fact to a much more
simple form than that of either of the above equations. This will be

effected by a process similar to that already used for the 'general equation,

only in a different order. We shall commence by transferring' the axes

through an angle 0, and thus destroy two terms in the equation, so

that it will be reduced to the form ay2 ~t-dy + ex+f=:0; we shall

then transfer the axes parallel. to themselves, and by that means destroy

two other terms, so that the final equation will be of the form

a y
1
-j- e x = 0.

92. Taking the formulas in (58), let

y zn x r
sin. -f- y

f
cos. 9

x = x' cos. — y
f
sin.

ubstituting these values in the general equation

ay^ + bxy-^-cx^-hdy + ex+f^O,
•\.nd arranging, we obtain the equation

a (cos. Of
| y

2
-f 2 a sin. 6 cos. d

— 6 sin. 4 cos. 0| + b (cos. 6)
2

+ c (sin. 0f\ — 6(sin.0)2

— 2c sin. 6 cos. 6

x y -\- a (sin. 0)'

-\- b sin. § cos. t

-j- c(cos. $y

x'2 -\- c/cos. 6

— e sin,0

if Jf .'/sin. &

-\-e cos.

.*'+/=<)•

Let the co-efficient of x' y' =
./. 2 (a - c) sin cos. + 6 {(cos. 6>)

2 - (sin. 0)
2
}.
~ 0,

or (a — c) sin. 2 0. + 6 cos. 2 0= 0,

- b
and tan. 2 ~, as in (82.)

Hence, if the axes be transfered through an angle such that tan. 2 =
—— the transformed equation will have no term containing the product
a — c

of the variables ; that is, it will be of the form

a 1

2/'
2

-f c' x>* + d' y
f
-\- e

f x f + / = 0.

But, since this last equation belongs to a parabola, the relation among

the co-efficients of the three first terms must be such that the general con-

dition b2 — 4 a c z=z holds good. In this case, since b
f = 0, we must

have -4tt'c'=0; hence either a' or c' must = ; that is, the trans-

formation which has enabled us to destroy the co-efficient of the term

containing x' y
f
will of necessity destroy the co-efficient of either x' 2 or y

H
.

And this will soon be observed upon examining the values of the co-

efficients of xh and y
h

.

93. Let the co-efficient b in the original equation be negative, that is,

let b = — 2 V a c .

1 1

From tan. 2 9 we have cos, 2
Vl + (tan. 2 0)

2 Vu(£
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a — c a — c , .
— 6

and sin & = .
=-= — •>

—~ == , ; r anu sin <, u = .
— — r,

since sin. 2 must be positive, and b is itself negative ;

A / 1 + cos. 2 9 . /_ / a -~c\ / »
hence cos. =V ^ V~ V 4( 1 + —T" - \/ —

T

-
'

. /I - co s. 2 _ /~~V~.
and sin. = ,/ -— ~ </—— .

Substituting- these values of sin. and cos. in the general transformed

equation, we have

a a h J a c , c c a + 2 a c -f- c—— _ . j *=; ——-——-J— - a -f c.

a-f~ c a -f- c a 4~ c a-f-c

a c b V a c c a a c — 2 a c -4- a c
+ + - - ^

a -\* c a + c « 4- c a -f- c

d sf a — e *J c

va + c

. d. J c + e a/ a
e = /

V # + c

And the transformed equation is now

, . s ,» d J a ~- e *f c d *J c + e J a
(a -f c) 2/

/2 + pz=PL- 2/ + ,
-11— *' +/= 0.

v a + c v a + c

And it is manifest that if b had been positive all the way through this

article, the reduced equation would have been

(a + c) xf2 +—y~——:
—-y f + ,-^ : ^4-/= 0.

v # 4* c V # 4- c

94. In order to reduce the equation still lower, let us transfer the axes

parallel to themselves by means of the formulas y' = y
!f 4- n and x r ^s

a?" 4- wi (54.)

then the equation a! y'
2 + d' y' 4- e' xf

-f- / = becomes

«' (y" + ")
2 + <*' G/" + *) + e

f (x" »+/^o,
or a f

%j
m + (2 a' n + d !

) f ~f e
f x" 4" a' 7i

2
4- d f n -f e' w H- /= 0.

And since we have two independent quantities, m and n, we can make
two hypotheses respecting them ; let, therefore, their values be such that

the co- efficient of y
1 and the constant term in the equation each = •

that is, let

2 a' n 4- d! == 0, and a f r? -h d< n 4- e
f m -f / = ;

- d'
,

d'
a -- 4 a' /whence ?i =—r and wi = » r-r--»

2 a' 4 a' e'

and the reduced equation is now of the form

a! y
,f * + e x ,! zz ;
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and it is manifest that if b had been positive, the equation c' xn + &' \j +
e' xf + f ~=z would have been reduced to the form

d xm> df f = 0,

where the values ofm and n would be found from the equations

e
/2 - 4 c'fm -- _ ' — an(j 71

2 c' 4 c d'

95. The following- figures will exhibit the changes which have taken

place in regard to the 'position of the locus corresponding to each analy-

tical change in the form of the equation :

—

Y

U)

X

X'

X*

(*)

X A

X'
(A

In fig. 1, the curve is referred to rectangular axes A. X and A Y, and

the equation is

a if" 4" b x y + c cc
2 + d y + e a? + / =^ 0.

In fig. 2, the axes are transferred into the position A X', A Y', the

angle X A X 7 or 6 being determined by the equation tan. 20 = ,

the corresponding equation is, for b negative,

a' y
f
* + df y' + e

f x f + / = 6.

If Z> is positive, the curve would originally have been situated at right

angles to its present position, and the reduced equation would be

c
f
a/

2 + d< y
f + ef x' + f == 0.

In fig. 3, the position of the origin is changed from A to A', the co-

ordinates] of A' being measured along A X' and A Y', and their values

determined by the equations

for b negative, n = df

for b positive, m = —

and m ~

and n

dfi A off

4 a' e'

4 c'

f

4 c' d'2 c'

The reduced equation is

for b negative, af y
f/2 + e

f xff == 0.

for b positive, c' xm -J- d' y" =s 0.

96*. If the original axes are oblique, the transformation of the general

equation must be effected by means of the formulas in (55). The values

of a, b', and c
f
will be exactly the same as in (87).

We may then let b' ^r 0, and also find tan. 2 when the axes are reet-

See Note, Art. i
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angular, whence, as in (87), we shall find that there is but one such

system of axes.

The same value of which destroys the term in x f

xj will, as in (93),

also destroy the term in oc
n

or y
f2

; hence the reduced equation will be

for csin. 2w-6 sin, w positive, a! y'2 + d! y
r

-V d x' +f= 0.

for c sin. 2 w — b sin. to negative, d x'2
-f d' y' + d x* +'/ = 0.

97. To find the values of a!, d, d', and d.

The values of «' and c
7 are best deduced from those in art. (88),

Since 6
2 — 4 a c =? 0, we have for c sin. 2 w —

• 6 sin/ w positive

M :±= # — 6 cos. w,'+ c

a; =: {« — 6 cos. w + c] -—.
1

(sin. vy
</ =

a — b cos. w + c cos. 2 w
cos. 2 =

a - b cos. w + c

a/ c fa— b cos. W -fc (cos. w) 2/a-b'
, and cos. = /i /

tja — b cos. w-j-V
' V .a - 6 cos. w + c

7/
. d cos. 6 - e cos. (w — 0)

'

Also d' =
:

from the transformed equation
sin to

__ (d — e cos. to) s/\a — 6 cos. w + c (cos. w) 2 }— e */ c (sin. w) 2

sin. w ^/ {a — b cos. w -+ c }

. . d sin. 6 + e sin. (o> — 0)
and e' =

;

sin. o)

__ (d — e cos. to) Vc •+• 6 a/ {a — 6 cos. w -j- c (cos. w) 2

}

/J {a — b cos. w 4- c }

and the reduced equation is now of the form

a'y'2 + d'y f + d xf +/=0';
For c sin. 2 w — 6 sin. w negative, the corresponding values of a\ c\ M,
eZ', and e' are

M = — (a "" & cos «
w + c)

a' =

d t=. (a — b cos. 0) + c)
'—

-

(sin. ioy
sin. and cos. 6 merely change values,

. j, (d—ecos. o)) J c— e J { &—-6 cos. w-f-tf (cos. wV }
hence a' = .

—

—

± v J -±

aJ {a — b cos. a + c}

. , (d — e cos. wi) J \a — b cos. w-j-c(cos. io)
2
\+ e A/c(sin. w) 2

and d =
. rr- ^^— v

.

v—~_

-

:

„x-
sin. a) sj {a — b cos. w -j- c}

and the reduced equation is now of the form

c'<r
/2 + d'y' -f e'tf' + /=0.

The transformation required to reduce the equations still lower is per-

formed exactly as in (94) ; and, by making the angle between the original
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axes oblique, the figures in (95) will exhibit the changes in the pasiiion of

the curve.

98. We shall conclude the discussion of this class of curves by the

application of the results already obtained to a few examples.

Ex. 1. y
2 — 6xy + 9 x2

-f 10 y + 1 = 0; locus a parabola.

tan. 20
- b — ; hence may be found by the tables.

b is negative

;

.\ by (93) a' = a + c = 10, e' = 0, d! = VTo and e' = 3 VlO,

/. 10 2/

/2 + VIo y' + 3 VlO a?'+ 1 = 0.

- d! -1
,

-1
Also by (94) n = —

—

r = —7=: , and m = ~r—= ;J 2«' 2^10 4V10

and the final equation is

y"8 + -t— * = °-

V10

Ex. 2. y +2^ + ^ + J/-3^il zO; locus a parabola.

x"* + Vgy rr 0.

Ex. 3. aJ y + V x == Vd • This equation may be put under the

form y -f- a? — d =: 2 J xy, or

y
« - 2 a?y + a?

3 - 2 d y — 2 d x + d2 r= ;

and the locus is a parabola because it satisfies the condition

6
2 — 4 a c = 0.

By tracing the curve as in (78) we shall find its position to be that of

PBCQ in the figure ; and y = x ± <2

are the equations to the diameters

BEandCF. 3^

A #', A y', are the new axes, 6 ov ce h x

being 45°.

a' = 2, d' = 0,' e' = — 2 d J2", 71 = 0, «i = —,_ ,

2^2
the last two quantities are to be measured along the new axes, therefore

take A A'

=

d

2 V2
The final equation is

, and A' is the new origin.

yt^dicJz.

Ex. 4. y = d + e x -f\/V. The locus is a parabola, since 6
2 — 4 a c

or - 4.0./= 0.

P
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Let y ss y
(

-f n 9 and x zz xr
-\* m\

.% y
f + » = d + e (V + m) + / (V + m) J

;

.\ fxn + (2 m f+ e) x f ~ y + /m2 + e w + d - ra =0.

Let 2 m f + e = 0, and / ma + e wi + d — ?i =
- e , 4 d / - e

2

. • . m ==: ——^ and w -^

2 / 4 /'

and the equation is seduced at once to the form

/ a* - y' = 0.

99. The axes oblique.

#
fi — 2 a? y + a?

8 — 6 a? = ; the angle between the axes being 60°,

Here, c sin. 2 w — b sin. w is positive,

sin. 60 1

sm. y = -—- = — .-. e = 30°

M =s 3, a' == 4, c' =; 0, d' = 6, e' = ~~ 2 V 3*, m = -

— _ J?

3^3,

.
• . 4 y

2 - 2 V 3 * = 0.

CHAPTER VIII

THE ELLIPSE.

100. In the discussion of the general equation of the second order, we
have seen that, supposing the origin of co-ordinates in the centre, there is

but one system of rectangular axes to which, if the corresponding ellipse

be referred, its equation is of the simple form

/' /* ' V f
or, Pi/2 + Qa* = 1

where the coefficients P and Q are both positive. (86, 87.)

We now proceed to deduce from this equation the various properties of

the ellipse.

To exhibit the coefficients in a better form ; let C be the centre of the

curve ; X <r, Y y, the rectangular axes meeting in C; CM= a?,MP= y,

Then at the points where the curve cuts the axes, we have

y = 0, Q a* = 1
?

„•. a? = ± —

—

sb = 0, P 0» = 1, /. y = ± -v—
#
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In the axis of x take CA' =

i

:and C A = — •

Vq

: and C B' = - 1
also in the axis of?/ take CB = . _ __ ,_J

Vp Vp
then the curve cuts the axes at the points A, A', B, and B'.

Also if C A = a and CBs6, and a be greater than b, we have Q
1 1= —- and P = — •, therefore the equation to the curve becomes
a o2

m a
** -

1

b*
n

a*
~~

or a2
y

2 + b2
a?
2= a« 6

2

2/* >«-*).

101. We have already seen (76) that the curve is limited in every direc-

tion,

The points A, A', B, and B ; determine those limits. From the last

equation we have

y = ± — Va*— a? (1), and cc ± T V6 2
-2/8

(2).

from (1) if a? is greater than db ct, y is impossible, and from (2) if y is

greater than ± b, cc is also impossible ; hence straight lines drawn through

the points A, A', B and B' parallel to the axes, completely enclose the

curve.

Again from (1) for every value of oc less than a we have two real and
equal values ofy, that is, for any abscissa CM less than C A' we have

two equal ordinates MP, M P r
, the ± sign determining their opposite

directions.

Also as x increases from to + ct these values of y decrease from ± b

to 0, hence we have two equal arcs B P A', B' P7 A' exactly similar and

opposite to one another.

[f cc be negative, and decrease from to — a 9 ac* is positive, and the

same values of y must recur, hence there are two equal and opposite

F2
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arcs B A, B'A. Therefore the whole curve is divided into two equal

parts by the axis of x.

From (2) the curve appears in the same way to be divided into two

equal parts by the axis of y : hence it is said to be symmetrical with

respect to those axes.

Its concavity must also be turned towards the centre, otherwise it might

be cut by a straight line in more points than two, which is impossible

(71) '

102. From the equation y 2 = — (a2— x*) we have

cp = v^+?= \/*
% + *n&-°n = \A + --^-^

hence C P is greatest when x is greatest, that is, when x = #, in which

case C P becomes also equal to a, hence C A or C A' is the greatest line

that can be drawn from the centre to the curve. Again C P is least when
,rr:0, in which case C P becomes equal to b 9

hence CB is the least line

that can be drawn from C to the curve. The axes A A' and B B' are thus

shown to be the greatest and least lines that can be drawn through the

centre. The greater A A' is called the axis major, or greater axis, or

transverse axis, and B B' the axis minor or lesser axis.

103. The points A, B, A' and W are called the vertices or summits of

the curve. Any of these points may be taken for the origin, thus let A
be the origin, AC the axis of x, and let the axis of y be parallel to C B,

and A M = x 1
.

Then a? = C M = AM - A C = a/ - a

CL CL lb

62 o2

or suppressing the accents, ?/
2 = — (2 a x — a;

2
) = — x (2 a - x)„

ci ct

This last equation is geometrically expressed by the following proportion.

The square upon M P : the rectangle AM,MA' :: the square upon B C
: the square upon A C.

Hence the square upon the ordinate varies as the rectangle contained

by the segments of the axis major.

If the origin be at C, C A' the axis of y and C B the axis of a?, we have,

putting x for y and y for #, the equation y
2 = — (6

2— a?
8
), and ifthe origin

beat B, y
1 = ~(2bx-x*).

104. If the axes major and minor were equal to one another, the equa-

tion to the ellipse would become y
2 = a2 — x\ which is that to a circle

whose diameter is 2 a, hence we see as in (79) that the circle is a species

of ellipse. As we advance we shall have frequent occasion to remark the

analogy existing between these two curves.

Let A D Q A' be the circle described upon A A' as diameter, and M Q
or Y be an ordinate corresponding to the abscissa C M or a?, let M P (=2/)
be the corresponding ordinate to the ellipse, then we have
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Y2 ^ a2

(a2 - a?
8
)

tf
Y2 and y = - Y

thus the ordinate to the ellipse has to the corresponding- ordinate of the

circle the constant ratio of the axis minor to the axis major.

Since b is less than a the circle is wholly without the ellipse, except at

A and A' where they meet. Similarly if a circle be described on the axis

minor, it is wholly within the ellipse except at B and B'. Thus the elliptic

curve lies between the two circumferences.

THE FOCUS.

105. The equation y
% =: — {2 ax — a s

) may be put under the form

I 2 b 2
.

y
2 tzzl x — —- a?

2
, in which case the quantity I == is called the

2 ci ci

principal Parameter or Latus Rectum,

2 b% A b*
Since I = —- = —— the Latus Rectum is a third proportional to the

a 2a
axis major and minor.

106. To find from what point in the axis major a double ordinate and

be drawn equal to the Latus Rectum.

4 b2 4 b4

Here 4 y* = I
2 or— (a2- a?

2
) =—

a?-tf~ b*

or a? = a8 — 62

and a? = db'*Ja* — b*.

With centre B and radius « describe

a circle cutting the axis major in the

points S and H, then we have CHc
+ V ^ - 6

a and C S ~ - J^T^IF,
thus S and H are the points through either of which if an ordinate at

L S L' be drawn, it is equal to the Latus Rectum ; henceforward then we
shall consider this line as the Latus Rectum or principal parameter of the

ellipse.

The two points S and H thus determined are called the Foci, for a

reason to be hereafter explained.

107, The fraction
V«

2

which represents the ratio of C S to C &
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is called the excentricity, because the deviation of this curve from the

circular form, that is, its ex-centric course, depends upon the magnitude of

this ratio.

If the excentricity, which is evidently less than unity, be represented by

J^ZT^ a? - b* , b* b
2

the letter e, we nave — — ss z whence r = — — ml-—- /. —-
a a2 a2 a2

=r 1 — e
2 and the equation to the ellipse may be put under the form

y* = (1 — e
2

) (a« — a*).

108. The line S C is sometimes called the ellipticity ; its value, as above,

is ae ; but it is also expressed by the letter c. Also since a2 — b
2 = a? &

we have b*zz a2 — a2 e
s = (a — ae) {a -f ae) ; hence

The rectangle AS, S A7 = The square upon B C.

109. To find the distance from the focus to any point P in the curve.

Let S P - r, H P ~ r\

/. **=(y -y'Y + (a -*')«... (29)

also y\ a?' being the co-ordinates of S, we have y
f sr and a?' = ~«e,

.\ r2 = 3/2 + (# -1- a ey

== (1 - e
9
) (a9 - a8

) + (a? + «e) 2

= a2 - a-
8 - e* «3 + e2

a?
8 + x* + 2 a e x + a%

e%

= a2 + 2 « e $ + e
2
.r

2

= (a 4- ea?) s

.\ S P = a -f- e $ 5 similarly HP = «~e^,

In all questions referring to the absolute magnitude of S P or HP we
must give to cc its proper sign ; thus if P is between B and A, the absolute

magnitude of S P is a — etc, because a? is itself negative.

By the addition of S P and H P, we have SP + HP = 2fl = AA/
;

that is, the surrrof the distances of any point on the curve from the foci

is equal to the axis major

This property is analogous to that of the circle, where the distance of

any point from the centre is constant.

110. This property of the ellipse is so useful, that we shall prove the

converse. To find the locus of a point P, the sum of whose distances

from two fixed points S and H is constant or equal 2 a.

Let SH= 2c, bisect S H in C, which point assume to be the origin of

rectangular axes CA ;

, C B ; let C M = #, and M P = y,

then SP^ Jlc^ay+Y9

HP-V(c- xy + y*

but SP + HP = 2o, or S P - 2 a - H P

.\ V (c + *Y + y* =2* - VO- *y + y*

;. (c 4- x) 2 + y
2 = 4 a* - 4 a V (c — 7)* + y

2 + (c - cc)
2 + y*

;

hence, transposing and dividing by 4, we have

V (c "~ a?)
8 + #

2 — «2
ca?
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#\ as 3>
a ss a* - a2

c
2 + c

2
a;
2 a2 #s

a2 — c
2

and v2 == (a2 - #2

)a2

Hence the locus is an ellipse whose axes are 2 # and 2 ^/ «
a - c

9
, and

whose foci are S and H.

THE TANGENT,

111. To find the equation to the tangent to the ellipse at any point*

Let x' y
f be the point P

. . . xfr y" be any other point Q
the equation to the line P Q through these two points is

y-y'zz J—^(a-aO, (41 )

Now this cutting line or secant PQ will come to the position TPT'
or just touch the curve when Q comes to P, and the equation PQ will

become the equation to the tangent PT when a?" =s x' and y
,f e= y

f
.

y'— y
ff

In this case the term — becomes — , but its value may yet be found,
a/— x'f

for since the points xf y\ x" y" are on the curve, we have

a2 y' 2 + h*x'
2 ~a2

b
2

a2
y

ff2 + b
2
x'
*n* a

.\ a? (y'
2— y"2

) + b2
(a/

2 - x"2
) = ;

(y
f - y") (y' + y") + b°- <y - x") (x f + a?") = o,

#
'

a?' - x"
*~ ~"

a2
y' + a"

fl"3T
when x" =s #' and y" zz. y.

.\ The equation to the tangent is

3/ - y' = —— (a? - y)

By multiplication a*yy' — «2
3/

/2 ~ - ft
2 * a' -1- 69

Jt/
2

.\ &yy' + &W = aVa + 6V8

~a2
6
2
.
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In the figure C M is of and M P is y
f

, arid x and y are the co-ordinates

of any point in TPT'.
The equation to the tangent is easily recollected, since it may be obtained

from that to the curve a2

y
2 4- b

2 x2 = a2
b
2 by putting yy' for y

2 and xx'

for x2
.

112. That PT is a tangent is evident, since a straight line cannot cut

the curve in more points than two, and here those two have gradually

coalesced ; it may, however, be satisfactory to show that every point in

P T except P is without the curve.

Let ccl and y l
be the co-ordinates of any point R ; then if a~y 2 4- b2 x

x

2

is greater than a2
b
2

, the point R is without the curve. For, join the

point R with the centre of the ellipse by a line cutting the curve in Q,
and let x and y be the co-ordinates of Q, then if a2

y
2
-\- b

2 x 2
is greater

than a2
6
2

, or than a2
y

2 + &
2

%*-> we have b
2 (x^ - x2

) greater than a2
(y

2

— 7/f) ; but b is less than a, therefore x 2 — x2 must be greater than

V" ~ 2/i
2

' or ^i
2 + y

2 greater than x2 + y
2
, and therefore C li greater than

C Q (29), or R is without the curve.

In the present case we have the two equations.

a2 yy' 4- b
2 x x' = a2 6

a

a*y ! * + b
2
x'

2 = a*b*

:. a2

y
12 - 2a*yy' + &

8
J?'

a - 2 6* a? a?' = - a8
6
a

or a2
(2/' - 2/)

2 + b
2 (V - a:)

2 = &V + 6
2

a;
2 — a2

b
2

/. a8

y
8

-I- &
a *2 = «2

^
2 + ci

2
(y' - ?/)

2 + b* (V - *)
2

which is greater than a2
6
2

.

But y and # are the co-ordinates of any point in the tangent ; therefore

generally any point on the tangent is without the curve ; in the particular

case where y = y
f

, and x = x\ that is at P, we have the equation

a2
y

2
-f- fr

2 *9 ^ &2
£>
2

, therefore at that point the tangent coincides with the

curve.

113. If the vertex A be the origin, the equation to the curve is

b2

y* z=z — (2 a x — x2
) or a2 y2 ~\- 1/ x:i — 2 a b2 x = 0,

and the equation to the tangent, found exactly as above, is

a*yy' + &
2 ^' - ah* (x + a/) = ;

If the equation to the ellipse be y
s = m a?— 71a?

2
, the equation

to the tangent is y y
f = — (a? 4" #') — nxx' e

Generally, if the equation to the curve be

a 2/
2 4- 6 a? 2/ -f- c x2 + d 1/ + e a? 4- /:= 0,

the equation to the tangent is

2 cj/ + by f + e

2 ay f
-\- b r 4- d

or (2 a y
f + 60;'+ d)y 4- (2 cxf + &#' + 'c) a; 4- ^3/ 4- e x 4- 2/= 0.
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Again let y tzl ax 4* d be the equation to a tangent to the ellipse;

then, comparing this with the equation a2 y y' 4* b
2 xx r = a2

6
s

, and elimi-

nating a?' and ?/ by means of the equation ci
z

y
r

f -f b
2 x12 = &2

62 , we have

a2 «2 + &
2 = d\

and this is the necessary relation among the co-efficients of the equation

y = ax + d when it is a tangent to the curve.

114. To find the point where the tangent cuts the axes.

In the equation a2 yy f + b
2 x x' = a2 62 put ?/ = .*• b* a? x f s= a2

6
2
,

«2
ft
2

and a? = —
;i = CT ; similarly «r:CT'= —', hence we have

The rectangle CT,CM = The square upon A C,

and The rectangle CT', MP= The square upon B C

Since CT( = —-A does not involve y\ it is the same for all ellipses

which have the same axis major, and same abscissa for the point of

contact ; and, as the circle on the axis major may be considered as one

of these ellipses, the distance C T is the same for an ellipse and its cir-

cumscribing circle.

a?
Again, since CT=: —, is independent of the sign of y\ the tangents,

x

at the two extremities of an ordinate, meet in the same point on the axis.

The equation to the lower tangent is found by putting — y' for y
1 in the

general equation to the tangent (111).

115. The distance MT from the foot of the ordinate to the point

where the tangent meets the axis of a?, is called the subtangent.

In the ellipse, MT = CT-CM = - -aj' = * ~ *
;

x' x'

Hence, The rectangle C M, MT = The rectangle A M, M A'.

116. The equation to the tangent being a?yy f
-j- b

2 x xf = a2
b
2
, let

x' =z a'\ and .'. y
f = 0, .*. b2 ax = a?b2 and x =: a; hence the tangent, at

the extremity of the axis major, is perpendicular to that axis. At B, the

equation to the tangent is y = b ; hence the tangent at B is perpendicular

to the axis minor.

The equation to the tangent being a2
y y

f
-j- b

2 xxf = a2
b
2
, or

b
2
x' b2

If P C be produced to meet the curve again in P', the signs of the

co-ordinates of P' are both contrary to those of P ; hence the co-efficient

b~ xf

— ~s— , remains the same for the tangent at P', or the tangents at P and
a2 y'

F are parallel (43).

117. To find the equation to the tangent at the extremity of the Latus
Rectum.
The equation to the tangent is generally

a2 y y' ~{- b
2 x xt zzi a? b*
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At L, x f a e and y
f =s

THE TANGENT,

a? 7/ — — W x aetJ a

a

y ^z a + ex.

If the ordinate y, or M Q,
cut the ellipse in P, we have

SP = a + ex (109)

;.MQ = SP.

118. lo find the point where this particular tangent cuts the axis, let

From T draw T R perpendicular to A C, and from P draw P E parallel

to A C ; then, taking the absolute values of C M and O T, we have

PR-M.T = CT+ CM= - + x
a + ex 1

-.SP;
e e e

Consequently, the distances of any point P from S, and from the line

T R, are in the constant ratio of e : 1.

This line T R is called the directrix ; for, knowing the position of this

line and of the focus, an ellipse of any excentricity may be described, as

will hereafter be shown.

If x = 0, we have y = a. Thus the tangent, at the extremity of the

Latus Rectum, cuts the axis of y where that axis meets the circumscribing

circle.

By producing Q M to meet the ellipse again in P r

, it maybe proved that

The rectangle Q P, Q P' == The square on S M.
119. To find the length of the perpendicular from the focus on the

tangent.

Let S y> II 2, be the perpendiculars on the tangent PT.
Taking the expression in (48.) we have

y x
~~ ax

x
— d

Where y x
= and x

l
= - ae are co-ordinates of the point 5, and

y = a x + d is the equation to the line PT. But the equation to P T
is also
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Wx'
,

Z>
2

y « a? -J-
~.

;

;.«=- -5-t and d ^ ~7 ;

« 2/ y

b* x' If— ae- -7
&2 y' if

« fr
2
. (a 4- e x')

~ V^y 2 4-&4 *' 8

And aV* + ft
4 *" = «* («" 6* "" y *'"> + 6V9 = a8 ^

9 {a9 - 2-^*"}

= a2
6
2 (a2 - e8 a?'

B

);

— ^8
(^ 4- ex 1

) _ ytt + £#'

Let S P or a + ea/ ^ r, and H P or a — e o;
f ~ 2 a — r r= r\

6
2
r Z>

2 r

2a-r r

'

Similarly, if Hz = p', we have p' 2 = 6
2 - .

By multiplication we havep p' =. 6
2

; Hence,

The rectangle Sy,Hz = The square upon B C.

120. To find the locus of y or z in the last article.

The equation to the curve at P is ft
2

3/'
a

-J- &V 2 = a2
6
2

(1)

The equation to the tangent at P is a?yy' + ^ xx' = a2
6
2

(2).

The equation to the perpendicular S y (the co-ordinates of S being

- c, 0) is 3/ ~ a (a? + c) and this line being perpendicular to the tangent

*s »/

(2), we have a r= —7-; and therefore the equation to S y is

»=-S?<* + c) (3) -

If we eliminate y
f and a?' from (1) (2) and (3), we shall have an equation

involving x and y ; but this elimination supposes x and y to be the same

for both (2) and (3), and therefore can only refer to their intersection.

Hence the resulting equation is the locus of their intersection.

V
1 & y 6a b*x r ,_

From (3) -, - -7 —7— = "
" —

,

from 2
) ;v y

xf ar x 4- c «r y w y

L — y* + * (jr h~ o)
•

a?' = a*
(,2? + 0)

'%
a7

""
a2

(a? 4- c) '

"

"

X
y* + x(x + c)'

ancl y ~ > (a? 4- c) 3/
2 + x (x + c)'
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Substituting- these values of x' and y', in (1), we have

aH* 3/
2 + Wa* + c)" r= «8

£>
2
{?/

9
-f x (x + c)} 4

.\ I)
2 y* + a* (a? + c)* ~{if + x(x + c)Y ;

Or, a9

2/
2 - c

2
if + a* (a?* -f c)'

2 = y* + 2 x (x + c) 2>
2 + ** + c)

8
5

•"• a8

{y
8+(* + 8

} = #
4 + 2/

2 {^(*-M)+c2
} + **(* + <0*

= 2/
4 + 2/

2 ^ + 3/

2
(* + c)

2+ x2 (x -f cf

= 2/

2
(2/

2 + *') + (y
2 + O (* + CY

.\ tf = 2/

9 + a?
8

.

This is the equation to a circle whose radius is a. Hence, the locus of

y is the circle described on the axis major as diameter.

From the equation to S y, combined with that to C P f y = ~ x \ we

may prove that C P and S y meet in the directrix.

121. To find the angle which the focal distance SP makes with the

tangent P T.

b* x !
b*

The equation to the tangent is y = « —
-, x -\—

;
.

a2

y y'

The equation to S P passing through S ( — c, 0) and P (V, y
!

) is

y
r

b
2 x

And tan. SPT = tan. (P S C - PTC) = ^+ c "V
1— y/ 6 ^

_ a*y f * + b*xf2 -{-b*cx f _ a*b* + b*c x'

"~V {O'-f c) a2 - 6" a'} ~ / { (a
2

;

~ 6
2
) a?' + a2 c}

_ 62 (a
C2 + c x') _ hj*_

"~"
cy' (a2 -\- c x') ~~ cy'"

To pass from tan. S PT to tan. HPT we must put — c for c in the

preceding investigation ; this would evidently lead us to the equation

tan. HPT = - —,; hence, tan, HP^ = tan. (180 -HPT) = -
cy'

b*
tan. HPT = — , or the two angles SPT, HPz are equal; thus the

tangent makes equal angles with the focal distances.

It is a property of light that, if a ray proceeding from H in the direction

H P be reflected by the line z P y, the angle S Fy of the reflected ray will

equal the angle HP 2. Now, in the ellipse, these angles are equal;
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hence, if a light be placed at H, all rays which are reflected by the ellipse
will proceed to S. Hence, these points, S and H, are called foci.

This very important property is also thus proved from article 119.

Sy =p = 6 4/ ~; and H z =z p' =2 b v/-;

.% Sy.Hz-r : r':;SP : HP;
hence the triangles S Vy and H P z are similar, and the angle S P y equal
to the angle H P 2.*

122. To find the length of the perpendicular C w, from the centre, on
the tangent

:

y x
~ a oc

v --dp=-
Vl ~j~ «2

b
2 x f b*

here y, = 0, x
x
e= 0, a — -—-,andrf= — ;

« -

y y

.Cu - /}

6»

y'

1
r a*y'*i Vl aV 2 + 'b* A''

3

}

tt
2
6
2

=T==--^7. (119)a b ^a? Z'"^ "x
1

a b a b

^0 + e x') (a — e xf

) *JriJ

* The following geometrical method of drawing"

a tangent to the ellipse, and proving that the locus

of the perpendicular from the focus on the tangent
j£

is the circumscribing circle, will be found useful.

Let A P A" be the ellipse, P any point on it.

Join S P and II P, and produce H P to K, making
PK = PS; bisect the angle KPS by the line

y P 3, and join SK, cutting P y in y.

1. P y is a tangent to the ellipse ; for if R be

any other point in the line P y, we have S R -f-

R II = KR-h KH, greater than KH, greater

than 2 a ; hence, R and every other point in z P y
except P is without the ellipse.

2. The locus of y is the circumscribing circle. Draw H z parallel to S y, and join Cy
;

then, because the triangles S P y, KPy are equal, we have the angle S y P a right

angle, or S y and H z are perpendicular to the tangent. Also, since S y = K y, and

SC = CH, we have C y parallel to K H, and Cy = 4 KH = i (SP + PH) =r C A.
3. The rectangle S y, Hs— the square on B C. Let Z H meet the circle again in

O and join C O ; then, because the angle y z O is a right angle, and that the points y
and O are in the circumference of the circle, the line y C O must be a straight line,

and a diameter. Hence, the triangles C S y, C H O are equal ; and the rectangle

Sy, Hz rr the rectangle Z II, HO — the rectangle AH, HA' = the square on

BC (108).
b*r

<i. Let SF=r, HP= 2« ~SP= 2a- r, Sy= p^ndHz a= p', then p
2

For by similar triangles, Sy : SP :: Hs : HP >p =
2a-

2a— r;

and, as above,

PP ss 62 p*~
b'
2 r

2a~
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123. To find the locus of u

:

a2 yf2 + b
2 xf2 = a2

b
2

(1).

a2
y y

f + b
2 x x' = a* 6

s
(2).

y = -7^-7 J? . • • (3), the equation to C w.

Proceeding, as in (120.), to eliminate x f and y
f

, we arrive at the final

equation b2 y
2

-J- <z
2

a?
2 ~ (?/

2 + #2

)
2

} the locus is an oval meeting the

ellipse at the extremities of the axes, and bulging' out beyond the curve,

something like the lowest of figures 2 in page 44. We shall have occasion

to trace this curve hereafter.

124. To find the angle which the distance C P makes with the tangent,

we have the equation

toCP,y = ^a?;andtoPT,y= _ ' x + .

xr ay' y'

a2
b
2

hence tan. CPT is found =
c
2

zc
f yr

125. From C u = C y sin. C y u, we have

a b .
#

. b
zz a sm, L y u . . sin. C yu =2 -—

>y/r r'

b

aJ r r1

Also from Hz^HP sin. H P z , we have

5 4 /— = / sin. HPz .\ sin. H P z , ==

/. angle C y u zz angle HP2, and C t/ is parallel to H P.

Hence, if C E be drawn parallel to the tangent P T, and meeting H P
in E, we have PE^C^AC.

THE NORMAL.

126. The normal to any point of a curve is a straight line drawn
through that point, and perpendicular to the tangent at that point.

To 'find the equation to the normal P G.

The equation to a straight line through the'pornt P (2' y') is

y — y' =r a (x — x f

)

This line must be perpendicular to the tangent whose equation is

b
2 x f b

2 a2 y'

y = — x + — :. a = ——
;

a2
y!

y
f b

2
x'

and the equation to the normal is

y - y' ~
J-f>

(* - *')•

127". To find the points where the normal cuts the axes :
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Let y =0.\ -y'=—^(oj-a/) ,\ * = of -— =—— of

= e
2

o?
r = CG.

/79 7/' /7
2 — 7»

2
/72 P2

Hence SG^SC-CG = ae-e2
o;' = e(a-^') =e, SP.

The distance M G, from the foot of the ordinate to the foot of the nor-
mal, is called the subnormal

:

Its value is # — <r = -- ~ or.
a2

128. From the above values of M G, C G and C G' we

f h* 1 f h2 W r' a 1

havcPG = v{y'«+ ^r^ a

} = V{-sr(fl'-^ 8)+ ——

}

6 i . b2 xf *
\ 6 f a? - 62

.

a v
I a2 J # v

I a2

and similarly PG' = - *JW consequently,

The rectangle, PG.PG'^r/r: the rectangle SP,HP.
The greatest value of the normal is when x' = ; hence, at the extremity

of the axis minor, we have the greatest value ofthe normal = b. Similarly,

the least value of the normal is at the extremitv of the axis major, the

b 2

value being then = — , or half the Latus Rectum (105.).

Also, SG' = v ^r^
9
and GG' = ^- Jr7f

.\ G G' = e. S G'.
b b

If a perpendicular G L be drawn from G upon S P or H P, the tri-

angles P G L, S P y, and H P s, are similar ; hence

PL = PG.^-,or=PG~ = — = £ the Latus Rectum.

129. Since the tangent makes equal angles with the focal distances, the

normal, which is perpendicular to the tangent, also makes equal angles

with the focal distances. This theorem may be directly proved from the

above value of C G ; for S G : HG :: SC - CG : HC + CG
: : a e — e 2 x!

: a e + e
2
x' \ \ a — ex1 : a+ e x' : : S P : HP;

hence, the angle S P H is bisected by the line P G.—Euclid, VI. 3, or

Geometry, ii. 50 *.

THE DIAMETERS.

130. A diameter was defined in (76.) to be a line bisecting a system of

parallel chords. We shall now prove that all the diameters of the ellipse

* The absolute values of S P and H P are here taken.—See 109,
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are straight lines, and that they pass through the centre, which last cir-

cumstance is evident, since no line could bisect every one of a system of

parallel chords without itself passing through the centre.

Let y = a x + c be the equation to any chord
;

a2 y 2 + b
2 x2 = a 2 6 2

, the equation to the curve.

Transfer the origin to the bisecting point x' y
f of the chord, by

putting y + y' for y and x -\- x f
for <r, then the equation to the chord

becomes y + y
r ~ a (x + xf

) + c or y t= a x, since y
f

.
= a a/ + c ; also

the equation to the curve becomes a2
(y -J- y') 2

-f &2 (# -f a;')
2 == a2

6
2

.

To find where the chord intersects the curve, put a x for y in the se-

cond equation :

/. a2 O x + 7/0
2 + 6

2
(a? + a?')

2 = a* 6
2

;

or, (a9 a2 + b
2
) x

2 + 2 (a2 a y
f + b* xJ) x + a2

2/'
2 + 6

2
a/

B = a2 b\

But since the origin is at the bisection of the chord, the two values of

x must be equal to one another, and have opposite signs, or the second

term of the last equation must = 0.

\ a* ay' + b 2
x' = 0.

This equation gives the relation between x' and y'
; and, since it is in-

dependent of c, it will be the same for any chord parallel to y = a x -f c ;

hence, considering a?' and ?/' as variable, it is the equation to the assem-

blage of all the middle points, or to their locus.

This equation is evidently that to a straight line passing through the

centre. Conversely, any straight line passing through the centre is a dia-

meter.

131. A pair of diameters are called conjugate when each bisects all the

chords parallel to the other.

Hence, the axes major and minor are conjugate diameters, and the

equation a2 y* -f b
2 x2 = a2 b\ which we have generally employed, is that

to the ellipse referred to its centre and rectangular conjugate diameters.

If the curve be referred to oblique co-ordinates, and its equation remains

of the same form, that is, containing only a;
2

, y
2
, and constant quantities,

the new axes will also be conjugate diameters ;
for each value of one co-

ordinate will give two equal and opposite values to the other. We shall,

therefore, pass from the above equation to another referred to oblique con-

jugate diameters, by determining, through the transformation of co-ordi-

nates, all the systems of axes, for which the equation to the ellipse pre-

serves this same form.

Let the equation be a2
y

2 + 63 x 1 = a2
b2

; the formulas for transform-

ation are (57),

y = x' sin. + y' sin. 6 f

,

x = xf
cos. -|-

l)

1 cos. &,

.". a2 (y sin. 9 + y
f sin. 0') 3 + b2 (x f cos. + y

f
cos. 6 fy — a2

b
2

,

or {a2
(sin. 0')

s + b
2
(cos. B'f} y' 2

-f {a2
(sin. 9)

2
-j- 6

2
(cos. 6)

2
} x'

2

+ 2 {a2
sin. 6 sin. Q' + b

2
cos. Q cos. 6'} x< y

f == a2
b
2

.

In order that this equation may be of the conjugate form, it must not

contain the term xT

y
f

; but since we have introduced two indeterminate

quantities, 6 and 9\ we are enabled to put the co-efficient of x f y f = ;

hence we have the condition

a9
sin. sin,

f
-j- 6

2
cos. Q cos. f = ;
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or dividing by a2
cos. cos. 0\

tan. 0. tan. 6' = — —

.

a1

Now this condition will not determine both the angles and &, but for

any value of the one angle it gives a real value for the other ; and hence

there is an infinite number of pairs of axes to which, if the curve be re-

ferred, its equation is of the required conjugate form.

If, in the next figure, we draw CP making any angle with C A', and

6
2

CD making an angle 0' (whose tangent is • ^ cot. 0) with CA', then C P
CL

and C D are conjugate diameters. Also since the product of the tangents

is negative, if C P be drawn in the angle A' C B
3
C D must be drawn in

the angle B C A.
132. There is no occasion to examine the above equation of condition

in the case where 6 or Q' tn G, for then we have the original axes ; but

let us examine whether there are any other systems of rectangular axes.

Let 6 f r= 90°
-f- 0, :. sin. 0' ^ cos. 0, and cos. 0' = — sin. 0,

hence the equation of condition becomes

(a2 - b2
) sin. cos. ^ 0,

and since, by the nature of the ellipse, a2 cannot ~ 6 2
, we must have

6 = 0, or = 90°, both which values give the original axes again ; hence

the only system of rectangular diameters is that of the axes. This re-

mark agrees with article 87.

We may observe iri the above transformation that, although we have

introduced two indeterminate quantities and 0', it does not follow that

we can destroy two terms in the transformed equation, unless the values

of these quantities are real: for example, if we attempt to destroy any

b
s
—

other term as the second, we find tan. =r — y — 1, a value to which

there is no corresponding angle 0; hence, in putting the co-efficient of

a?' if = 0, we adopted the only possible hypothesis.

133. The equation to the curve is now

{a* (sin.
fy + 6* (cos. 0'y}y'* + {a2

(sin. 0)
2 + b

2
(cos. 0)

2
} a/ a =: a*b\

If we successively make y
f = 0, and x' = 0, we have the distances from

the origin to the points in which the curve cuts the new axes; let these dis-

tances be represented by a x and b l9 the former being measured along the

axis of x f

, and the latter along the axis of y
f

; then we have

y' = 0, .% { a°~ (sin. £)
2 + 62 (cos. 0)

2
} a

x
* = a2 b\

x f = 0, /. {a? (sin. e>y + b* (cos. 6')*} b,
2 = a2 b\

And the transformed equation becomes

• y'2 4-
b*

y

or, -'

or, a? y'
2

Where the lengths of the new conjugate diameters are 2 a x and 2 b^
G

u
X^ = a» b%

a 2
1

fa

+
a*

h

' + W'CD'
2 rr ch* bf
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134. From the transformation we obtain the three following equations

:

a? {a - (sin. 0)
2 + b

2 (cos. <9)
2
} = a2

b
2

(1),

V {a2
(sin. 0')

2+ b
2 (cos. 0') 2

} = a2 b* (2),

a2
sin. sin. 0' -j- 6

2
cos. cos. 0' ;= 0,

1

b2
\ (3)

or, tan. tan. 0' =: - —

-

v '

a 2,

J

Putting 1 — (sin. 0)
2
for (cos. 0)s in (1), we have

a 2 (a2 - b2) (sin. 0)
2 = a2

b
2 - a 2 b\

and a 2 (a* - 6°-) (cos. Of— a 2 a2 - a2
6
2
,

^ «
2 - <2

Putting b
l
for i7

x
in this expression, we have the value of (tan.

;

)
2

, as

found from (2)

b
2 a? - b?

hence by multiplication,

(tan.0) 2 (tan.0') 2 ^ : ~i = ~~ from C3
62 «4a4

a,2 — 62 6^

e \ (a» - af) (a2 - V) = (a* - &) (b
2 - 6

2
),

or, a4 — a2 b x
2 ~~ a,2 &2 + «i

2 V = ^2
&i

2 — ®i b2 - b2 b x

2 + 6*

;

.\ a4 — 5
4 = a2 b? + a

L

2 a3 - a? V* - 62 b 2
,

= a2 « + 6^) - 62 (^ + b x
*)

t

= (a2 - 6») (a 2 + 5,
2
),

.\ a2 + b 2 = a,2 + & t

a
,

that is, the sum of the squares upon the conjugate diameters is equal to

the sum of the squares upon the axes.

135. Again, multiplying (1) and (2) together, and (3) by itself, and

then subtracting the results, we have

a? b 2 {a" (sin. 0)
2 (sin. 0') 2 + b* (cos. 0)

2
(cos. 0') 2 + a?b* (sin. 0')* (cos. 0)

2

+ an2 (sm. 0)
2

(cos. 0')
2
} ~ o> b\

a? (sin, #)
2 (sin. 0') 2 + 6

4
(cos. 0)

2 (cos. 0') 2 + 2 a2 ¥ sin. Q sin. 0' cos. 9

cos.
! = ;
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.\ a? h^ a? 62
{ (sin. 6>') 2 (cos. 0)

2 — 2 sin. sin. 6' cos. cos. 0>

+ (sin. ey (cos. &y }=z: a* b\

or, a? b* { sin. 0' cos. - sin. cos. 0' }
2 = a2 6s

or, ^2 V { sin. (0' - 0) }
2 = a2

Z>
2

;

,\ «i 6
t
sin. (0

f — ) = a b.

Now f — 6 is the angle PCD, between the conjugate diameters C P
and CD ; hence drawing straight lines at the extremities of the conju-

gate diameters, parallel to those diameters, we have, from the above equa-

tion, the parallelogram PCDT = the rectangle A C B E, and therefore

the whole parallelogram thus circumscribing the ellipse is equal to the

rectangle contained by the axes *.

If the extremities of the conjugate diameters be joined, it is readily

seen that the inscribed figure is a parallelogram, and that its area is equal

to half that of the above circumscribed parallelogram.

We may remark, in passing, that the circumscribed parallelogram, having

its sides parallel to a pair of conjugate diameters, is the least of all paral-

lelograms circumscribing the ellipse ; and that the inscribed parallelogram,

having conjugate lines for its diameters, is the greatest of all inscribed

parallelograms.

136. Returning to article (133.), the equation to the curve, suppressing

the accents on a/ and y
f

, as no longer necessary, is

a?
2/

2 + b? a?
a - a? 6 X

2
.

In the figure, C P = au C D = b x
C V = cc

} and VQ-y,

* The theorems in articles 134 and 135 may be proved also in the following manner :

Referring the curve to its rectangular axes, as in article (138.), let the co-ordinates

of P be x' and y ; then the equation to C D is a2 yy' -\- b
>2 x x' == 0, and eliminating

x and y between this equation and that to the curve (a2
y
2
-f b* x2 = d2 V2

), we have

the co-ordinates CNand DN, fig. 135, of the intersection of C D with the curve, C N

= x s= ~- and DN = y = —^ ; hence we have

M , oY ^x'* 62 *,2 + «V 2

j
aUl±^l^ tJt + ^~ a? + P.

'

"*"
«2 fr a2

Also the triangle P C D = the trapezium PM N D - the triangles P G M and D C N

« (a? + *') —5— 2 ~ ~Z —*\ x V+ y 6 ) 'lab

- £** - « *, therefore the parallelogram PCDT^ai.

No notice has been taken of the positional value of the abscissa G N, since this is

(entirely a question of absolute values*

la &
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Putting the equation into the form

f = KW - x*) = £i («i ~ *) («i + *).

we have the square upon the ordinate Q V : the rectangle PV,VP'::
the square upon C D : the square upon C P.

137. The equation to the tangent at any point Q (x y
f

) found exactly

as in (111.) is a x
* y y* + V oc x< = a? b xK

The points T and T', where it cuts the new axes, are determined as in

(114.) ; whence CT = ~, CT' = —,; and the tangents drawn at the
x y

two extremities of a chord meet in the diameter to that chord (114.).

138. Let the ellipse be now referred to its rectangular axes, and let the

y'

co-ordinates of P be x f y\ then the equation to C P is y = -— x, and the

equation to C D is

& n b*a!
y = x tan. 6' = r cot. — —r- $*v a2 a2 yr

or, a2
y y' 4- 6s a? a?' = 0.

But the equation to the tangent at P is

a} yy ( + b2 x x f = a2
6a ;

hence CD or the diameter conjugate to C P is parallel to the tangent at P.

From this circumstance the conjugate to any diameter is often defined

to be the line drawn through the centre, and parallel to the tangent at the

extremity of the diameter.

The equation to the conjugate diameter is readily remembered, since it

is the same as that to the tangent without the last term, and therefore

may be deduced from the equation to the curve, as at the end of article

111. The three equations are

a2 y2 + b2 x2 rr a2 b\ to the curve,

a2 y y
f + b2 x cc

f = a2 62
, to the tangent,

a2
y y

f + b
2 x x } = 0, to the conjugate.

The equation to the tangent D T passing through the point D, whose

b x! _ a %f
co-ordinates are -—

- and — ~2- {note 135), and parallel to C P, is
a

y a x' \
T

b J
or reducing

y xf — x y
f zz a be

And the equation to C P is

y of — x y
f = 0.

These equations to the tangents and conjugate diameters, combined
with the equation to the curve, will be found useful in the solution of
problems relating to tangents.
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139. Let co
f and y

f be rectangular co-ordinates of P ; then, from the

equation a? + bfz* a2 + b\ we have b? = a* + b* .- < = a2 + b
2 ~

b2 a
2 — 6

2

a/ 8 - t/'
2 = a?+ b* - a'

a - 6
2 + — tf'

2 = or - =— xn ~ a? - eVa

= (a — eo,1') (a + ca?',) = rf'.

That is, the square upon the conjugate diameter C D s= the rectangle

under the focal distances S P and H P.

140. Draw PF perpendicular upon the conjugate diameter C D, then

by (135.) the rectangle PF,CD = a5,

ab

b x VV + 6
2

«6

v 1

It was shown in (128.) that P G = - Vr r', and P G' =— VtV;

hence, The rectangle P G, P F — The square on B C,

and The rectangle PG',PF r= The square on A C,

and The rectangle PG.PG'r: The square on C D.

SUPPLEMENTAL CHORDS.

141. Two straight lines drawn from a point on the curve to the extre-

mities of a diameter are called supplemental chords. They are called

principal supplemental chords if that diameter be the axis major.

Referring the ellipse to its axes, let P P' be a diameter, Q P, Q P' two

supplemental chords ; then, if x f y' be the co-ordinates of P, — a?', — y'

are those of F ; hence, the equation to Q P is y — y
! = a {x — x') f

and the equation to Q P' is y + y' = a' (a? + os').

At the point of intersection, y and cc are the same for both equation?,

being the co-ordinates of Q ; hence. y
% — «'• = «'<*' (& — x'*} '

but a2

y
% + 68 ^2 = «2

&
2 at Q,

and aV a + &
a *' a ~ a2

Z>
2 atP;

. . y
8 - ?" = - ^ (*

s - *">

;

that is, The product of the tangents of the angles, which a pair of sup-

plemental chords makes with the axis major, is constant,

* If the distance C P ss u }
and p ss? the perpendicular from the mitre on the tan-

gent at P, this equation is

'»

-f. _ u2
*
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If the curve was referred to any conjugate diameters, 2 aL and 2 b
x , we

should find exactly in the same manner that the product of the tangents

of the angles, which a pair of supplemental chords makes with any axis

2 al9 is constant, and equal to — — .

The equation to a chord Q P being y — y
f = a (<r — a?'), the equation

to its supplemental chord Q P' is y -f y
f = — —— (a? -j- x 1

).
a &

In the circle & = # .*. a a' == — 1, which proves that in the circle the

supplemental chords are at right angles to each other, a well-known pro-

perty of that figure.

The converse of the proposition is thus proved.

b
2

Let AC K! be any diameter, C the origin, and a a' = — —-, then the
a \

equation to A R is y = a (a? + «i) (1), and the equation to A'R is y =
6s

a' (x-aS) ~ — (x — a{) (2). To find the intersection of the lines A R
a x

z a

and A'R, let y and x be the same for (1) and (2), and eliminate a by
multiplication ; hence,

b 2

y% — _ _L (^2 _ ^8) . or a 2 y* + }>* tf — ^2^ an(J the fo^g Qf£ fe
a

\

an ellipse whose axes are 2 a
x
and 2 bv

b2

142. The equation a a' ;= • is remarkable, as showing that a a'

is the same, not only for different pairs of chords drawn to the extremities

of the same diameter, but also for pairs of chords drawn to the extremities

of any diameter ; hence, if from the extremity of the axis major we can

draw one chord AR parallel to Q P', the supplemental chord R A' will

be parallel to Q P : this is possible in all cases, except when one chord is

parallel or perpendicular to the axis.

143. To find the angle between two supplemental chords.

Let x, y be the co-ordinates of Q 2 and x f y' those of P,

y -y' y+y'

mu * -n^-o, a ~ a' X ~
' x' xJr x '

2.a9 x'y-y'x
Then tan. PQF = —

,
= -——77 " = -7—T7 -r~rr ;

1 + ot a' h l
az — b z or — a?'

2 5

or, = —

a*

2 b" x f y — y' x

a2 — b2 y% — y' 2

For the principal supplemental chords, we have xf = a, y' = ;

A -o w 2 b2 a
.". tan. AEA's: — ——- - .

a2- b2 y

This value of the tangent being negative, the angle ARA' is always

obtuse, which is also evident, since all the points on the ellipse are within

the circumscribing circle.
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As y increases, the numerical value of the tangent decreases, or the

angle increases (since the greater the obtuse angle, the less is its tangent)
;

hence, the angle is a maximum when y is, that is, when y zzi b. This

shows that the angle ABA' is the greatest angle contained by the prin-

cipal supplemental chords, and therefore by any supplemental chords.

Also, its supplement BAB' is the least angle contained by any supple-

mental chords. The angle between the chords being thus limited by the

angles A'BA, BAB', of which the former is greater, and the latter

less, than a right angle, chords may be drawn containing any aagle be-

tween these limits. This is done by describing a segment of a circle,

containing the given angle, upon any diameter, except the axis, and join-

ing the extremities of the diameter with the points of intersection of the

ellipse and circle. Also, from the value of tan. P Q P', it appears that,

if the angle be a right angle, the two chords are perpendicular to the

axes.

144. It was shown in (131.) that if 8 and B' were the angles which

b2

conjugate diameters make with the axis major, tan. 6. tan. Q f = — ~
,

but a, a being tangents of the angles which two supplemental chords

b
%

make with the same axis
3
we have a a' z= — —- ; /. tan, 0. tan. =

Co

a a f

; hence, if tan. s a, we have tan. 0' = a* ; or if one diameter be

parallel to any chord, the conjugate diameter is parallel to the supple-

mental chord.

145. Since supplemental chords can be drawn containing any angle

within certain limits, conjugate diameters parallel to these chords may be

drawn containing any given angle within the same limits.

Also, since the angle between the principal supplemental chords is

always obtuse, the angle PCD between the conjugate diameters is also

obtuse, and is the greatest when they are parallel to AB and A B'. In

this case, being symmetrically situated with respect to the axes, they are

equal to one another.

The magnitude of the equal conjugate diameters is found from the

a? ~\- 5
2

equation a^+ If = a9 + 6s
, .\ ax

* = —-—-.

The equation to the ellipse referred to its equal conjugate diameters is

if + a?
2 = «!

a
; however, this must not be confounded with the equation

to the circle, which only assumes this form when referred to rectangular

axes.

THE POLAR EQUATION.

146. Instead of an equation between rectangular co-ordinates % and y,

we may obtain one between polar co-ordinates u and 9.

Let the curve be referred to the centre C, and to rectangular axes, and

let the co-ordinates of the pole O be x r and y', the angle which the

radius vector O P, or u, makes with a line O cc parallel to the axis of a?;

then, by (61.), or by inspection of the figure, we have

y^zy,jru sin.

# £5 W 1 + U COB, 6 •
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also <&*#" + &
s

tf
e s «2 &2 ;

.% by substitution, a? (y
f + m sin. 0)

§

+ i
2
(«

f +Mcos. 0)
2 = a*b*;

Whence u may be found in terms of ^'

and constant quantities.

147. Let the centre be the pole :

.% a?' := and y' = 0,

\ a2 wa
(sin. Of -f 6 a m2 (cos. 0)

2 = «9 6«
;

a2 6 2 «2
6
2

a 2 (sin.G) a+ 6
a (cos. 0)

2 a2
(sin. <9)

2 + (a2 - a2
e
2

)
(cos. 0)

a

a2 (I - c
a
)

1 - e
a
(cos. tf)

2
a2 - a2

e
2

(cos. 0}

148. Let the focus S be the pole :

.\ y' ~ 0, x' =: — a e == — c, and u becomes r
;

hence the transformed equation (146.) becomes

a°~ (r sin. 6)
2

-f 6
2 (— c -f r cos. 6>)

2 — a2
Z>
2

;

/. a2 r2 (sin. 6>)
2 + 6a r2 (cos. ^)

2 - 2 62 rc cos. -f W c2 =s a8 62
;

or, «2
r
2

(sin.©) 2 + a2
r
2
(cos. 6f — c*r* (cos. 0)

2 - 2 6
s re cos,6> =

a2
6
2 — b* c

2
z=z b

4 since «s — 62 = c2.

oi% «2
r
8 = c

2
r8 (cos. e) 2 + 2 6* r c cos. + ¥

= (c r cos. + 6
a

)
a

;

.• . av ^r cr cos, 9 + b2

b* a* (1 - e2
) « (1- e

5

)
r = •

a — a e cos. > e cos. 6a — c cos.

149. Let any point on the curve be the pole:

Expanding- the terms of the polar equation in (146.), and reducing by

means of the equation a* y
r* -f b* x'* =: a2

6 2
, we have

dl
y

/
sin. 6 -J- b* xf cos.

M === ~~ " a2
(sin. 6>)

2 + ft
2
(cos. 6>)

2 '

If the pole is at A, we have y' = 0, and x f zz — a,

2 V a cos. 6 2a(l-es

) cos.
9

?/ tz^ -— izr" • ."

'
'

s (sin. 0)
2 + 62 (cos. 0)

2 " 1 ~~ e
2 (cos. 0)

2

150. When the focus is the pole, the equation is often obtained directly

from some known property of the curve.

IM S P C5 r, C M - a?, and A S P - e,

then SP £2<z + ea? (109.)

- # + e (S M - S C)

ma + e (— r cos, - ae)

%
_ a (1 - @s)

r + € r cos, ss a — & e
2 and r ss

1 + 6 COS. 6
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This is the equation generally used in astronomy, the focus S being the

place of the sun, and the ellipse the approximate path of the planet.

52

Let a (I — e
2
) = — = p> where p is the parameter. (105.)

d

Then the last equation may be written under the following forms

:

_ V 1 _ P *
r *~ ~2 *

1 + e cos. 9 ~ ~2 * 7 o "Y e Vl-e + 2ef cos. —
j

(1 +c)^coB.gj+ (1-e) (^sin.gj

If be measured, not from S A, but from a line passing through S,

and making an angle a with S A, the polar equation is

_P
2 1 -j- e cos. (6 — a)

151. If P S meet the curve again P', let SF = r',

P 1
then r = —-- . —

-

2 1 + e cos.

.
n(] / _ £.

1 = £_
e

]
___

.

<int ?

2 *
1 + e cos. (tt - 0) 2 * 1 — e cos. '

/. r+r'r PP ; = P
I — e8 (cos. 6>)

2

and rr'^Y' i / 2 a^— 1 (r + r')
4 1— (e2

cos. 0)
2 4

or the rectangle S P, S P' s= \ of the rectangle under the principal

parameter and focal chord.

152. Let CD, or b» be the semi-diameter parallel to S P, then (147.)

l* ~
1 - e2 (cos. 6>)

2 ~ 2 1 ~ e
2 (cos. 6>)

2 ~ 2 ^
T h

2 b,
2

,\ r + t ~ - g

that is, a focal chord at any point P, is a third proportional to the axis

major and diameter to that chord.
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CHAPTER IX,

THE HYPERBOLA.

153. In the discussion of the general equation of the second order, we
observed that, referring the curve to the centre and rectangular axes, the

equation to the hyperbola assumed the form

&)'+&)'-
where the co-efficients have different signs, 85. 86,

Let ( —77; ) be negative, then the equation becomes/'

-(=7>- +
-/'

X

orP/- Qa?2 = - 1.

We now proceed to investigate this equation, and to deduce from it all

the properties of the hyperbola.

154. Let the curve be referred to its centre C, and rectangular axes

X x, Yy, meeting in C ; C M = x, and MP=:^; then, at the point

where the curve cuts the axes, we have

y= 0,0 3*= 1, .% *= ±
J~q

* = 0,P2f = - 1, ;.y^±%/-±~

In the axis of x take C A : and CA' = -
. , and the curve

cuts the axis Xa1 in A and A: Since the value of y is impossible,

the other axis never meets the curve ; nevertheless we mark off two
points, B and B', in that axis, whose distances from C are CBz

+ JL and CB'z- --L.

Y

V
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1 1
Also ifCAsa, and CBs5, we have Q =s ~— , Ps~; there-

re the equation to the curve becomes

6s

x2 _
~ a2

~ i;

or «V - 6
2 x2 = a8 6'

3

or y» = &
2

, c

&2 O
155, From the

b

a

\ last e<:mation we have

(1) and #
°~ ±-

Ty V^2 -- a2 V y2
„J_

52 (2).

From (1) if # be less than + a, y is impossible ; if, therefore, lines be

drawn through A and A', parallel to C Y, no part of the curve is found

between these lines.

Again, for every value of x, greater than #, we have two real and
equal values of y ; that is, for any abscissa C M, greater than C A, we
have two equal and opposite ordinates, M P, M P',

Also as x increases from a to gd, these values of y increase from

to -jz 0° ; hence, we have two arcs A P, A P', exactly equal and oppo-

site to each other, and extending themselves indefinitely.

If x be negative, x2 being positive, the same values of y must recur

;

hence, there are again two equal and opposite arcs which form another

branch extending from A' to go ; thus the whole curve is divided into two

equal parts by the axis of x.

From (2) it appears to be divided into two equal parts by the axis of

y ; hence it is symmetrical with respect to the axes ; and its concavity is

turned towards the axis of x, otherwise it might be cut by a straight line

in more points than two, (71.)

156. If P be any point on the curve, we have

V ,^ ^ . M + 6
s

cp = v*8 + f = v *2 + — (^
2
~~ ^) = v—r- ^8 - b *

5J
a" a2

hence C P is least when x is least, that is, when x ss «, in which case

C P becomes also equal to a ; hence C A, or C A', is the least line that

can be drawn from the centre to the curve : thus, the axis A A/ is the

least line that can be drawn through the centre to meet the curve. The
other axis, B B', never meets the curve.

In the equation ~P y
2 — Q x2 = — 1, the imaginary axis may be greater

or less than the real one,, according as Q is greater or l°ess than P ; hence

the appellation of axis major cannot be generally applied to the real axis

of the curve. In this treatise we shall call A A' the transverse axis, and
B W the conjugate axis.

157. T'he points A, A/ are called the vertices, or summits of the curve:

either of these points may be taken for the origin by making proper sub-

stitutions.

Let A be the origin, A M = x f

;

Then a?=sCM=:CA + AM = fi+«';
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.-. y*~~ (« - «2
) = ~ { (.a + *T - a»} = ^ { 2 « * + *%

11 to CI

b
2

b*
or, suppressing 1 accents, #

2 = — (2 # x «f #2
) sr: —- x (2 a + a?).

This last equation is geometrically expressed by the following" propor-

tion :

The square upon M P : rectangle AM, M A' \\ the square upon B C
: the square upon A C.

W
If the origin be at A', the equation is y* zz —- (a?

2 — 2 a »).

158. If a = 6, the equation to the hyperbola becomes y* — cc? = — a2
;

this curve is called the equilateral hyperbola, and has, to the common
hyperbola, the same relation that the circle has to the ellipse.

159. The analogy between the ellipse and hyperbola will be found to

be very remarkable ; the equations to the two curves differ only in the

sign of 6
s

; for if, in the equation to the ellipse a* y
% + b* a: = as

6
2
, we put

— b
2
for 6

s
, we have the equation to the hyperbola : hence we might

conclude that many of the algebraical results found in the one curve will

be true for the other, upon changing 6
s
into - b* in those results ; and in

fact this is the case, the same theorems are generally true for both, and

may be proved in the same manner : for this reason we shall not enter at

length into the demonstration of all the properties of the hyperbola, but

merely put down the enunciations and results, with a reference at the end

of each article to the corresponding one in the ellipse, except in those

cases where there may be any modification required in the working. To
prevent any doubt about the form of the figure, we shall insert figures in

those places where they may be wanted ; and, with this assistance, we
trust that the present plan will offer no difficulty.

THE FOCUS,

160. The equation -y* = — (2fli+ «s
2
) may be put under the form

> 2 6 2

2/
2 zz. I x + ~ 3?9 in which case the quantity I = is called the

principal parameter, or the Latus Rectum.

2 6s 4 b%

Since I ss *-— K2 •£—, the Latus Rectum is & third proportional to

the transverse and conjugate axes*

161

,

To find from what point in the transverse axis a double ordinate

oan be drawn equal to the Latus Rectum,

4 68 4 h4

Here 4 y» = 1% or— (#s - a?) =s ~-
;
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or, :r
2 = a2

-f b 2
;

B

93

H /A?

Join A B, then AB = J a9 -j~ 6* ; with centre C and radius A B de

scribe a circle cutting- the transverse axis in the points S and H, we have

then CS = V a* + b2
, and C H = - V a* + bs

; thus S and H are the

points through either of which, if an ordinate as LSL' be drawn, it is

equal to the Latus Rectum.

The two points S and H, thus determined, are called the foci.

V a2 + b2

162. The fraction , which represents the ratio of C S to C A,

is called the eccentricity: if this quantity, which is evidently greater than

unity, be represented by the letter e, we have \/a2 + 62 = a e, whence

v + b* = 1 + .*. —5 ~ e2 — 1, and the equation to the hy-

perbola may be put under the form

y> = (e
2 - 1) (a?

2 - a2
).

163. Since a? + b* = a2 e\ we have b2 = «2
e
2 - a2 = (a e — a)

{a e + a) ;

Or the rectangle AS, Si' = the square upon B C.

164. To find the distance from the focus to any point P in the curve,

proceeding exactly as in (109.) we find

SPr=ec7? - a, H F = e jc + a
;

Hence H P - S P = 2 a = A A', that is the difference of the distances

of any point in the curve from the foci is equal to the transverse axis.

165. Conversely, To find the locus of a point, the difference of whose
distances from two fixed points S and H is constant or equal 2 a.

If S H = 2 c, the locus is an hyperbola, whose axes are 2 a and

2 V a2 + c
2
, and whose foci are S and H. (110.)

THE TANGENT.

166. To find the equation to the tangent at any point P (a?
f

y'),

The required equation obtained as in (111.) is

a2 y y
f ~- b* x x' =r - a~ 6s

.
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This form is easily recollected, since it may be obtained from the equa-

tion to the curve a2
y
2 — b

2 x2 = — a2 62
, by putting y y

f for y
2
, and x or

for x2
.

167. To find the points where the tangent cuts the axes

;

a2 b
2

Let y = 0, .\ x t=i — = C T ; similarly 2/ = CT, = - —7 ; hence
x y

we have
The rectangle CT,C M = the square upon A C

;

and The rectangle CT',MP^ the square upon B C,

Since C T f = —
)
is always less than C A, the tangent to any point of

the branch P A cuts the transverse axis between C and A.

a2 xf2 —-a2

The subtansent MT- x f (115.)
x f

x'

The tangent at the extremity A of the transverse axis is perpendicular

to that axis (116.).

If P C be produced to meet the curve again in P ;
, the tangents at P

and P' will be found to be parallel (116.).

168. To find the equation to the tangent at the extremity of the Latus
Rectum,

Generally the equation to the tangent is

a2
y y

f ~~ W xxf = — a2 62 ;

b2

at L, #' = a e, y zz. —~
;

a2 y b2 x ae
a

e x — a*

a9 b\
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Let the ordinate ?/, or M Q, cut the curve in P, then we have S P
= e x - a (164.).

.\MQ = SP:

Also CT = — , hence from T draw T R perpendicular to A C, and
e

from P draw P R parallel to A C, then we have

PR=MT = MC-CT _ iL — e0D ~" a — JL s p
e e e

Consequently, the distances of any point P from S, and from fche line T R,
are in the constant ratio of e : 1

•

The line T R is called the directrix.

If x = 0, we have y = — a ; hence the tangent at the extremity of

the Latus Rectum cuts the axis of y at the point where the circle on the

transverse axis cuts the axis of y.

169. To find the length of the perpendicular from the focus on the

tangent.

Let S ?/, H z be the perpendiculars on the tangent P T.

Taking the expression in (48.) we have

yx
— a xx

- d

V 1 + «fl

here y l
=s and oo

l
^ a e are co-ordinates of the point S, and y = « x

-f~ d is the equation to P y ; but the equation to P y (166.) is also

y =
62 a?

a*y'

v-~

y
b*xf

6
2

- -7—, a e + —
a y y

62 x f

= +

and <i = —
V

a b2 (e a?' — «)

aW (e x' — a) ^ - &/ e' lV' ~~ a
~~ ab a{ {& x'° — «2

}
~"

e #' -J- #
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LetSP^ r,andHP = 2a + r = r' .\ p= b ^/^orp* —

Similarly if H z = p\ we have p'% = b
2

/' r 2a+r

r

By multiplication we have p p
! = 6

2
; : hence

The rectangle S y, H z zn the square upon B C.

170. To find the locus of y or z in the last article.

The equation to the curve at P is a2

y
,z — b

% xn zzz — a? b
2

The equation to the tangent at P is a2 y y
f
- — b

2 x x f = — a2
6
2
.

— &2 W r

The equation to S y is 3/ =»-—77—— (x — c)
6^ a?'

By eliminating #' and y
f

, exactly as in (120.), we arrive at the equa-

tion

a2 =
2/

2 + ^2
;

Hence the locus of y is a circle described on the transverse axis as dia

meter.

171. To find the angle which the focal distance S P makes with the

tangent P T.

62 xf b
%

The equation to the tangent is y zz —j—'a — — , and the equation
a2 y f

y
f

to S P is, y — y
f = y— (# — #'),

hence tan. S PT = tan (P S X - PTX)

*' -~ c a% y' a* y
n "• 62 *' 8 + b * c ^

6
2
(c *' - a2

) 62

y' c{cx'— a2
) c y'

b*
Similarly tan, HPT=r — , /.the angles SPT, HPT are equal;

c y

thus the tangent makes equal angles with the focal distances.

Produce S P to S', then it is a property of light, that if a ray pro-

ceeding from H be reflected by the line TPf, the angle S' P T' of the

reflected ray will equal the angle HPT. Now, in the hyperbola, these

angles are equal ; hence if a light be placed at H, all rays which are inci-

dent on the curve will be reflected as if diverging from S ; or if a body
of rays proceeding to S be incident on the curve, they will converge to H.
Hence these points S and H are called foci.

This important property of the curve is also thus proved from article

(169.),

r rf

Sy=p=6 J— , and H z =: p
f s: b J — %

t T
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. . Sy : H? :: r .. r' :: SP : HP;

.•. angle S P y = II P 2, and the tangent makes
equal angles with the focal distances *.

172. To find the length of the perpendicular C u from the centre on the

tangent.

ot x x
— d

p = -£-
Vi +

here ^ r , ^ = , a = -£—,, and a =2 ,-,
.

• . C w = -

173. To find the locus of u.

ft
2
V*

The equation to C u is y := — —^ #, eliminating a' ?/' from this

equation, and the equation to the tangent, we find, as in (123.), the re-

sulting equation to be a2 x2 — 62
y
2 =r (a?2 + y*)\ which cannot be dis-

cussed at present.

174. From the equation to the tangent, and that to C P, we find, as
in (124.),

ffi A2

tan.CPT = -£f-r.
c2 cd y'

* The following geometrical method of drawing a tangent to the hyperbola, and
proving that the locus of the perpendicular from the focus on the tangent is the circle

on the transverse axis, will be found useful.

Let A P be the hyperbola, P any
point on it

;
join S P and H P, and in

H P take P K = PS; bisect the
angle S P K by the line P y z, and
join S K, cutting P y in y.

1. P y is a tangent to the hyper-
bola; for if R be any other point in
the line P y, we have HR - S R =
H R — K R is less than H K ^Geom.
i. 10) less than 2 a, hence R, and every
other point in P y, is without the curve.

2. The locus of y is the circle on
the transverse axis : draw H z parallel

to S #, and join C y ; then, because
the triangles S P y, K P y are equal,
we have the angle S 7/P a right angle,
or S y and H z are perpendicular to the tangent. Also since S y — K y, and S C =

C H, we have C y parallel to H K, and C y : HK: i- (H P - S P) = C A.

3. The rectangle S y, H z r=r the square on B C. Let z H meet the circle again in

0, and join C O ; then the line OCy is a straight line and a diameter, hence the
triangles CSj/,CHO are equal, and the rectangle Sy, II z ™ the rectangle H O,
Hz = the rectangle H A', H A = the square upon B C.

4. Let S P = r, H P ==2 2 a + r, S y - p and H z = p\ then »2 = —^— ; for by
'2 n. -*- v

similar triangles, S y °. S P :: H * : H P, .*. p =

&%.-.|i»=
2 a -\- i

I a ~|~ r
p'j and, as above, p p'

H
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From C« = C y sin. C y u, we have

——

-

rr a sin. C y u /.. sin. Lyu^ ~j=->
*J rr' v r T '

Also from H 2 =2 H P sin. H P 2, we have

h J — - / sin. HP:, .'. sin. HP^ -==
,

^ r J r r
f

.\ angle C y u =% angle H P 2 and C 2/ is parallel to H P.

And if C E be drawn parallel to the tangent P T, and meeting H P
in E, we have PE^C^~AC.

THE NORMAL,

175. The equation to the line passing through the point P (a?' y
1

), and

/ b
2 xf

b
2 \ .

perpendicular to the tangent ( y = -

8
- y # •— —

J

is

#2 w'

y - y' = - -^ry 0* - *0-

To find where the normal P G cuts the axes.

a2 y f b2 x f

Let y = .-. - y> =s - -^ (» - *') .-. * - a/ + -^
a2 4- h 2

&2

Let a? = .-. y = y' +— t= —^- if = - — 3/ = C G'.

52 ^
Also the subnormal M G ss w — a?' m—- ; and S G == e. S P.

&2
'

176. From the above values of C G, C G', and M G', we may demon-

trate that P G = — v r rf
, P G' 5= -— V r /, and consequently that

a

The rectangle PG.PG'sr r f == the rectangle S P, H P.

Also SG'- ^4- j7?9 G G' ~~ V"77', and .-. G G'= e.SG'.
6 v

177. Since the tangent makes equal angles with the focal distances,

the normal, which is perpendicular to the tangent, also makes equal

angles with the focal distances, one of them being first produced as to H\
This theorem may be directly proved from the above value of C G ;

for

S G : H.G :: e*x' — ae : e
2

a?' + a e : : e x f — a : e x! + a : : S P :

II P, hence the angle S P H' is bisected by the line P G.

THE DIAMETERS.

173. It may be proved as for the ellipse (130.), that all the diameters

of the hyperbola pass through the centre, and that any line through the
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centre is a diameter. If y t=i a x + c be the equation to any chord,

a2 a y — 6 2 x zn is the equation to the diameter bisecting- all chords
parallel to y = a x + c.

179. In the ellipse all the diameters must necessarily meet the curve
;

but this is not the case in the hyperbola, as will appear by finding the co-

ordinates of intersection of the diameter and the curve.

Let y = p x be the equation to a diameter C P, and substitute this

value of y in the equation to the curve.

a? y« - ft« a?
a -= — a* b\

,\aa
|3

a
a?
a - 6

2 #2 = - «2
6
2
,

a2
6
2

a?* =

.'.# = :£

"

a2
/3

2 '

V 6
2 - fl

a"/32
'

These values are impossible, if a 2
/3

2
is greater than 6 2

, that is, if /3 is

greater than— ; andif/3 = ±— , the diameter meets the curve only at

an infinite distance. The limits of the intersecting diameters are thus

determined; through A, B and B f draw lines parallel to the axes meeting

in E and E', then tan. E C A = — , and tan. E'CA= - — , henceCE
a a

and C E' produced are the lines required. Hence, in order that a dia-

meter meet the curve, it must be drawn within the angle ECE'; thus the

line C D never meets the curve.

The curve is symmetrical with respect to these lines C E, C E', since

the axis bisects the angle E C E'.

180. The hyperbola has an infinite number of pairs of conjugate dia-

meters. This is proved by referring the equation to other axes by means

of the formulas of transformation (57.)

y :rr x r

sin. 0+2/' sin.
r

,

x =: xf
cos. + ?/ cos.

f

;

hence the equation aa
y

2 — b2 x2 — — a2
fr
2 becomes

{a3
(sin.

fy - b* (cos. Q
!

f} y
! '2 + {a* (sin. 6>)

2 - ¥ (cos. 0)
2
} tf

l

±2 (a* sin* sin. $' - ¥ cos, & cos.
1

} xf y f s= - a2 6
2
.

112
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In order that this equation be of the conjugate form, let the co-efficient

of if xr = 0,

.\ a2 sin. 9 sin. G f — 62
cos. cos. 0' = 0,

or, tan. Q tan. 0' = -—

.

a2

Hence for any value of 0, we have a real value of Q f

, that is, there is an

infinite number of pairs of axes to which, if the curve be referred, its

equation is of the required conjugate form.

If tan. 6 be less than — , tan. 6f must be Greater than — , that is, if

a a

one diameter C P, in the last figure, meets the curve, the conjugate dia-

meter C D does not ; therefore in each system of conjugate diameters one

is imaginary. Also, since the product of the tangents is positive, both

angles are acute, or both obtuse ; in the figure they are both acute, but

for the opposite branch they must be both obtuse.

181. As in article (132.), it appears that there can be only one system

of rectangular conjugate diameters.

182. The equation to the curve is now

{a* (sin. Q')
Q
~ — ¥ (cos. 0') 2

} y' 2 + {^ (sin. Of - b
2
(cos. 0)

2
} a?'

B = - a? b\

If we successively make y
f = 0, and x' = 0, we have the distances

from the origin to the points in which the curve cuts the new axes; but
as we already know (180.) that one of these new axes never meets the

curve, we must represent one of these distances by an imaginary quantity.

Let the axis of x f meet the curve at a distance ax from the centre, and
let the length of the other semi-axis be b x connected with the symbol

V — 1» that is, let the new conjugate diameters be 2 a
x
and 2 b x J —• I,

then we have

y = /. {a2
(sin. Qf - b2 (cos. Of} a* = - a2 h\

x = .\ {a2 (sin. 6 f

f - b
2 (cos, 0')

2

]
(- b

2
) = - a2 b2

,

And the transformed equation becomes

y' 2

=2-1,~"
b

2

or, a 2
if

2 - b x
* x'* ~~-a 2 b?.

183. From the transformation we obtain the three- following equations:

a 2 {a2
(sin. 0)

2 - 6 s (cos. <9)
2
}
- - a2

b
2

( 1),

6
t

2 {a2 (sin. 0')
9 - 6* (cos. 6'y} = + a2

62 (2),

a8
sin. sin. Q' — 6

3
cos. cos. 6r = 0,

62
V (3).

or, tan. tan. Qf = — '

Following the steps exactly as in article (134.), or, which amounts to

ihe same thing, putting — b
2

for 6
2
» and — b

2
for V" all through that

article, we arrive at the result

a? ~~ b? = a8 - 6%
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or, the difference of the squares upon the conjugate diameters is equal to

the difference of the squares upon the axes.

184. Again, multiplying (1) and (2) together, and (3) by itself, then

subtracting the results, and reducing, as in the article (135.), we have

«! 6
X
sin. (0

f — 6>) = a b>

Now 6 f — e is the angle PCD between the conjugate diameters CP
and C D ; hence, drawing straight lines at the extremities of the conjugate

diameters, parallel to those diameters, we have, from the above equation,

the parallelogram P C D T = the rectangle A' C B E, and hence the whole

parallelogram thus inscribed in the figure is equal to the rectangle con-

tained by the axes *.

185. Returning to article (182,), the equation to the curve, suppressing
the accents on xf and y', as no longer necessary, is

* The theorems in articles 183 and 184 may be proved also in the following man-
ner :

—

Referring the curve to its rectangular axes, as in art. (187-)> ^et tne co-ordinates of

P be a/ and y\ then the equation to CD is a2 y y — b2 x x' = 0, and eliminating #
and y between this equation and that to the curve («

2
y
a — b2 x2

z=z — a2 A
a
) we have

the co-ordinates C N and D N, independent of the sign V — 1, with which they are

both affected,

C N = x = —-, and DN = ?/= — ;

Hence we have

a* - b? = #'2+ yB - x2 - y» ~ x'
2
-h y" - Px* b2 x$ - os y'

2

&

+
a y" «8 &a - a2 b*

bl

Also the triangle PCD = the trapezium P M N D -f the triangle P CN - the
triangle P C M

-(*/-*) lia + ^jl y _ v v y *
,

1
r *

h x' . a ?/' i

a o j

V1 x'-- •a"y"

2 ab

therefore the parallelogram V C D T ~- % b.

a* tf _ab
2a6=-y>
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In the last figure, C P e= ai9 C D = 6n C Y = x and QVsjf:
Putting the equation into the form

we have the square upon Q V : the rectangle P V, VF:: the square upon

C D : the square upon C P>

186. The equation to the tangent at any point Q (V y') is

a? yy
r -h?xx' = - a,

2
bf.

187. Let the curve be referred to its axes C A, C B, and let the co-

y'
ordinates of P be xf y\ then the equation to C P being y s= —j-x, the

b2 ¥ oc
!

equation to CD is ^ = x tan. 6- = a?
-—

• cot. rr T x, or,
1 J

a2 a* y
a°yy' - b2 x x' zz 0„

But the equation to the tangent at P is

a2 y y' — b2 x x' t= — «2 &s
;

hence C D, or the diameter conjugate to C P, is parallel to the tangent

at P.

The equation to the conjugate diameter is the same as that to the tan-

gent, omitting the last term — a2 b2
,

188. Let x' and y
f be the rectangular co-ordinates of P; then from the

equation a
x

2 — b
t

2 = a2 — b 2
, we have

bfszaf— tf + fc^rft+y'i — tf + b* — «/8 +( — a?'
8- ft

2

J

- a* + &9

#2 _L 52~
. 3/ 2 _ fl

* «- e2 ^/2 -. fl
2-

(e
^„ a) (e t7?

/ + ^) = ?• r'

;

ft
2

That is, the square upon the conjugate diameter CD= the rectangle

under the focal distances S P and H P.

189. If P F be drawn perpendicular from P upon the conjugate C D,
(see the last figure but one,) we have the rectangle PF, CD =: ab,

(164-).

a b a

b

abPF
^i V#

j

8 - a2
-f b2 V r r

f
'

Also P G = — V r r', and P G' = 4" V r r',

Hence the rectangle P G, P F =s the square on B C

;

And the rectangle PG', PF^ the square on A C ;

And the rectangle P G, PG'= the square on C D.

* If the distance CPz«, and p z= the perpendicular from the centre on the tan-
gent, this equation is

„_ £*?__
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SUPPLEMENTAL CHORDS,

190. Two straight lines drawn from a point on the curve to the extre-
mities of a diameter are called supplemental chords ; they are called
principal supplemental chords if that diameter be the transverse axis.

The equations to a pair of chords are

y — ij ess a (x — aA

y + ?/' = »' {cc + a?0
;

Whence a a' = — as in (141.); hence the product of the tangents of

the angles which a pair of supplemental chords makes with the transverse

axis is constant; the converse is proved as in 141.

191. The angle between two supplemental chords is found from the ex-

pression

tan. PQP = -VT-T* Hf—"V-
-

And, if A R, A' R be principal supplemental chords drawn to any point

R on the curve,

tan. ARA's ——7-r— .

(a2 + fr) y

The angle A R A' is always acute, and diminishes from a right angle

to ; the supplemental angle A A' R' increases at the same time from a

right angle to 180°; hence, the angle between the supplemental chords

may be any angle between and 180°o

Chords may be drawn containing any angle between these limits, by

describing on any diameter, except the axes, a segment of a circle con-

taining the given angle, and then joining the extremities of the diameter

with the point where the circle intersects the hyperbola. And therefore

principal supplemental chords parallel to these may be drawn.

192. Conjugate diameters are parallel to supplemental chords (144.) ;

and therefore they may be drawn containing any angle between and 90°.

193. There are no equal conjugate diameters in the hyperbola, but in

that particular curve where b = a
9
we have the equation

a? — b? = a2 - & — 0;

hence the conjugate diameters a x
and bx are always equal to each other,

The equation to this curve, called the equilateral hyperbola, is

y* — x% = — a\

THE ASYMPTOTES.

194. We have now shown that most of the properties of the ellipse

apply to the hyperbola with a very slight variation : there is, however, a

whole class of theorems quite peculiar to the latter curve, and these arise

from the curious form of the branches extending to an infinite distance ;

b*
it appears from the equation tan. , tan 1 = ~- in (180.), that as tan.
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7 y

approaches to — , tan, 6 f approaches also to —, and thus, as a point P
Cb (t

recedes along the curve from the origin, the conjugate diameters for that

point approach towards a certain line C E, fig. (179.), and finally at an

infinite distance come indefinitely near to that line.

We now proceed to show that the curve itself continually approaches to

the same line C E, without ever actually coinciding with it. But as this

species of line is not confined to the hyperbola, we shall state the theory

generally.

195. Lei CPF be a curve whose equation has been reduced to the

form

c
y = a x + h + —

;

And let T B S be the line whose equation is

y s= a x -f- b.

For any value of x we can find from this last equation a corresponding

c
ordinate M Q, and by adding •—- to M Q 3

we determine a point P in the

curve : similarly we can determine any number of corresponding points

(P', Q f

, &c.) in the curve and straight line.

Since— decreases as x increases, the line P ; Q' will be less than P Q,
x

and the greater x becomes, the smaller does the corresponding P' Q r be-

come ; so that when x is infinitely great, P' Q' is infinitely small, or the

curve approaches indefinitely near to the line TBS, but yet never actually

meets it : hence TBS is called an asymptote to the curve, from three

Greek words signifying " never coinciding."

The equation to the asymptote T B S is y = a x + 6, or is the equa-

tion to the curve, with the exception of the term involving the inverse

power of x.

196. The reasoning would have been as conclusive if the*e had been

more inverse powers of x ; and in general if the equation to a curve can

be put into the form

c d
y ss &c. + m x3 + n x2

4- a x + &+ — -&- — + &c.
X X*
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Then the equation to the curvilinear asymptote is

y es &c. + m x3 + n oc
2, + a cc + b

• •< c
Also the equation y = &c. -f m x* ~f- n x* + a a? -f- 6 -f — gives a curve

much more asymptotic than the preceding equation, and hence arises a

series of curves, each " more nearly coinciding" with the original curve.

197. Let us apply this method to lines of the second order, whose
general equation is (75.)

y = -
h~~~L ± ITa^'^ ~ 4 a C) ^ + 2 (bd " 2ae) X + d" ~ 4^

— _ — ± V { m a?
9 + ?i a? + » } . by substitution,

I mx* )2a

2 a 1 \ mx2

J \ mx2
J J

6 a? -f d
, /— r , ,

n \ ,
constant terms

2 a \ in )
powers ot x

Hence the equation to the asymptote is

y -
bx + d
~~

2 a
± V«{* + i^}

bx -f d
, *J b* — %ac
± —

2 a

- 4«c
J

b d — 2&c
i

a I*
+

62 - 4ac
J

Now 6
2 — 4 a c is negative in the ellipse, and therefore there is no locus

to the above equation in this case ; also if b2 — 4 a c = 0, the equation

to the asymptote, found as above, will contain the term V^5
and there-

fore will belong to a curvilinear asymptote ; hence the hyperbola is the

only one of the three curves which admits of a rectilinear asymptote.

It appears from the ± sign, that there are two asymptotes, and that

the diameter y ss —• — bisects them. Also these asymptotes* 2a

xl , 2 a e — b d
pass through the centre ; for giving to x the value ^ , we have

bx + d^2cd°—be
V ^ "~

~~2~cT~
""" #- 4 ac

'

and these values of x and y are the co-ordinates of the centre (80.).

198. If the equation want either of the terms #2 or y\ a slight opera-

tion will enable us to express the equation in a series of inverse powers of

y or x; thus if the equation be

b xy -f ex2 + dy + e x -f/— 0,
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c x2
-f e x -f- / c #2 Jr e # + /

we have y = — -—7 7— := - — -y —:

—

bx ^ d ( , ,
d

O X\ 1 -\ :

\ b x

• 1 »[<• ——

-

b x \ bx

+ 4. yL- W ] - +
(

)
^

3
&c .

b b bxj\ bx \bxj

Hence the equation to the asymptote, found by multiplying1 and neg

lecting inverse powers of a?, is

ex e c d

"J +
~tf

c d — b e

y ~"
b b

+
b
2i

or, b y -(- c <r

The other asymptote is determined by the consideration that if, for any

finite value of <r, we obtain a real infinite value of y, that value of a? de-

termines the position of an asymptote.

Here when b x + d = 0, we have y = 00 ; hence a line drawn pa«

rallel to the axis of y %
and through the point x =2 — —- , is the required

asymptote.

If the equation be

ay* + b xy -\- dy -^ ex -j- f==L 0,

the equations to the asymptotes are

a e — b d
ay -f- x = —~~— , and 6 # 4* e — ;

and the second asymptote is parallel to the axis of y

If the equation be

b x y -f d( 3/ -f- ea? +/— 0,

the equations to the asymptotes are

6 x -f d = 0, and b y + e s ;

the former asymptote being parallel to the axis of y> and the latter pa-

rallel to that of a?.

199. Lastly, if the equation be

b x y + f = 0,

the asymptotes are then the axes themselves, and the curve is referred to

its centre and asymptotes as axes.

The position of the curve in this case is directly obtained from the

f m
•

equation y ~ — -7—- = -—, by substitution.
OX X

Let C X and C Y be the axes, then for x = 0, y = 00 ; as a1 increases

y decreases, and when x r= cd, 7/ s= 0; hence we have the branch Y X.
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For a? negative, y is negative; and as x increases from to oo, y de-

creases from co to ; hence another branch y <#
3
equal and similar to the

former.

200. To find the equation to the asymptotes from the equation to the

hyperbola referred to its centre and axes,

y = '± — V a? — a2 == ± -cc\/\~ ii^i-i^+.to,}
a a

Hence the equation to the asymptotes is

b

To draw these lines, complete the parallelogram on the principal axes

(see the figure, art. 179,) ; the diagonals of this parallelogram are the loci

of the last equation, and therefore are the asymptotes required : thus C E
and C E', when produced, are the asymptotes.

The equation to the asymptotes, referred to the centre and rectangular

axes, is readily remembered, since it is the same as the equation to the

curve without the last term ; the two equations are

a2

y
2 — b2 a? zz — a2 b2, to the curve,

a%
y

2 — 5
2 x2 tn , to the asymptotes.

If the curve be referred to conjugate axes
9
the equations are

a
\ V* — &i

2 #2 = —" a \ ^i
2

)
t° the curve,

a 2 y2 •— b
2 x2 = , to the asymptotes.

201. If b ~ a, the equation to the hyperbola referred to its centre and

rectangular axes is y
2 — x2 =: — a2

, therefore the equation to the asym-

ptotes is y
2 — x2 == 0, or y ^z ± x ; hence these asymptotes cut the

axes at an angle of 45°, or the angle between them is 90°; hence the

equilateral hyperbola is also called the rectangular hyperbola.

202. If the curve be referred to its vertex A and rectangular axes, the

equation to the curve is

J — a a •('+vy.
and, expanding and neglecting inverse powers of x, the equation to the

asymptotes is

V -±(t-'>
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203. If we take the equation to any line [y~ — x -j- c
j
parallel to

the asymptote, and eliminate y between this equation and the equation to

the curve, we find only one value of x ; and thus a straight line parallel

to the asymptote cuts the hyperbola only in one point.

204. In article (77.) it was stated that, in some cases, the form of the

curve could not be readily ascertained : thus, when the curve cuts neither

diameter, there might be some difficulty in ascertaining its correct position:

the asymptotes will, however, be found very useful in this respect: for

examnle, if the equation is x y ~ <r
2
-f b x + c

s
, or y = x + b -\ ,

1 x

we have for x = 0, y = cd ; and when x becomes very great, y approxi-

mates to x -f b ; hence the lines A Y and TBS, in figure (194), wilL

represent the asymptotes of the curve ; and since the curve never cuts the

axes, its course is entirely confined within the angle YB S and the

opposite angle T B A ; hence the position of the curve is at once deter-

mined, as in figure (194).

Ex. 2. y (a - 2) = (a - 1) (a - 3), or y = (^JzlUfLZJl
x — 2

In the first place we ascertain that the curve is an hyperbola by the test

l? „ 4 a c being positive ; then draw the rectangular axes A X, A Y : to

find the points where the curve cuts the axes,

Let x = 0, ,\ # = - £ = A B,

Let y = 0, .*. x = 1 = A C,

also X t=i 3 ~ A D,

thus the curve passes through the points B, C, and D,

Again, to find the asymptotes, we have y s^ oo for x = 2 ; hence, if

AE m 2, the line FE G, drawn perpendicular to AX, is one asymptote.

y =

To find the other, we have

(x - 1) (xj- 3) _ (x_

2
"~

1) (x~ 3)_ (x - 1) (x -3)

*K
1 - xj
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J.l + — +, &c. 1 = x - 4 + 2 +— +,&c;

hence the equation to the asymptote is y — on — 2, and therefore this line

must be drawn through the point E, making' an angle of 45° with A X.
We can now trace the course of the curve completely ; for all values of

x less than I, y is negative, hence the branch BC; for x greater than

1, but less than 2, y is positive and increases from to co, hence the

branch C F ; for x greater than 2, but less than 3, y is negative, hence

the branch G D ; and for x greater than 3, y is positive and approx-

imating to x — 2, hence the branch from D extending to the second

asymptote.

For negative values of x, y is negative, and increases from — •§ to go,

approximating also to the value — x — 2 ; hence the curve extends

downwards from B towards the asymptote.

Ex. 3. y (x — a) = x (x — 2 a). Here x = a and y zz x — a, are

the equations to the asymptotes. The figure is like the last, supposing

that A and C coincide.

Ex. 4. y% = a x~
x = gives y = co : Also

l ~ 1 X
Ex. 4. ij* •=. a x 2

-f- .r*. The axis of 2/ is one asymptote, since

hence ^ ~ x -{- 2 # gives the other asymptote.

205. In order to discuss an equation of the second order completely, we
have given, in Chapter VII., a general method of reducing that equation

to its more simple forms.

In that chapter we showed that the equation, when belonging to an

hyperbola, could be reduced to the form a y
2 + c x2

-f /= 0. (84.)

Now the same equation can be reduced also to the form xy ~ & 2
; and

as this form is of use in all discussions about asymptotes, we shall pro-

ceed to its investigation.

206. Let the general equation be referred to rectangular axes, and let

it be
ayv + bxy + cx* + d y + ex + / = 0.

Let x = xf + m, and y == y
r + n, and then, as in article (80.), put

the co-efficients of xr and y' each == ; by this means the curve is re-

ferred to its centre, and its equation is reduced to the form

ayn + bxf

y
f -fc«' 2 +/'= 0.

Again, to destroy the co -efficients of x 2 and y'°, take the formulas of

transformation from rectangular to oblique co-ordinates (57.).

y
f rr x' f sin. + y

f}
sin. Q\

x (
zz. x!' cos. 6 -h y

,f
cos.

r

;

then, by substituting and arranging, the central equation becomes

y
rn {a (sin. 0'f + b sin.

f eos.0' -f c (cos. 0*'/}

•J- x"» {a (sin. ey * b sin. 6 cos. Q -f o (cos. 6>)
2

}
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-4- x" y
T! {2 a sin, Gf sin. + b (sin. cos. 0' + sin. 0' cos. 0) + 2 c cos. 0'

cos. } + /' = 0.

There are two new indeterminate quantities and 0' introduced ;
there-

fore we may make two suppositions respecting the co-efficients in the

transformed equation ; hence, letting the co-efficients of x,h and y" 2 = 0,

we have

a (sin. ey + h sin. cos. + c (cos. 0)
2 = (1),

a (sin. 0')a + & (sin -
e (cos -

e') + c (cos -

0ty = ° C2)-

Dividing the first of these two equations by (cos. 0)
2
, we have

a (tan. 0)
2 + b tan « + c = ° J

hence tan. =r — ~—_
•

From the similarity of the equation (1) and (2), it is evident that we

shall arrive at the same value for tan. 0' ; hence, letting one of the above

values refer to 0, the other will refer to ; or both the new axes are de

termined in position from the above values of tan, 0.

The equation is now reduced to the form

V x» y» + f = 0.

207. To find the value of b
!

3 we have

bf zz2a sin.0' sin. 6 + b (sin. cos. 6' -f sin. 0' cos. 0) + 2 c cos. } cos. 0,

= cos.
f
cos. {2 a tan.

f

tan. + b (tan. 0' + tan. 0) + 2 c } .

From the eauation involving tan. 0, we have

tan. . tan. 0' = — , tan. + tan. 0' = - —

,

and therefore cos. cos. 6/

&' = —
^/ (a _ c)2 + tf»

:{2c-£ + 2c} = 4 # c

V (a - c)* + 6
2
\

«
J V (a - c)

2 + 6*

Also //=^C4Z±!£ +/ (80.).
62 — 4 a c

Hence the final equation is

6
2 -4ac ae»+c(P- 6^6

' *"
2/ H -15 FT7 " + /= °-

J (a ~ cy + b* * p — Aac

208. If the original axes are oblique we must take the formulas \\\ (56.),

and then, following the above process, we find

i V^2 - 4ac — fr + 2 c cos. w
tan. =

2 (a 4- c (cos. w) 2 — b cos. w)

- (6
2 - 4 a c)

^/ {(a + c — b cos. w) 2
-f (5

2 ~4ac) (sin. w)2 }*

209. The following examples relate to the reduction of the general

equation referred to rectangular axes, to another equation referred to the

asymptotes.
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Ex 1. 2/
2 ~ 10 x y + x& + y + x + 1 = 0,

m==-|.,n=-|-,/ / == T ;ten.©==5±2V6,y== - ~;

48 „ „ ,
9

15

Ex.2.

or, a>" y
ff

~ 128
'

4y» •- 8

6':

4 #2 —
= - 8

4 y + 28 a? — 15 t^2 0,

9*. ~8VTa?" y" + 2 = o,

or, xn y ff
1

~4 V~2
'

a_ +
6

c= 1, .or a? y zzz a y + b ce.Ex.3.

The axes are here parallel to the asymptotes (198.) : in order to transfer

the origin to the centre, let y = y
f + n and x = a?' 4- m, hence we have

m = «, ?i =^ 6, and the reduced equation is

x' y
1 -= a b.

210. If and 0' be the angles which the asymptotes make with the

original rectangular axes, we have from the equation (206.),

a (tan. Of + b tan. + c === 0,

•\ tan. e„ tan. 0' = —
a

Now when c = — a, this equation becomes tan. 6. tan. 6' = — 1, or,

tan. 0. tan. 6f

-f Is: 0; hence by (47.), the angle between the asym-

ptotes is in this case =: 90°
; and thus whenever, in the general hyperbolic

equation, we have c = — a, the cnrve is a rectangular hyperbola.

Ex. 4. 2/
2 - a?

a = V 2.

The curve is a rectangular hyperbola, and is referred to its centre and

rectangular axes ; also taking the two values of tan. in (206.), we have

tan. 0=1, and tan. Qr = - 1 ; hence 9 := 45° and & = ~- 45°, and

the formulas of transformation become

V2 V2

or - 2 a?' 2/' = </ 2,

and a?' y = - -y-g.

In this example the curve is placed as in the next figure, and at first

was referred to the axes C X and C Y, but now is referred to the asym-

ptotes C x and C y, supposing C y and C x to change places, and the

angle xQy ^ 90°,
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211. Conversely given the equation xy == k\ to find the equation re-

ferred to the rectangular axes, and thence to deduce the lengths of the axes

For this purpose we use the formulas of transformation from oblique to

rectangular axes (56.).

xr

sin. -f y
f

cos.

y = :

— -,

Sill. (O

x' sin. (w — 0) — y' cos. (w — 0)
a: = — —:——-— —

;

sm. w

substituting these values in the equation ,r^ k\ we have

xf2
sin. sin (w — 0) — ?/'

2 cos. cos. (<w — 0)

4- 1/3/ {cos. sin. (10 — 0) ~~ sin. cos. (w — 0)} = F (sin. w) 2
.

Let the co-efficient of a/ 3/' = 0,

,\ cos. sin. (w — 0) — sin. cos, (o> — 0), or sin. (w — 2 0) = ;

/. w = 2 0, and = ^- ;

hence the new rectangular axis of a?, determined by the angle 0, bisects

the angle to between the asymptotes ; this agrees with the remark at the

end of (179.).

The transformed equation, putting tz. -—, is

sin. ___

J

_ ^2 /
-

C0Sj JM _ p (s i 0j w^

or, putting 2 sm. — cos. — for sin.. tv
9
and dividing

°^ ^

4 k2 is\n.~) 4 W cos.-f-

V
2

<£
2

Comparing this with the equation -7— — -—• = — L we have

a = 2 k cos. —
-
, and b = 2 /<: sin.-~ ;

/^ ^

hence the lengths of the semi-axes are determined.

If the equation had been x y -}- a a? -f /;;?/ + c = 0, first refer the curve
to its centre, and then proceed as above.

212, To deduce the equation x y = k2 from the equation to the curve
referred to the centre and rectangular axes.

Let CX,CY be the rectangular axes,

C x, Cy the asymptotes, or the new axes,

C M - x

M
M = x)

,

,_ } the original co-ordinates of P,
P = y\

CN = /|
tv, n > the new co-ordinates of P.
IS; P =:

y'l
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Then taking the formulas of transformation from rectangular to oblique
axes (57),

y~x !
sin. + y

f
sin. 0',

x = xf
cos. 6 -}- y' cos. 0',

and substituting in the equation a2
t/

2 — 62
oc

1 = — a2 62
, we have

a2
(a?' sin. ^ + y sin. 0') 2 — &2 O' cos. + y' cos. Q'f = - a2

62
,

or, {a2
(sin. 0')* - 6

2
(cos. 0O

2
}?/

2 + {«a
(sin - Q)

2~ &2
(cos - e)

2

}
•*'*.

+ 2 { a2 sin. sin. 6 f - b
2 cos. cos. 0' } a/ y

f ~ - a2
b
2

.

In order that this equation may be of the required form, it must not

contain the terms in xn and y
fs

; but since we have introduced two inde-

terminate quantities, we can make the two suppositions that the co-effi-

cients of these terms shall = ;

.% a2 (sin. 6 !y — b2 (cos. 0') 2 — 0,

a2 (sin.0) 2 - 6s (cos. 0)
2 = 0,

From the last of these equations we have tan. = ± — , and as we
ci

obtain from the other equation the same value of tan. 0', it follows that the

values of and 6' are both contained in the equation tan. = db — 5 that

/ b \
is, if tan. 6 [ zn -—— J refers to I

a J

to the axis of?/, (we have chosen tan. = — — for the axis of #, in order

to agree with the figure).

The equation to the curve referred to its. asymptotes is now

2 {a2
sin. sin. 0' — 62

cos. cos. 0'} oc' y
f = - «2 62

,

or9 2 cos. cos. 0' {«
2 tan. tan. 0' - &2

j- oc
f

y
F zz - a? 6

s
;

but since tan, 6 ^ ± — , we have
a
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1 a
cos. =

V 1 + (tan. e) 2 V a2 + o2

a? c h2
\

a2
-f b2

\ a2
J

^ '

Aa2 b2
,

,

or» "" ~s 7T * V — — a2 b2
:9 a2 + 68 J '

If b ~ «, or the curve be the rectangular hyperbola, the equation re-

a2

ferred to the asymptotes is a? y = —-.

213. The angle between the asymptotes is 2 0; if therefore PR be

drawn parallel to CN, the area PN C R == x sin. 2 z=: x y . 2 sin.

Thus all the parallelograms constructed upon co-ordinates parallel

to the asymptotes are equal to each other, and to half the rectangle in the

semi-axes.

214. Let CS, CS^ be the asymptotes to the curve referred to con-
jugate diameters C P, C D (ax 6 X ), then if P T be parallel to C D, it is a

tangent at P (187.) ; TPT ;
is also a double ordinate to the asymptote,

for the equation to C S is y r= ± —cc, and when x ==: au y~=z ± b^ Hence

PT- P rF, or the parts of the tangent contained between the point of

contact and the asymptotes are equal to each other, and to the semi-con-
jugate diameter.

215. Join D T, then D P is a parallelogram ; also because C D is equal

and parallel to P T', we have the line D P parallel to the asymptote
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C S'. Hence, if the conjugate diameters be given, the asymptotes may
always be found by completing' the parallelogram upon the conjugate
diameters, and then drawing the diagonals. Also, if the asymptotes be
given, a conjugate diameter to C P may be found by drawing P R parallel

to C S' and taking P D double of P R.
If the asymptotes be given, a tangent maybe drawn by taking CT

double of C R, and joining P T.
If the position of the focus is known, the length of the conjugate

axis is equal to the perpendicular, from the focus on the asymptote.
216. To find the equation to the tangent PT, when referred to the

asymptotes as axes,

Let x f

, y
1 be the co-ordinates of P, and x ff yn co-ordinates of another

point on the curve.

y
f = -y, and y" == -j.

x f x"

y
f — y

n _ ^2 _ y'

x f — xff x f xn
~~

x"

.'. y — y
f =r - ~ (x — x f

) is the equation to a secant.

When x !f =r a/ we have the equation to the tangent

y-y' = - ^(s-a/)=--jjj* + 0'

.'. a/y + y'x — 2 x !
y' ~ 2k\

This equation to the tangent is readily obtained from the equation to

the curve (xy = k2 or xy + xy =s 2k2
) by putting x f

y and xy' successively

for xy, and then adding the results.

Lety-0 /. CT; = 2a/= 2 CN; and C T = 2y' = 2 NP ;

The triangle C T T' ~ -I.. 2 a/. 2 y' sin. TCT^ 2 a/ y' sin. 2 9 - a b,

(213.)

217. The two parts S Q, S'Q' of any secant S Q Q' S comprised

between the curve and its asymptote are equal ; for if the diameter C P V
and its conjugate C D be drawn, we have VQ = VQ' from the equation

to the curve
( y = db — J x2 - a?

J,
and from the equation to the asym-

ptotes (y = ± ~- x, ^ we have VS - VS' /. SQ = S'Q'.

218. If Y and y are the ordinates V S, V Q respectively, we have

or(Y-3/)(Y + 2/) = ^.

Thus the rectangle S Q, Q S' = the square upon C I).

12
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THE POLAR EQUATION.

219. Let the curve be referred to the centre C, and to rectangular axes

C A, C B, and let the co-ordinates of the pole O be xf and y\ O being

situated anywhere in the plane of the curve and P any point on the curve,

as in (146.), the angle which the radius vector OPorw makes with a

line parallel to the axis of cc. Then we have by (61.)

y t=i y
f + u sin.

oo zz xr -\-u cos. 6

also, a? if — b2 x* = — «2
b"

. •
. a? (y

f + u sin. 0)
2 - b 2

(oc
f
4- u cos. 0)

2 - ~ a? b
2

220. Let the centre be the pole, .'. x! = 0, and y
f =: 0,

— or 6
2

_^ «2 (e2 — 1)
*

'

'

U ~~ ^sinTej2 - b
2
(cosTety 8 ^ I2

(cos. 0)
2 - 1.

221. Let the focus S be the pole,

. •
. y

f = 0, a?' — a e and ?.£ becomes i\

Substituting these values, and following the steps in (148.), we find

_ b
2 _ a(e2 - 1)

a — c cos. 1 — e cos

If the angle A.S P ~ 0, we have

_ g (e
2 - 1)

1 + € COS.

This is the equation generally used. It may easily be obtained from

the equation r = e a? — a, fig. (161) 2= e (a e - r cos. 0) - a,

a (e
2 - 1)

,\ r ^ .

1 -\- e cos.

222. If -H- == a (e
8 - 1) we have r = ~ . — ~ S P, and if

2 2 1 + e cos>

PS meet the curve again in P', wre have the rectangle
.
S P, SP'^—

(PS + SP) = jPP.

The length of the chord through the focus ^ 2—^- where fr, is the dia«
to

a
'

meter to that chord.

THE CONJUGATE HYPERBOLA.

223. There is another equation to the hyperbola, not yet investigated.

If ( -—fr )
^e negative in article 153, the equation is P y* - Q #s zz 1
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or a9 y* - b 1
<fi = a2

b
2
if P =

'

and Q =s -—-. If we examine the

course of this curve, we shall find that B B' = 2 6 is the real or trans-

verse axis, and A A!, or 2 a, is the conjugate axis, and that the curve

extends indefinitely from B to B', so that it is, in form, like the hyperbola

already investigated, but only placed in a different manner.

Both curves are represented in the next figure ; the real axis of the

one being the conjugate or imaginary axis of the other.

It is evident from the form of the equations that both curves have got

common asymptotes ECE',FC F.
224. Let C P and C D be two conjugate diameters to the original hy-

perbola APE) it is required to find the locus of D.

Let CM- xf

, MPry,CN=:^ND = y,

then a;2 — h? = a2 - 62
;

.\ j?'a + y'2 ^z a?
8 + y* + a* ~- 6*

but the equation to C D is

a*yy'— tf x x! ==

aP + y**:

/. y" =

and #'9 e=

i.- ^±ilf! „* - ^ :

6
4

JG
2

64
a?
a

a4
?/
s + 64

a;
2

zi.JL'L

^'* ^ a;
2 4 i/H «2

O2 + 2/
2
-f a2 - &*%

6",

(«*» + t + «2 - 6
2
),

#4
2/

2 + &
4
*8

Substituting these values in the equation a9
- y

,<2 — ¥ xf* zz — a2 6
2
, and

reducing, we have a2

y2 6s a;
2 = a2 b

2
, hence the locus of D is the con-

jugate hyperbola, and hence arises its name.

By changing the sign of the constant term in the equation to any
hyperbola, referred to its centre, we directly obtain the equation to its

conjugate, referred to the s .me axes of x and y. Both curves are com*
prised in the form

(a* y* _ 52 x,y _ a4 ^ or ^ y
* __ k

*
t
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CHAPTER X.

THE PARABOLA.

225. The equation to the parabola, referred to rectangular axes, has

been reduced to the form a! y
1 + e

f x = (94.).

From this equation we proceed now to deduce all the important proper-

ties of the parabola.

r
Y

Let —^-7 = p, .*.
2/

2 = V x.

Let A be the origin ; A X, A Y the
'

axes ; then for «sOwe have y = 0, and

the curve passes through the origin A.

For each positive value of a? there are two equal and opposite values of

y 9 which increase from to go, according as x increases from to c© ;

hence there are two equal arcs, AP and A P', proceeding from A, without

any limit. This curve is symmetrical with respect to its axis A X, and
its concavity is turned towards that axis, otherwise it could be cut by a

straight line in more points than one.

For every negative value of x 9 y is imaginary.

226. The point A is called the vertex of the parabola ; AX, AY the

principal axes ; but, generally speaking, AX alone is called the Axis of

the parabola. Thus the equation to the curve referred to its axis and

vertex is y
2 ss p x.

From this equation we have The square upon the ordinate ss The rect-

angle under the abscissa and a constant quantity ; or the square upon the

ordinate varies as the abscissa.

227. The last property of this curve points out the difference between

the figures of the hyperbola and parabola; both have branches extending

to infinity, but of a very different nature ; for the equation to the hyper-

bola is
2/

2 =: —- O2 — a2
) =

a*
!, and therefore, for large

values of sc 9 the values of y
2 increase nearly as the corresponding values of

x2 or y varies nearly as x ; hence the hyperbolic branch rises much more

rapidly than that of the parabola, whose ordinate varies only as J x.

When (2? is very great, the former takes nearly the course of the line

y ss — #, but in the parabola, y is not much increased by an increase of

w, and therefore the curve tends rather towards parallelism with the axis

of x.

228. The equation to the parabola may be derived from that of the

ellipse by considering the axis major of the ellipse to be infinite.
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Let C be the centre, and S the focus of an ellipse whose equation is

2 w y
y* --_ a> _ _ #«. (105.)

Let «i = AS = AC-SC=«- V«2 - &, (fig. 106.)

.•„ b
2 s= 2 a m — m2

;

/ 2m2 \ /2

Now if & be considered to vary, this will be the equation to a series of

ellipses, in which the distance A S, or m, is the same for all, but the axis

major different for each ; thus giving to a any particular value, we have a

corresponding- ellipse. Let now a be infinite, then, since all the other

terms vanish, the equation becomes y
2

zz: 4 m x ; hence the ellipse has gra-

dually approached to the parabolic form, as its axes enlarged, and finally

coincided with it when the axis major was infinite *.

In the same manner the equation to the parabola may be derived from

that to the hyperbola.

THE FOCUS,

229. The quantity p, which is the co-efficient of oc in the equation to the

parabola, is called the principal parameter, or Latus Rectum of the pa-

rabola.

if
1

Since p ss ---, the principal parameter is a third proportional to any

abscissa and its corresponding ordinate.

In article (228.) we have used the equation y
2 ~ 4=m x for the parabola,

merely to avoid fractions with numerical denominators ; it appears that

many of the operations in this chapter are similarly shortened, without

losing any generality, by merely putting 4 m for p ; hence we shall use

the equation y
2 = \ m x in most of the following articles, recollecting

that all the results can be expressed in terms of the principal parameter, by

putting— for m wherever m occurs.

230. To find the position of the double ordinate which is equal to the

Latus Rectum.
Let 2 y t= 4 m, .". 4 y

2 =s 16 m2
, or 16 m x = 16 m2

, and xts. m.

In A X take AS^ra, then the ordinate LSL' drawn through S,

is the Latus Rectum.

The point S is called the focus.

The situation of the focus S may be also thus determined :

Let AM-^MP-^, join A P, and draw P O perpendicular to A P,

ThenAM : M
5
P ::MP:MO = -^- = 4tw, /. AS = m = ^MO

cs

* If x is very small when compared with a, the equation to the ellipse is very nearly

that to a parabola ; and this is the reason that the path of a comet near its perihelion

appears to be a portion of a parabola,
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231. To find the distance of any point F in the curve from the focus t

Let S P = r, A M s= ,r, M P = y ; also at s, t/' = 0, and a/ — m,

,\ r2 ~ (# - 2/0
2 + (# — ^T = 2/

2 + (# — my = 4 m a? + (a? — m) 8

= + w) 2
;

.*. r = S P = a? + m,

THE TANGENT.

232. To find the equation to the tangent at any point P (x
f

,y') of the

parabola.

The equation to a secant through two points on the curve (#', y
r

)

M G

Also y
!
- == 4 ??2 a?', and 2/'

/2 ^ 4 m xft

;

2/' — y
!t 4 m

ana - r j. — — - r..

x1 — a?" 2/ + U

Thus the equation to the secant becomes

4 971y-y jf
\% *~" <# ) ?

2/' + 2/"

but when the two points coincide y" s^ 3/', and the secant becomes a

Jangent,

y-y
4 m

,

2?
(r ~ ^'

or y y
r — y

h =2wi (a? — a?
7

),

.% ?/ 7/ = f + 2ro(«-^')^4»if -f 2 m (a; — xf

•'. y y
f ~ 2 m (x + a/).

This equation is immediately deduced from that to the curve

(?/
2 ^ 4 m 1 - 2 m (2; + .t) )

by writing y y
f
for z/

2
, and # -j- a? for a? +• a?.

233. To find the points where the tangent cuts the axes.

Let y == 0, ,\ a? -h a?' = 0, /. a? == — «z', or A T = — AM;
Hence the absolute value of the sub-tangent M T is" 2 A M.
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Let* = 0, /. f2«i =#-7== -f » •• A y-iMP.

234. The equation to the tangent being* y y
f ~ 2 m (x -}- a?'), we have

at the vertex A
5
x! and ?/ each = 0, therefore the equation to the tangent

becomes 2 m x = 0, or x =: ;

But # = is the equation to the axis A Y;
Hence the tangent at the vertex of the parabola coincides with the

axis of y.

235. To find the equation to the tangent at the extremity of the princi-

pal parameter.

y y
f = 2 m (x 4* cc

r

)
"

At L we have xf = m, and y
f zz 2 m,

,\ 2 my zz 2m (x -f wi),

/. y z=z x + 771,

If the ordinate yorMQ cut the parabola in P, we have S P = # -f m
(231.), .". MQ = SP.

236. To find the point where this particular tangent cuts the axis of #.

Let y - 0, /. ,3?=AT = -m= — A S.

From T draw T R perpendicular to A X, and from P draw P R pa-

rallel to A X, then taking the absolute value of A T, we have

'PR = AT + AM = m + «=:SP.

Consequently the distances of any point P from S, and from the line T R,
are equal to one another.

This line, T R, is called the directrix ; for knowing the position of this

line and of the focus, a parabola may be described.

This tangent cuts the axis at an angle of 45°. (35. Ex. 3:)

237. To find the length of the perpendicular S y from the focus on the

tangent.

Taking the expression in (48.) we have

y x
— ax^ -b

S y =z — —
,.

:—

.

V i + o?

But from the figure 232, we have y l
=

9
and x\ = m for the co-

ordinates of the point S, and y = a x -f- b is the equation to the line

P T ; also the equation to P T is

y = —t (x + *)>

2 m 2mxf

,\ a = r> and, b r= —;—

,

y
9

y

:. S y ~

2 m 2 m xf

—T-m +- r
y y 2 m (m + a/) 2 m (m -f #')

T^"] """"

V \y
n + 4

m

2
}
~~
Vi4m ^+ 4wi'}

"TTf{+
= 4 m (m -f x

f

) = VwJ'j ifSP = r;
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Hence the square on S y = the rectangle S P, S A

;

or, "SP: Sy :: Sy : SA.

238. To find the locus of y in the last article.

The equation to the tangent PT, fig. 232, is y = —r O -f </) ;

Hence the equation to S 3/ passing through the point (m, 0), and per-

pendicular to P T, is

V
f

y ^ ~~ . (a? — m).

y
f

To find where this line cuts the axis of y, put x ~ 0, :. y •=?. —
9
but

this is the point where the tangent at P cuts the same axis (.933.) ; hence

the tangent and the perpendicular on it from the focus meet in the axis

AY, or the locus of y is the axis AY.
239. Again, to find where the perpendicular S y cuts the directrix, put

m, V
_ y _ y

(x — m) == — -~— (— m — m) = y\2m K
2 m J J

but this is the ordinate M P ; hence a tangent being drawn at any point

P, the perpendicular on it from the focus cuts the directrix in the point

where the perpendicular from P on the directrix meets that directrix.

240. To find the angle which the tangent makes with the focal distance

2 m
The equation to the tangent PT is y zz ^-y (x + x f

).

The equation to the focal distance S P through the points S (== 0, ??i)

and P <= a?', y
f

) is

y
y — (a? m),

x' — m

And tan. S P T = tan. (PSX-PTX)

y 2 m
Xf — 7JI £/'

1 + 7
y' 2 m

0'

a? — m y

2 m (x f - m) __ 4 m a7 - 2 m x f

-f 2 m3 2 m (V + m)
"

?/ (V — m) -J- 2 m y' y
f (V -f w.O 2/' (V + m )

2 m ?/

3T
„ since 2m = -

—

f
:

x
n

2 x1

But M P = M T tan. P T M, .*. tan. P T M = 2^ 5
.". tan, SPT
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= tan. STPk tan. T'PQ, if PQ be drawn parallel to the axis of x.

Thus the tangent at P makes equal angles with the focal distance, and
with a parallel to the axis through P.

This important theorem may also be deduced from the property in

article 233. It is there proved that the absolute value of AT is AM,
hence we have ST s SA + ATas'm + x z=r. S P, and therefore the

angle S P T - angle STP = angle Q P T'.

.

If a ray of light, proceeding in the direction Q P, be incident on the

parabola at P, it will be reflected to S, on account of the equal angles

QPT', S P T : similarly all rays coming in a direction parallel to the axis,

and incident on the curve, would converge to S ; and if a portion of the

curve revolve round its axis, so as to form a hollow concave mirror, all

rays from a distant luminous point in the direction of the axis would be

concentrated in S. Thus, if a parabolic mirror be held with its axis point-

ing to the sun, a very powerful heat will be found at the focus.

Again, if a brilliant light be placed in the focus of such a mirror, all the

rays, instead of being lost in every direction, will proceed in a mass parallel

to the axis, and thus illuminate a very distant point in the direction of that

axis. This property of the curve has led to the adoption of parabolic

mirrors in many light-houses.

THE NORMAL,

241. To find the equation to the normal P G, at a point P (x f y
f

).

The equation to a straight line, through P, is y — y' -=. a (x — u/), and
as this line must be perpendicular to the tangent whose equation is y =
2 itl u—7- (x 4- a/), we have a = — -—-, hence the equation to the nor-
y

f 2 m L

yt

mal is y — -w' s= — ^— (a?
~~ ^O-

242. To find the point where the normal cuts the axis of a?.

Let y == ,\ x - xr
t=z m, or the subnormal M G is constant and equal

to half the principal parameter.

Hence S G = S M + M G =1 of — m 4- 2 m — x' + m = S P

And PG == V2/
/2 -f4m2 = V 4 m a?'+ 4 ma = V4 m (V -f m) — V4 mr.

Hence the normal PG is a mean proportional between the principal

parameter and the distance S Po

THE DIAMETERS,

243. It was shown in article 81, that the parabola has no centre.

Since for every positive value of x there are two equal and opposite

values of y, the axis of x is a diameter, but that of y is not ; hence the

axes cannot be called conjugate axes. The parabola has an infinite num-
ber of diameters, all parallel to the axis ; to prove this,

Let y =z a x + b he the equation to any chord,

3/
2 et p x- the equation to the curve.

Transfer the origin to the bisecting point x f y' of the chord, then the equa-<

tions become yzzccx, and (y +y f
)* = p O + #') •
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To find where the chord intersects the curve, put a x for y in the second

equation.

.\ (ccx+yfy~p(x+ x')

or a2
a;
2
-f (2 a y' — £>) * + t/2 — p xf zz

But since the origin is at the bisection of the chord, the two values of a?

must be equal to one another, and have opposite signs ; hence the second

term of the last equation must = 0, .*. 2 a y
r — p = 0.

This equation gives the value of y\ and since it is independent of b, it will

P
be the same for any chord parallel to y ^ a x + b; hence y = —

- is the
& <x

equation to the locus of all the middle points of a system ofparallel chords,

and this equation is evidently that to a straight line parallel to the axis ;

and conversely.

244. To transform the equation into another referred to a new origin

and to new axes, and so that it shall preserve the same form,

Let x ~ a -\- xf
cos. + y' cos. 0',

and y t=z b-\~ x/ sin. -|~ y' sin. 0', (57.)

Substituting these values in the equation y
2 ^zpx and arranging, we

have

^(sin.ey + of* (sin. oy + 2a/y' &m.0sm.6' + y' (2 6 sin.0'— pcos.0')

-f x' (2 b sin. 9 — p cos. 0) -f- b 2 ~ ap = 0.

And as this equation must be of the form y
2

==: p #, we must have

(sin. oy-0 . . . (1),

2 sin, 0. sin. ©' j= . . (2),

2 6 sin. 0'— pcos. 0' — (3),

b*-~ap~ . . . (4).

Hence the equation becomes

2/'
2 (sin. 0') 2 + (2 6 sin. - p cos. 0) a?' r= ;

or since 9 :~: 0, z/
2 (sin. 6') 2 -—pocr ~ 0.

2-45. On the examination of the equations (1) (2) (3) and (4), it

appears from (1) that the new axis of x' is parallel to the original axis of

x ; and being from (1), of course (2) is destroyed, aud thus the

equations of condition are reduced to three : but there are four unknown
quantities, hence there are an infinite number of points to which, if the

origin be transferred, the equation may be reduced to the same simple

form.

We may take the remaining three quantities a, b and 0', in any order,

and arrive at the same results. Suppose a is known, then from (4), 62

=s p a, this equation shows that a must be taken in a positive direction

from A, and also that the new origin must be taken on the curve itself, or

the new origin is at some point P on the curve, as in the next figure.

7) b
From (3) we have tan. =s ~- ~—-

;

v '
2 6 2a'

but this is exactly the value of the tangent of the angle which a tangent

P T to the curve makes with the Axis (240.) : hence the new axis of y is a

tangent to the curve at the new origin P.
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The results are therefore these,—the new origin is at any point P on

the carve (see the next figure). The axes are one (P X 7

) parallel to the

axis A X, and the other (P Y') is a tangent at the new origin P. Lastly,

from the form of the equation, the new axis of x is a diameter.

246. The equation is y'2 = V
(sin. e<y

xf £2 p
fx where p

1 = P
(sin Q' y

/ 4 a2 \= p (cosec. &)* z=z p(l + cot. 6 f y = p I 1 + ——
j

e= p + 4 a

V
4 (

-i- + a =4SP (231.)

Hence the new parameter at P is four times the focal distance S P.

247. The equation to the parabola, when we know the position and

direction of the new axes, is readily obtained from the original equation

referred to rectangular co-ordinates.

Let the point P be the new origin, PX', PY' the new axes, angle

Y'PX' = 0.

Also, let A N = a?, N Q = y be the rectangular co-ordinates of Q.

AndAM = fl,MP = 6 . . . . . P.

P V = a/, V Q = y
f be the new co-ordinates of Q.

Then # = Q N ~ MP + OQ^Hy' sin. 0,

^AN=AM + PV4-YO-« + / + y cos. 0.

Substituting these values in the equation y
2

==: p oc
,

we have (b + y' sin. 0)
2 = p (a + a?' + y' cos 0) ;

.\ 2/
/2 (sin. 0)

2 + (2 6 sin. — p cos. 0) / + b2 = <p a + p a? ;

6 _ b ^ p
¥ ~ "26" 'but b*~pa, and tan. = tan. PTM^

2 a

i3

A 2 b sin. — p cos. ~ G,

and the equation is reduced to the form

y
f2 (sin. Oy^px'.

Also from (tan. )
2 = -j—

2
we have (cos. 6

41 Ct

4 a1

4 aM + b*

and (sin 0)
2

;

" 4 a2
-f 6

2 4 a -f p
'



126 THE DIAMETERS.

V
:. ?/

/2 -—-— =zpccr

J 4 a + p L

y
T 3 ^ (4 a + p) xf s= 4

(
# -j- ~-

J
a/ = ^ «»', where / =: 4 S P.

Hence the square upon the ordinate = the rectangle under the

abscissa and parameter.

248. To find the length of the ordinate which passes through the

focus

:

Here, a?=PV=ST = SP = r .\ y* =: px zz 4t r .r=z 4 r*

.•. y = 2r

Hence,-QQ' = 4SP.
Thus the ordinate through the focus is equal to four times the focal

distance S P, is equal to the parameter at the point P.

Hence, generally, if the origin of co-ordinates be at any point P on the

parabola, and if the axes be a diameter and a tangent at P, the

parameter to the point P is that chord which passes through the focus.

249. The equation to a tangent at any point Q (#' y
f

), referred to the

new axes P X', P Y', is

yy'=
-f~(^

+ #'

Let y zz .• . x = — xf

, hence the sub-tangent ~ twice the abscissa.

'O X 1J

Let x = . \ y = -^— = ~- ~ A the ordinate.
-

*
2^/ 2

^

For 2/ put — y, then we have the equation to the tangent at the other

extremity Q' of the ordinate QVQ'; hence it may be proved that tangents

at the two extremities of a chord meet in a diameter to that chord.

250. If the chord QVQ' pass through the focus, as in the figure, the

co-ordinates of Q are y
f =s 2 S P = 2 r, and ^'-PV^SP-r, also

v'
p

f e= 4 r ; hence the equation to the tangent at Q, or y y
f

=?. —- (x + a/)

becomes y ~ x + r, and similarly the equation to the tangent at Q' is

— y = x + r, and these lines meet the axis P X' at a distance — r from

P, that is, tangents at the extremity of any parameter meet in the di-

rectrix.

Also, the angle between these tangents is determined from the equation

(a — a f
) sin. w

tan. 6 = —-1——J-—— (51.)
I + a a' -[- (a + « ) cos. to

(1 + 1 ) sin. a>— __ _—-—- (since «sl ana a ss «- 1 j
1 —

• X + u

1= - = tan. 90°
o

Hence, pairs of tangents drawn at the extremities of any parameter
meet in the directrix at ris'ht-ans'les.
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THE POLAR EQUATION,

251. To find the polar equation to the curve.

Let the co-ordinates of any point be a/ and y\ and let Q be measured

from a line O a?, which is parallel to the axis of the curve i

Then by (61.), or by inspection of

the figure, we have

y zz y
f

-f u sin.

x ~ x f + u cos.

Substituting these values of x and y in the equation y
% r= p x, we have

(y
f Jr u sin. 6)

2 =: p (#' 4- u cos. 0)

252. Juet the pole be at any point on the curve,

.
' . ij 2 + 2 2£ ?/' sin. -f w2 (sin. 0) 2 ~ p xf

-\- pu cos. ;

or, i£ (sin. 0)
2 = p cos. Q •— 2y' sin. 6?, since y'2 ~ p of

;

p cos. — 2 ?/ sin.

.\ u = —
(sin>0yi >

And if the vertex be the pole, we have if = ;

jt> cos.
•. iz =

253. Let the focus S be the pole, .*. y
f = 0, #' — -— and u becomes r

;

hence the general equation (y' -f w sin. 0)
2 — £> (#' 4* u cos. 0) becomes

r2 (sin. 0)
2 := —• ~r V r cos *

e>

or r2 (sin. 0) 2 4- r2 (cos. 0) 2 = ~~ + P r cos. + r2 (cos, 0)
2

;. r2 s: ^ + r cos. 6

P . « « I

r = -x + ?' cos. ; orrs ™. -~ ——-.

2 2 1 — cos.

The polar equation in this case is also easily deduced from article (231).

Let angle A S P =z 0,

then r = SP = AM + A'S=:2AS+SM = |- - r cos. ;

,". r = P *

2 H cos,
!

(«4)"
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254. If P S meet the curve again in P', we have S P
p 1 _ p 1

hence the rectangle

PS,SP' --^

1 — cos. (ir —

V

2 1 + cos.

4 l»(co,.)-T (SP+SP )=:

f'
PP'

CHAPTER XI

THE SECTIONS OF A CONE.

255. It is well known that the three curves, the ellipse, the hyperbola,

and parabola, were originally obtained from the section of a cone, and that

hence they were called the conic sections. We shall now show the

manner in which a cone must be cut by a plane, in order that the section

may be one of these curves.

A right cone is the solid generated by the revolution of a right-angled

triangle about one of its perpendicular sides.

The fixed side, O H, about which the triangle revoives, is called the axis
;

and the point O, where the hypothenuse of the triangle meets the axis, is

called the vertex of the cone. If the revolving hypothenuse be produced

above the vertex, it will describe another cone, having the same axis and
vertex. Any point in the hypothenuse of the triangle describes a circle

;

hence, the base of the triangle describes a circular area called the base of

the cone.

is/,,

X

w Vi// / YD

/ — -y^' \

\/"-~""~
""""""""--A

Section made by planes which pass through the vertex and along the

axis are called vertical sections ; these are, evidently, triangles.
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If a plane pass through the cone in any direction, the intersection of it

with the surface of the cone is called a conic section. The nature of the

ine thus traced will be found to be different, according- to the various

positions of the cutting plane. It is our purpose to show, generally, to

what class of curves a section must necessarily belong ; and, afterwards,

to point out the particular species of curve due to a given position of the

cutting plane.

256. Let OBQC be a right cone, O the vertex, O H the axis,

B C Q the circular base, P A the line in which the cutting plane meets

the surface of the cone ; A being the point in the curve nearest to the

vertex O. Let O B H C A be a vertical plane passing through the axis

O H and perpendicular to the cutting plane P A M.
A M, the intersection of these planes, is a straight line, and is called the

axis of the conic section, the curve being' symmetrically placed with

regard to it.

Let F P D be a section parallel to the base, it is therefore a circle, and

F M D, its intersection with the vertical plaae OB H C A, is a diameter.

Since both this last plane F P D and the cutting plane P A M are per-

pendicular to the vertical plane O B H C, M P the intersection of the two

former is perpendicular to the vertical plane, (Euc. xi. 19, or Geometry

iv. 18,) and, therefore, to all lines meeting it in that plane. Hence

M P is perpendicular to F D and to A M.
Let the angle O AM, which is the inclination of the cutting plane to

the side of the cone, = a, and let the ZAOB^ft draw A JE parallel

to B H and M L parallel to O B.

Let A M = x, M P = y, and A O — «.

Then by the property of the circle

The square on M P = the rectangle F M, M D

;

_ MA sin. MAD sin. a
and M D =

sin. MDA ft

'

cos.T
A O sin. A O E AM sin. A M L

Also, PM = EA-AL = —-—
- w . - —:

—

t-t-tt- ;
'

sin. O E A sin. A L M

But angle O E A = 90° - —
9
angle A L M = 90° + ~, and if we pro-

duce ML to meet O A, we shall find that the angle AML = 180° —

O + ft) ;

n nf Sm
- P Sln

* & + &
hence F M = a—3 ~~ °°

~"—~T

—

;

cos. ~- cos. —
2 2

sin. or f sin. ft sin. (a -f ft) ]

t ^ x Y
— *—_i
COS.- cos.^

J

(
cos4)
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which equation being1 of the second degree, it follows that the sections of

the cone are curves of the second degree.

Comparing this with the equation if ==. p co -4- q a?
2
, which represents

an ellipse, a parabola, or an hyperbola, according as q is negative, nothing,

or positive; we observe that the section is an ellipse, a parabola, or an

hyperbola, according as sin. (a -f /3) is positive, nothing, or negative. To
investigate these various cases, we shall suppose the cutting plane to move
about A, so that a may take all values from to 180°.

257. Let k^O, .*. y
% z=z 0, and y ^ ; this is the equation to the

straight line which is the axis of oc.

Ancl^ this appears, also, from the figure ; for when a -=. 0, the cutting
plane just touches the cone, and hence the line of intersection A M is in
the position A O.

258. Let a -f /3 be less than 180°. The curve is an ellipse. In the
figure the angles A O E and O A M being together less than 180°, the
lines O E and A M meet in A', or the sectional plane cuts both sides of the
cone.

259. Let M be the centre of the ellipse, then FM = HE and M D
= £A'G;

.*. The square on the axis minor = The rectangle A E, A ; G.

Also by drawing perpendiculars from A and E upon A'G, it may be
proved that

The square on the axis major = The square on A G + The rectangle
A E, A' G.

And ,\ The. distance between the foci :== AG.
If the straight line A K be drawn making the angle E A K = the

angle E A A', then A K is the latus rectum of the section.

And if a circle be inscribed in the triangle A? A Q, it will touch the line

A A' in the focus of the section. (Geometry, Appendix, prop. 21.)
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2'
~~ ~ n /3 , sin. a sin. (a + fi)
260. Let a = 90° - -£-, then -^—^ = 1,

and the equation is that to a circle, the cutting plane being1 parallel to

the base.

261. Let a -f /3 = 180°, .\ sin. ( a + /3) = 0, and the curve is a

parabola. The plane, continuing to turn, has now come into the position

A N Q, the axis A N being parallel to O F, or the cutting plane parallel

to a side of the cone.

The equation to the parabola is y
2 = 4 # ( sin.— 1 a?.

If AK be drawn making the angle EAR = the angle A OK, then

A K is the latus rectum of the section, and the circle which touches A O,

A N and O F, will touch AN in the focus of the parabola.

262. Let a + /3 be greater than 180° ,\ sin. (a + /3) is negative,

and the curve is an hyperbola ; The cutting plane is now in the position

A L R; in this case the lines A L, E O must meet if produced backwards,

or the plane cuts both cones, and the curve consists of two branches,

one on the surface of each cone.

As in the ellipse, it may be proved that the square on the conjugate axis

=. the rectangle A E, A" G' ; that A G' is the distance between the foci,

that A K is the latus rectum, and that the circle touching A' O, O A and

A L touches A L at the focus.

263. We may also suppose a to have different values, or the cutting

plane to meet the cone in some other point than A, for example :

sin. a sin. (a-^B) a

Let a = .-. t = - — ^—~L±2 ^

.

J
( $
(

V
C0S"2

Since sin. a and f cos.—
]
are positive, the rationality of this equation

will depend upon sin. (a + /3).

If a -f fi is less than 180° the radical quantity is impossible, and the

only solution of the equation is <2? ~ and y = 0, or the section is a point;

this is the case when the cutting plane passes through the vertex O, and is

parallel to any elliptic section A PA'.
If a + /5 is greater than 180° we have two straight lines which cut

each other at the origin. In this case the cutting plane is drawn through

O, parallel to ALR, and the intersection with the cone is two straight

lines meeting in O.

264. We may conclude from this discussion, that the conic sections

are seven : a point, a straight line, two straight lines which intersect, a

circle, an ellipse, an hyperbola, and a parabola or all the curves of the

second degree and their varieties, with the exception of two parallel lines,

which is a variety of the parabola.

The three latter sections, the ellipse, hyperbola, and parabola, are those

which are usually termed " conic sections," and which have been the

study and delight of mathematicians since the time of Plato. In his

school they were first discovered ; and, his disciples, excited, no doubt, by

the many beautiful properties of these curves, examined them with such

K2
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industry, that in a very short time several complete treatises on the

conic sections were published. Of these, the best still extant is that of

Apollonius of Perga. It is in eight books, four of which are elementary ;

and four on the abstruser properties of these curves. The whole work is

well worth attention, as showing how much could be done by the ancient

analysis, and as giving a very high opinion of the geometrical genius of

the age.

Apollonius gave the names of ellipse and hyperbola to those curves-
Hyperbola, because the square on the ordinate is equal to a figure

"exceeding" (" vweppaXKov '') the rectangle under the abscissa and latus

rectum by another rectangle.—B. i. p. 13.

Ellipse, because the square on the ordinate is " defective'* (" gWeittov 91

)

with regard to the same rectangle.—p. 14.

It is not known who gave the name of parabola to that curve—probably

Archimedes, because the square of the ordinate is equal (" wapafiaXkov ")

to the rectangle of the abscissa and latus rectum.

Thus, the ancients viewed these curves geometrically, in the same
manner as we are accustomed to express them by the equations

:

if = px + -f~~ x\
di CI

y
2 = p xa

DESCRIPTION OF THE CONIC SECTIONS BY
CONTINUED MOTION.

265. The conic sections being curves of great importance, not only

from their mathematical properties, but also from their usefulness in the

arts and sciences, it becomes necessary, that we should be able to

describe these curves with accuracy. Now, a curve may be drawn in two
ways, either by " mechanical description " or by " points." As an
instance of the first method we may mention the circle, described by the

compasses, or by means of a string fastened at one end to the centre, and
the other carried round by the hand, the hand tracing the curve, This
mechanical method, or, as it is sometimes called, " that by continued

motion," is not always practicable : no curve is so simple, in this respect,

as the circle ; hence we are often obliged to have recourse to the second

method, or that by points : this is done by taking the equation to the

curve and from some property expressed geometrically, finding a number
of points, all of which belong to the curve, and then neatly joining these

points with a pen or other instrument. We shall commence with the

mechanical description of these curves.

266. To trace an ellipse of which the axes are given :

Let A A', B W be the axes : with

centre B and radius A C describe a

circle cutting A A' in S and H, these

points are the foci. Place pegs at S
and H. Let one extremity of a

string be held at A, and pass the

string round H back again to A,
and there join its two ends by a
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knot, so that its length shall be just double of AH ; place a pen or other

pointed instrument within this string, and move it round the points S

and H, so that the string be always stretched ; the pen will trace out the

required ellipse. For ifP be one of its positions, we have

SP + PH + HS = 2AH = A A' + HS;
/. SP + PH = A A'.

267. Another method is by means of an instrument called the elliptic

compasses, or the trammel.

Let X x and Y y be two rulers with

grooves in them, and fastened at right

angles to each other. Let B P be a

third ruler, on which take B P equal

to the semi-axis major, and PA the

semi-axis minor. At B a peg is so

fixed that the point B with the peg
can move along Yy ; a similar peg is

fixed at A. By turning the ruler B P
round, a pen placed at P will trace out the curve. Suppose C to

be the point where the axes meet, CMsj and M P s= y, the rectan-

gular co-ordinates of P5 and suppose that B N is drawn parallel to C M

and meeting P M in N, then AM = -BN, and
d

The square on APs the square on PM + the square on A M ,

or h2 =r y
2 + — x2

,* a*

.\ a2
y

2 + b 2 x2 z=a?b2
.

268. The following is also a very simple method of describing the ellipse.

X<r is a ruler of any length, CF, FG are two rulers, each equal to half

the sum of the semi-axes. These rulers are fastened together by a

moveable joint at F, and F C turns round a pivot at C ; F P is taken

equal to half the difference of the semi-axes. Let the point G slide

along the line X cs, then the point P will trace out the curve. Draw
FD and PM perpendicular to CX, and let CM= x, and MP —
y, then

The square on F G = the square on F D -f the square on D G

;

a + b (a + h yV fa -f 6 x V
~%~~b) + \T~a)

b*
"*"

o»
*"

I) M
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For a description of the Elliptograph, and other instruments for describ-

ing* ellipses, we must refer our readers to the treatise on Practical Geo-

metry, where an extremely good account is given of all the instruments,,

and also the advantages and disadvantages of each are well exhibited

269. To trace the hyperbola by

continued motion, let A A' be the

transverse axis, S H the distance

between the foci, HPKa ruler

movable about H. A string, whose

length is less than H Kby AA' is.

fastened to K and S ; when the ruler

is moved round H, keep the string 11 -A'

asasBsiO

BA

~K

stretched, and in part attached to the ruler by a pencil as at P ; then, since

the difference of H P and P S is constantly the same, the point P will trace

out the curve.

If the length of the string be H K, a straight line perpendicular to H S
will be traced out; and if the string be greater than H K, the opposite
branch, or that round H, will be described,

270. To trace the parabola by
continued motion. Let S be the

focus, and B C the directrix. Apply
a carpenter's square O C D to the

ruler BC, fasten one end of a thread

whose length is C O to O, and the

other end to the focus S ; slide

the square D C O along B C, keep-

ing the thread tight by means of a

pencil P, and in part attached to

the square. Then since S P := P C, the point P will describe a parabola.

Description of the Conic Sections by Points*

271. Given the axes of an ellipse to de-

scribe the curve. Let A A' be the axis

major, S and H the foci. With centre S,

and any radius AM less than A A', describe

a circle, and with centre H and radius

A' M describe a second circle, cutting the

former in two points P and P' ; then since

SP + PH^AM + MA' = AA', Pis
a point in the required curve ; and thus any

number of points may be found, and the curve described,

272. Given a pair of conjugate

diameters to- describe the curve.

Let A A', BB', be the conjugate

diameters. Through B draw B D
parallel to A C, and through A draw
A D parallel to B C. Divide A D
and A C into the same number of

equal parts as three. From B draw
lines to the dividing points in AD,
and from B' draw lines to the dividing points in A C $ the intersections

P, Q ?
of these lines are points in the ellipse.

V

;*P
*"
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For let C be the origin ; C A = al5 C B =; hv

Then the equation to B P is y — b x
"r= —^- <#

;

o 0^

and the equation to B'P is y + b
l
=s —

Sb,

lence the product of the tangents of the angles which these lines B P,

b, 3b, bf , .— . -arid is constant:
of

B'P make with the axis of x ss —

therefore P is a point in the curve (141).

Innumerable points may be thus found in the four quadrants of the

figure.

273. The following is perhaps the best method of tracing the ellipse by
points

:

Let A A' be a diameter

and A B equal and parallel

to the conjugate diameter.

Through B draw B C pa-

rallel to A A' and equal to

any multiple of A A'. In
BA produced, take AD the

same multiple of A B. Di-

vide B C into any number of o
m
^~~J~s~~2~~I"''B

equal parts, and A D into the same number of equal parts. Through
A draw lines to the points of division in B C, and through A' draw lines

to the points of division in A D ; the intersections of corresponding lines

will give points in an ellipse whose conjugate diameters are A A' and

A B. The proof is the same as in the last case.

274. Given the axes of an hyperbola to trace the curve.

Let A A' be the transverse axis, S and H the foci, which are given

points ; with centre S and any radius A M greater than A A', describe a

circle, and with centre H and radius A'M describe a second circle, cutting

the former in two points P and P, these are points in the> required curve.

The proof is much the same as that for the ellipse (271.)

Again, if, in article 273, B C was taken to the right of B instead of the

left, as in the figure, the intersections of the corresponding lines will give

an hyperbola.

27 5„ To describe the rectangular hyperbola by points.

Let C A, C B be the equal semi-axes

with any centre O in C B produced and

with radius O A, describe a circle ; draw

OP perpendicular to C O meeting the

circle in P, then P is a point in the curve ;

Let CMt^cr, MP = 2/; then the square

on CO =: the square on O A — the

square on C A ;

1

fpse***
£i

"" A M
ovyi : oc* — a\
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276. Given tfte asymptotes C X, C Y of an hyperbola, and one point P
in the curve, to describe the curve by points.

10

Tnrough P draw any line S P S' ter-

minated by the asymptotes; in it take

S'Qs SF; then Q is a point in the

curve (217), and similarly any number
of points may be found.

Together with the asymptotes, another condition must always be given

to enable us to trace the curve, for the position of the asymptotes only gives

us the ratio of the axes, and not the axes themselves.

277. To describe the parabola by points, when the principal parameter

p is given.

Let AX, AY be the rectangular axes; in Ax take AB = p; with any

centre C in AX and radius C B describe a circle B D M, cutting A Y in D
and A X in M, draw D P and M P
perpendicular to AY and AX re-

spectively ; then P is a point in the

curve.

Let AM = o?, MP = y; then

the square on A D == the rectangle

BA, AM,
or y

2 ss p i\

278. Given the angle between the axes and any parameter p
f
to describe

the curve.

Let A X, YA y be the axes,

AB the parameter. Through
B draw CB parallel to AX.
Through A draw any line

FAG, meeting B C in F; in

A Y take A D = B F, and

draw D P parallel to A X,
cutting A G in P, then P is a

point in the curve.

Draw M P parallel to A Y,
and let

M ~x

AM = x
9
and MP —

y,

then MP : MA :: AB : FB,

ovy V : y
m

> 2/
2 =: p

r
x.

279. Given the position of the directrixT R and the focus S, to trace any
of the conic sections by points.
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Draw S T perpendicular to T R, then

T S produced will be the axis of the curve.

Let e : I be the ratio of the distance of

any point. P in the curve from the focus

and from the directrix ; hence if A S :

A T : : e : 1 ; A is a point in the curve.

Take any point M in AX, and with centre

S and radius equal to e times TM, describe a circle ; draw M P perpendi-
cular to AX, and meeting* the circle in P, then P is a point in the curve.

Let A be the origin of rectangular co-ordinates, AM = i, M P == y 9

7Yh

A S =z m, and *
""

PR
#+

or y
% 4* #2 — 2mo? + w8 = e2 x2 + 2 e m x + m2

;

.\ y
9
" + (I - e

2
) x 1 - 2 m x (1 4- e) = ;

which is the equation to the curves of the second order.

(2m \
Let e be less than unity, ,\ y

2 sr (1 — e2
) s x ~ a?

2
>.

Z>
2

Comparing this equation with that to the ellipse y
2 = — (2 ax — a?

8
),

AT-—;
e

then SPse ,TM-fi

;. y
2 4- (# - my = e

2
1

have

2« =
2 m

and —
e «2

(1 - e)<
(1 - e

2

)

1 - e
9
,

1 +em2

1- <?*

hence the curve is an ellipse whose axes are
2 m
1-

• and 2 my^

Let e be greater than unity, ,\ y
%

07 -f 0?
fl

and the curve is an hyperbola, whose axes are
2 m

and 2 m

f

1

Let e be equal to unity, .\ y* s= 4 m a?

;

the curve is a parabola, whose principal parameter is 4 m.

280. The general equation to all the conic sections being

y* + (1 — e
s
) a8 - 2 m a? (1 + e) = 0,

it follows that if we find any property of the ellipse from this equation'

it will be true for the hyperbola and parabola, making the necessary

changes in the value of e

:

Thus the equation to the tangent is

y y
r 4 (1 — e*) xxf - m (1 + e) (oc + of) = 0, for the ellipse,

yy' — (e2 — 1) xx f — m (I + e) (# 4- #0 — 0> for the hyperbola,

and yy
f — 2 m (x 4 #') =

3
for the parabola,
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Also most of the results found in Chapter VIII. for the ellipse will be

true for the hyperbola, by putting — 62 for 62 ; and will be true for the

parabola by transferring the origin to the vertex of the ellipse, by then

1 + e
~ for a, and w?,

a for h2
; and then making esl. Thusputting-- ,_

the equation to the tangent at the extremity of the Latus Rectum in tho

ellipse, when the origin is at the vertex, is

y s^ a -J- e (a? — a) (117) 3

or, y = a (1 - e) + e^

m
for a put and then let e s2 I

;

1 - e

.'. y zz m ~[~ .z, as in (235).

281. If S P s r, and ASP= a
the polar equation to the curve thus

traced is easily found :

SPse.PE=:e(TSi SM),

1 + e
e (m

V

ra {1 ~j-"e)

1 + e cos, 6

r cos. 6) i

Or since m (1 + e) s= -— for the ellipse and hyperbola, and ss 2 m for the

parabola, we have (putting jp for the principal parameter) the general

polar equation to the three curves,

r ^ 2L L (150).
2 I 4- e cos.

v
'

282. To draw a tangent at a given point P on the ellipse.

Draw the ordinate MP, and produce it to meet the circumscribing
circle in Q, from Q draw a tangent to the circle meeting the axis major
produced in T, join PT ; this line is a tangent to the ellipse (114).

Again, taking the figure in the note appended to Art. 121, join SP,
HP, and produce HP to K, so that PK = PH; join SK; the line

P y bisecting S K is a tangent.

283. To draw a tangent to the ellipse from a point T without the curve,

(2) a

A S ** JS
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Draw the line TPCP / through the centre, fig. 1. ; draw a conjugate

diameter to CP : then the question is reduced to finding' a point V in CP,
through which a chord Q VQ' is to be drawn, so that T Q and T Q' may
be tangents.

Take C V a third proportional to CT and C P, then V is the required

point (136).

Again, with centre T and radii TP (,TC describe circles C O, P' R, draw
any line T O R, cutting these circles in O and R ; join P O, and draw R Y
parallel to P O : then it may be proved by similar triangles that C V is a

third proportional to C T and C P, and therefore V is the required point.

284. If the axes, and not the ellipse, are given, take S and H the foci,

fig. 2, with centre 8 and radius A A' describe a circle, and with centre T and
radius TH describe another circle, cutting the former in the points K and
K'; join S K and SK', H K and H K' ; from T draw the lines T Q and TQ
perpendicular to H K and H K;

, these lines meet S K and SK' in the

required points Q and Q'. The proof will readily appear upon joining H Q
and H Q', and referring to the note, page 77.

285. To draw a tangent to the hyperbola at a given point P on the

curve.

Join SP and H P, note, page 97; in H P take PK sSP
3
and join SK;

the line PY bisecting SK is the required tangent.

286. To draw a tangent from a given point T without the curve.

The two methods given (283) for the ellipse will apply, with the

necessary alteration of figure, to the hyperbola.

287. To draw a tangent to the parabola at a given point P on the curve.

Draw an ordinate P M to the axis, fig. 232, and in the axis produced

take A T = A M, join P T ; this line is a tangent (233) 5
or take S T =

S P, and join P T/
288. To draw a tangent to a parabola from a given point T without the

curve.

Draw a diameter TP Y parallel to the axis, and cutting the curve in

P, take PY = PT, and draw an ordinate Q V Q' to the abscissa PY,
then T Q and T Q' are the required tangents (249).

If the directrix and focus be given, but not the curve; with centre T
and radius T S describe a circle, cutting the directrix in the points R and

R', join R S and R' S ; draw R Q and R ; Q' parallel to the axis, and then

TQ and T Q' perpendicular to R S and R'S (239).

289. An arc Q P Q' of a conic section, being traced on a plane to find

to which of the curves it belongs ; and also the axes and focus of the

section.

Draw a line L through the middle of two parallel chords, and another line

U through the middle of other two parallel chords, if the lines L, L' are

parallel, the curve is a parabola, if they meet on the concave side of the

curve it is an ellipse, if on the convex side it is an hyperbola. (130. 243.)

290. Let the curve be an ellipse, the

point where the lines L 1/ meet is the

centre C; let PP; be a diameter, its con-

jugate C D is thus found ; describe a

circle on P P' as diameter, and draw Y R,

C B perpendicular to P P'; join R Q, and

draw B D parallel to R Q, meeting a line

parallel to Q V, passing through C ; then

C Dis the conjugate diameter (136),
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To find the length and position of the axes ; draw PF perpendicular on
CD, and produce it to E, making PE= CD, join C E, and bisect

C E in H ;
join P H ; then from the triangle C P E we have the side

C E in terms of C P ancl CD = J{a? -f &* - 2 a, b x
sin. (Q> -- 0)} =

*J
{a2 + b

2 — 2 a b} === a — 6 ,\ ; CH~ - —
; also from the same

triangle we have PH s a+ b
hence PH+ HE is the small-axis

major, and P H — H E is the semi-axis minor.

In H P take H K = H E, then C K is the direction of the axis-major,

291. If the arc QPQ'be an hyperbola, the conjugate diameter may
be found by a process somewhat similar to that for the ellipse ; the asymp-
totes may then be drawn by Art. 215. The direction of the axes bisects

the angle of the asymptote, and their length is determined by drawing

a tangent PT, and perpendicular P M, to the axis, and taking CA a

mean proportional between C M and CT (167)„

292. If the arc be a portion of a parabola, 2/

draw TPT' parallel to Q V, and then draw P S,

making the angle SPT = the angle T'PV; re-

peat this construction for another point P', then 3%.

the junction of PS and P'S determines the focus

(240); the axis is parallel to PV, and the

vertex is found by drawing a perpendicular

on the axis, and then bisecting T M (233).

293. We shall conclude the subject of conic sections with the following

theorem.

If through any point within or without a conic section two straight lines

making a given angle with each other, be drawn to meet the curve, the

rectangle contained by the segments of the one will be in a constant ratio

to the rectangle contained by the segments of the other.

Case 1. The ellipse and hyperbola.

Let CD, CE be two semi-diameters parallel to the chords POP',
QOQ'; then, wherever chords parallel to these be drawn, we shall always
have the following proportion :

The rectangle PO, OP': the rectangle Q O v O Q :: the square on
C D l the square on C E.

Let O be the origin of oblique axes OX, O Y
the curve will be of the form

then the aquation to



INTERSECTING CHORDS. 141

ay*-\-bxy + ex2 + dy -J- e#+/= 0.

Let x s= ; .*. # ^
2 + ^2/ +/.= 0, and the product of the roots being

f—, we have

The rectangle QO,OQ^^-;

f
Similarly the rectangle P O, O P' = —

;

f f
.\ the rectangle Q O, O Q f

: the rectangle P O, O P' ::— : — :: c : a
a c

Now, let the origin be transferred to the centre without changing the

direction of the axes, then the form of the equation is

ay* + bxy + cx* +/' = (81).

Let # e= ; /. the square onCE^—— ; and the square on CDr:

- • ,\ the square on C E ; the square on C D ; : : c I a

;

c

.*. the rectangle QO, OQ' ! the rectangle P O, OP' : : the square on

C E : the square on C D.
In the hyperbola rig. (2), C E and CD do not meet the curve ; but in

order to show that these lines are semi-diameters, let the axis of y be car-

ried round till it becomes conjugate to CD, then the formulas for trans-

formation in (55) become for 0=0,

, sin. d'
f

. sin. (w — 0')

y s= if ~r—— , x ~ x' -f- V :—— .

sin. (o sin. (o

If these values of so and y be substituted in the general central equation

above, and it be reduced to the conjugate form by putting b
r = 0, the

transformed equation is of the form a! y
2 + c x2 + f f = ®> where

f"
c and/' are not changed, and — — is the square on the semi-diameter

along the axis of x (86) ; hence the theorem is true for the hyperbola.

Case 2. The Parabola fig. (3.)

As before, we have the rectangle P O, OP : the rectangle Q O,

OQ'::cu.
Let P and Q be the parameters to the chords POP' and QOQ';

transfer the origin to the focus, the axes remaining parallel to P O,

and Q O, by which transformation c and a are not altered.

Now in this case, the chords passing through the focus, we have the

rectangle PS, S P' : the rectangle Q S, SQ'; :: jP : ~Q (254)

and also as c : a; hence the rectangle P 0, OP': the rectangle Q O,

O Q' : : c : a : : P : Q.
294. If the point O be without the curves, and the points P P' coincide

as well as Q and Q', or the lines become tangents, we have for the ellipse

and hyperbola,
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The square onOP; the square on O Q :: the square on CD I the

square on CE;
orOP:OQ::CD:CE.

For the parabola

;

The square on O P : the square onOQ::SP: SQ;

hence it may be proved that, if a polygon circumscribe an ellipse, the

algebraical product of its alternate segments are equal. And the same

theorem will apply to tangents about an hyperbola; the tangents com-

mencing from any point in the asymptotes.

CHAPTER XII.

ON CURVES OF THE HIGHER ORDERS.

295. Having completed the discussion of lines of the second order, we
should naturally proceed to the investigation of the higher orders; but the

bare mention of the number of those in the next or third order (for they

amount to eighty) is quite sufficient to show that their complete investigation

would far exceed the limits of an elementary treatise like the present. Nor
is it requisite: we have examined the sections of the cone at great length,

because, from their connexion with the system of the world, every pro-

perty of these curves maybe useful; but it is not so with the higher

orders
;
generally speaking they possess but few important qualities, and

may be considered more as objects of mathematical curiosity than of prac-

tical utility.

The third order is chiefly remarkable from its investigation having been

first undertaken by Newton. Of the eighty species now known, seventy-

two were examined by him ; eight others, which escaped his searching

eye, have since been discovered.

Those who wish to study these curves, may refer to Newton's " Enu-
merate Linearum tertii Ordinis ; " or to the work of Stirling upon the

same subject.

Of the fourth order there are above five thousand species, and the number
in the higher orders is so enormous as to preclude the possibility of their

general investigation in the present state of analysis.

A systematic examination of curves being thus impossible, all that we
can do is to give a selection, taking cere that amongst them shall be

found all the algebraical or transcendental curves which are most remark-

able either for their utility or history.

We shall generally introduce them as examples of indeterminate pro-

blems, that is, of problems leading to final equations, containing two
variables. We shall then trace the loci of those equations, and explain,

when necessary, anything relating to the construction or properties of

the curves.

It would be useless to give any general rules for the working of these

questions ; those given for determinate problems will here serve equally

weli ; but, in both cases, experience is the only sure guide. In the solution

of these problems we shall not always follow the same, nor even the easiest,
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method ; but we shall endeavour to vary the manner, so that an attentive

observer may learn how to act in any particular case.

We commence with problems leading- to loci of the second order.

296. Given the straight line A B (= a) to find the point P without

AB, so that A P : PB^:: m : 1.

Let A be the origin of rectangular co-ordinates, A X and A Y the axes,

AM = a?,MP = y, and .\ M B = a — a?,

then A P : P B : : m : 1

l V (a— <r)
2 + y

2 n m
\ ?n2 (a — x) 2 + m2

y
2

,

1

or (1

or v x2 4- y
2

.*• x2 + y
2

-

^ 2
) 2/

2 + (i — m2
) #2 4- 2 m* a to —m2 a2 cr 0,

ory-
(1 - m2

)
2

This equation shows that there are an infinite number of points satis-

fying- the conditions of the problem, all situated on the circumference of a

circle (66).
9ii

2 a , ~
To draw this circle ; in A ,r take A C = ;, and with centre C

and radius

1 - ma

— describe a circle ; this is the required locus.
rj.2

If m = 1, reverting to the original equation we have x = — , which is

the equation to a straight line drawn through the bisection of A B, and

parallel to A Y.
297. If perpendiculars be drawn to two lines given in position from a

point P, and the distance between the feet of the perpendiculars be a con-

stant quantity a, required the locus of P.

Let the intersection of the given lines be the origin of rectangular axes,

take one of the lines for the axis of #, and let y = a x be the equation to

the other; then the equation to the line passing through P OV)? and

perpendicular to the line y ^ a <r
3

is y — y' ~ — (.a? — xf

) ;
then

from these two equations the co-ordinates of the point where their loci

meet, that is, the co-ordinates of the foot of the perpendicular are readily

obtained ; and then the final equation found, by art. 29, is y
f2 + #'2 —

(1 -f a2
)

a2 v —
? which belongs to a circle whose centre is at the intersection

a2

of the lines.

298. A given straight line B C moves between two straight lines, A B,

A C, so that its extremities B C are constantly on those lines; to find the

curve traced out by any given point P in B C*
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JP

Let the lines AB, AC be the axes of y and oc9

AM = ^, BP = a,

MP=y, P C = 6,

and let B A C be a right angle
;

then AM:BP::MC:'PC,

x:a:i ^¥^~y^ : b

;. b*x* r= a2 68 — a2
y\

or a2
2/

2 + 6s a?
8 = a2 63

,
X1 M C ~3c

which is the equation to an ellipse whose centre is A and axes 2 r/, 2 b.

If a ladder be placed against a wall, and its foot drawn along the ground
at right angles to the wall, any step will trace out a quarter of an ellipse,

and the middle step will trace out a quadrant of a circle.

If the co-ordinate axes be inclined at an angle 0, we have

AB^: ——- y, and A C == — #,
b a

Whence a2 y2 + b2 x2 — 2 a b cos. 6 . a? y — &2 62 == 0,

which is the equation to an ellipse (76).

It is easy to see that from this problem arises a very simple mechanical

method of describing the ellipse.

If a straight line B C of variable length move between two straight lines

A B, A C, so that the triangle A B C is constant, the curve traced out by

a point P which divides B C in a given ratio is an hyperbola.

299. Given the line AB (= cj to find a point P without AB, such

that drawing P A and P B, the angle P B A may be double of P A B.

Let A be the origin ; AX, AY the rectangular axes :

The equation to A P is y = a x, (1)

and that to B P is y =: cc' (oc— c)
;

2 a
but oi = tan. PBX. tan. PB A = - tan. 2 P A B = —

1 -

y (x - c) (2)

Eliminating a between the equations (1) and (2), we have y
2 s= 3 #s

— 2 e x, hence the locus of P is an hyperbola ; comparing its equation

b
2

, 2c
with the equation #

2 '= — s - 2 a #), we find the axes to be— ana
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2 c c——r, and the centre at C where AC= —

.

V3 3

By this hyperbola, a circular arc may be trisected ; for if A P B be
the arc to be trisected, describe the hyperbola DP as above, and let

the curves intersect in P ; then if be the centre of the circle, the angle
AOP = 2ABP = 4PAB=2POB, or the arc PB is one-third of
BPA.

This problem may also be thus solved

:

Let A M = x, MP = y, and angle PA B

Then tan. -, and tan. 20 •buttan.2 ==

6;

2 tan. 6

(tan. ey '

2y
y =— X

or y* 8 a?
2 —•. 2 c x.

On examination it will be seen that the above two methods of solution

are identical.

300. The following problems give loci of the second order.

1. From the given points A and B, (fig. 1,) two straight lines given in

position are drawn, M R Q is a common ordinate to these lines, and M P
is taken in M R Q a mean proportional to M Q and M R ; required the

locus of P.

2. A common carpenter's square C B P, (fig. 2,) moves in the right angle

X A Y, so that the point C is always in AY, and the right angle B in the

line AX; required the locus of P.

3. If the base and difference of the angles at the base of a triangle be

given, the locus of the vertex is an equilateral hyperbola.

4. To rind a point P, from which, drawing perpendiculars on two given.

straight lines, the enclosed quadrilateral shall be equal to a given square*

301. Let A Q A' be an ellipse, A A' the axis major, Q Q r any ordinate,

join A Q and A' Q' ; required the locus of their intersection P.

Let C be the origin of rectangular co-ordinates.

C M = x, M P = y, C N = x\ and N Q = y'.

Then the equation to AQis y zz a x -\r c

which atAisO^»«« + c;

.\ y = a (x + a),
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y'
.At Q it becomes y

1
ss? a (a/ -ha) /. a = ~y

a?
f 4- w

Hence the equation to A Q is y =:

And similarly that to A'Q' is y =

Also a2 y2 + 6 2
a?

1

Eliminating a?' and g/' between (1) and (2), we have

0?' + a
(* +. c), (1/

£f_
y'

a
-(a - a), (2)

?2 — a? 6*; (3)

and y' = «y

Substituting in (3) we obtain the final equation

a*y 6 2 a* = a3 6
2
,

62 c2 = — a* Z>
2
?

or &-j y*

which is the equation to an hyperbola, whose centre is C, and transverse

axis 2 a.

The method of elimination used in this problem is of great use ; the

principle admits of a clear explanation. We have the equations to A Q
and A7 Q'; putting a? and y the same for both equations intimates that

lV and y are the co-ordinates C M and M P in one particular case of inter-

section ; but the elimination of a?' and #' intimates that oc and y are also

always the co-ordinates of intersection, and therefore that the resulting

equation belongs to the locus of their intersection.

802. To find the locus of the centres of all the circles drawn tangential

to a given line AX, and whose circumferences pass through a given point

Q {a b).

Let S Q M be one of these circles, referred to rectangular axes A as, A y.

cc, y the co-ordinates of its centre P,

' cs\ y
f

o . . o o • any point on its circumference.

Then the equation to S Q M is

(y
r _ yy + (a/ _ ay- T2 . (65)

but passing through Q 5
it becomes

(b - yf -f- (a ~~ a>y ^ r\

and, being tangential to AX, we have r == y$
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A (b - yf + (a - cvf = y\

or a?
2 — 2 ax — 2by + a2 + 62 = 0.

This is the equation to a parabola (78).

14?

It may be put in the form (a? — a)2 ^ 2 & f 2/ — — ). Hence if we

transfer the origin to the point E ( a, ~ \ we have the equation <r
2 = 2 b yt

and the curve is referred to its vertex E, which is the centre of the least

circle.

If, instead of the circle passing through a given point, it touch a given

circle, a parabola is again the locus of P.

303. Let AB,BC,CD, and D A (fig. 1, p. 148) be four straight lines

given in position, to find the locus of a point P, such, that drawing the

lines PE,PF,P G, and P H making given angles with AB,BC,CD,
and D A, we may have the rectangle P E, P F = the rectangle P G, P H.

Let O be the origin of rectangular axes O X, O Y ; x and y the co-

ordinates of P
; /3, j3', /3" and p

nf the cosecants of the angles which the

lines P E, P F, &c, make with A B, B C, &c. Then the equation

to A B being y
r zz & xf + b we have P E

ii — aoc — b
R — J— ,

toBC, , y
f = u f Xf + b

f
.

to DC . . y
f ^a ff

x' + b"

to AD • . y = am xf + V"

PF = y — a f x —

0(49)

&'

Vl + a 1

?/ — a" ,r — 6"

?J

/3"

•*. by the question
y — « #

PH= ..

y
.

- —
ff";

V 1 + «wa

-6 y — d x — b f

Vi + #2 Vl + «"
0/?

>
y - «"*-&" V -«"'*-*>'"

ptrpt!

Vi + «" 2 Vl + a"

This equation being evidently of two dimensions, the locus of P is a

L2
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conic section, the particular species of which depends on the situation of

the given lines*

This problem may be expressed much more generally. Suppose

3, 4, 5 or a greater number of lines to be given in position, required a

point from which, drawing lines to the given lines, each making a given

angle with them, the rectangle of two lines thus drawn from the given

point may have a given ratio to the square on the third, if there are three

;

or to the rectangle of the two others, if there are four: or again, if there

are five lines, that the parallelopiped composed of three lines may have a

given ratio to the parallelopiped of the two remaining lines, together with a

third given line, or to the parallelopiped composed of the three others, if

there are six : or again, if there are seven, that the algebraical product of

four may have a given ratio to the algebraical product of the three others

and a given line, or to the four others, if there are eight, and so on.

This was a problem which very much perplexed the ancient geometri-

cians. Pappus says, that neither Euclid nor Apollonius could give a

solution. He himself knew that when there are only three or four lines

the locus was a conic section, but he could not describe it, much less

could he tell what the curve would be when the number of lines were more
than four. When the number of lines were seven or eight, the ancients

could scarcely enunciate the problem, for there are no figures beyond
solids, and without the aid of algebra, it is impossible to conceive what

the product of four lines can mean.

It was this problem which Descartes successfully attacked, and which,

most probably, led him to apply algebra generally to geometry. The
following solution is that given by Descartes, with a few abbreviations

:

A B, A D, E F and G H (fig. 2) are the given lines, C the required

point from which are drawn the lines C B, C D, C F and C H making
given angles C B A, C D A, C FE, and C H G. A B (= a?) and B C
(= y) are the principal lines to which all the others will be referred.

Suppose the given lines to meet C B in the points R, S, T, and A B in

the points A, E and G. Let AE = c and A G = d.

Then since all the angles of the triangle A B R are known, we have

BR^a.AB^ca; ,\ C R = a x + y and C D = /3 (a x + y) ;

also B S = a'.BE = a' (c + x ) ;
.'. C S = y + a! (c + a? ) and

C F = j3' {y + a' (c + x) } ; also B T = a". B G = a 1
' (d ~ so) ;

.\ CT^^ + «" (d - a?) and CH= j3"-v{ y + «" (d - a?) } ; then
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since the rectangle CB, CPs the rectangle CD, CH, we have the

equation

y/3'{y + a'(c+ *)} = |3(«* + y) |S" {y + a" (d - *) }.

This equation Descartes showed to belong to a conic section which he

described. He also gave the following numerical example :

LetEA=:3,AG=5,AB = BR, B S =: 4 B E , GB = BT,

CD = 4-CR, CP = 2CS, CH =|- C T 5
the angle A B R = 60°,

2 S

and the rectangle C B, C F t^z the rectangle C D, C H. By the above

method he found the equation to be

y
2 + ocy *{- x* — 2y — bx ^ ;

which he showed belonged to a circle. Taking the expressions in

8 1
art. (72) we have the co-ordinates of the centre — and — •—

, and

Vl9
the radius =: "™^~ °

304. Let A Q B be a semi-circle of which A B is the diameter, B R an

indefinite straight line perpendicular to AB, AQk a straight line

meeting the circle in Q and B R in R; take AP^QR; required the

locus of P.

Let A be the origin of rectangular axes, and A B the axis of*.

AB^2a, AM ~ a?, MP = y, and draw QN parallel to M P ;

A.\
:

then since APsQ. R, we have A M = B N 5

and AM : MP :: AN : N.Q;

that is, x : y :: (2 a — x) : J (2 a — x) x ; (65)

.andy=± Vg~^
2 a — x
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The following table gives the corresponding values of x and yi

Values of a?

Values ofy

1 2

< 2a

possible

2 a > 2a

impos. impos

6

From (1) the curve passes through the origin, from (2) it bisects the

semi-circular arc A Q B, from (3) there are possible values of y for all

values of x less than 2 a, from (4) there is an infinite ordinate at B, or

B R is an asymptote to the curve : from these values we thus obtain an

infinite arc proceeding from A to meet the asymptote B R. Again, from

(5) for any value of x greater than 2 a, y is impossible, or no part of the

curve is found to the right of* the asymptote ; and from (6) no part of the

curve is on the left of A. Also, for every value of x there are two of y
equal and opposite ; hence there is a branch below A B similar to the

one above it.

Diodes, a mathematician of the sixth century, invented this curve,

which he called the Cissoid, from a Greek word signifying <tr
ivy," be-

cause this curve climbs up its asymptote like ivy up a tree. He em-

ployed it in solving the celebrated problem of the insertion of two mean
proportionals between given extremes.

Before his time, Pappus had reduced the problem to this case

:

Let B C, CE be the two extremes, and AQB a circle whose centre

is C and radius C B ; draw an indefinite straight line B E P through S
and then draw the straight line APOQ meeting B E and G E produced,

and also meeting the circle at Q in such a manner that OQ =: O P, then

C O will be the first of the two mean proportionals. But the point P
could not be directly found : hence, Diodes invented this curve to

determine a series of points which will solve the problem for any length

of CE: for example, suppose that B C, C E and the cissoid be drawn,

join B E meeting the curve in P
5
then since OR=:OA and Q 11 =:

A P we have OQ^OP.
From the definition of the curve it can be readily described by points

;

but as this is only a tentative process at best, and therefore not geome-
trically correct, Newton invented a very simple instrument for describing

the curve by continued motion

:

Let C H (fig. 2, p. 149) be a straight line parallel to B R ; take A E —
A C and let E F H be a common carpenter's square, the side F E being of

indefinite length, and FH = AB; move this square so that the longer
leg F E always passing through E, the extremity H of the other slides

along C H, the middle point G of F H traces out the cissoid.

To obtain the polar equation to this curve

:

Let y = r sin. and x ~ r cos. (9;
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Substitute these values in the equation y* =-

r3 (cos. 0)"
(sin. < whence r

2 a— as

2 a sin. . tan .

2 a — rcos.0
?

Ex. If a perpendicular be drawn from the vertex of a parabola to a tan-
gent, the locus of their intersection is the cissoid.

305. If C be a point in the diameter A B of the circle AQB, and M Q
any ordinate, join B Q, and draw C P parallel to B Q, meetingM Q in P*
required. the locus of P.

Lei A M ^ o?
?

A'B ^ a,

AC ~ b;

thenBM : MQ :: CM I MP,

(« — a?) : *J ax — a? :i (b — at) ; y,

/. y = ± (b - a?)

Hence the following table of values :

gYalues of oc

Values of y it CO

< a

pos. imp.

6 t

imp
\

JFrom (I) and (2) the curve passes through A and C ; from (3) the ordi-

nate at B is an asymptote to the curve ; from (4) there are two arcs

between A and C, also two between C and B ; from (5) and (6) no part

of the curve extends to the right of B or the left of A.

If h = 0, the oval between A and C disappears, and the curve is the

cissoid of Diodes.

If b is negative, or the point C on the left of A, the curve consists of

two branches proceeding from A to the asymptote through B, and the

point C, though not on the curve, yet essentially belongs to it. This in-

sulated point is called a conjugate point. The theory of such points will

be fully explained in the treatise on the Differential Calculus.
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Ex. A point Q is taken in the ordinate M P of the parabola, always

equidistant from P, and from the vertex of the parabola; required the

locus of Q.

306. M Q is an ordinate to the semicircle A Q B, and M Q is produced

to P, so that M P : M Q : I A B : A M to find the locus of P.

Let A B X and AY be the rectangular

axes.

A M = x,

MP = ?/,

Then MP: MQ :: A'B : AM,
m_™ic

or y : V 2 a x — x2
: : 2 a : or,

y x =s ± 2 a fj 2 a x — x\

. / 2 a — x
*°* y zz ± 2 a %/ ;

1 2 3 4 5

Values ofx 2 a < 2a > 2 a neg.

Values of y ±00 pos. imp. imp.

From (1) we have the ordinate at the origin infinite, and therefore an

asymptote to the curve ; from (2) the curve cuts the axis at B ; from (3)
the curve extends between A and B ; from (4) no part of the curve is

beyond B ; from (5) no part is to the left of A.
This curve is called the Witch, and is the invention of an Italian lady,

Maria Gaetana Agnesi, Professor of Mathematics in the University of

Bologna, A.D, 1748.

307. In the circle the square on the ordinate is equal to the rectangle

under the segments of the diameter ; required the form of the curve on
which the curve upon the ordinate is equal to the parallelopiped, of which
the base is the square on one segment, and the altitude is the other seg-

ment, or 2/
3 = x2

(2 a — a?).

Let A be the origin Y, AX, Athe rectangular axes, and A B =:2fl,
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Let a = or = 2 «, .*. y == ; hence the curve passes through
A and B ; for a? < 2 a, y is positive ; but when x is > 2 a, y increases

negatively to infinity, since the third root of a negative quantity is nega-
tive and possible. Again, y is positive for all negative values of x

9
and

increases to oo ; also for each value of a?, there is only one real value
oi'y, the other two roots of an equation y* ± 1 s= 0, being always im-

possible.

Expanding the equation we have

s/ 1 - 2 a

2a
.*. the equation to the asymptote is y = — a? +— (195).

o

In A Y take AC^ ^—-
-, and in A X take AEs —-, join C E, this

3 3

line produced is an asymptote to the curve,

Ex. Find the locus of the equation, y
Q + a? ^ a3

; and of the equation

g/

3 rr «2 # — #3
.

308. To trace the curve whose equation is a y
2 ss <r* -f wi a?

2 + n x + £>.

Case (1). Suppose the roots of this equation to be real and unequal,

and to be represented by the letters a, b, and c, of which a is less than b

and b less than c, then the equation is of the form

y= S ±v/{(^=^-)(«-6)(*- C)}.

1 2 3 4 5 6
1

8 9 10

Values of x # <* >«<& 6 >b<c >c 00 —

Values of y imp. imp. pos. imp. pos. ±00 imp.
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Let Abe the origin, AX, A Y, the

axes ; A B sr a, A C s= b, and A D
= c ;

From (2) (5) and (7) the curve

passes through B, C, and D ; from (3)

and (6) no part of the curve is found

between A and B, or C and D ; from

(4) there are two branches between B
and C ; from (8) and (9) the curve proceeds from D to co , and from (10)
no part of the curve is on the left of A.

If the roots had been negative, the curve would have the same form,

but would be rather differently situated with regard to the origin.

Case (2). If two roots be equal, the equation is y =s (ce-c)

or y = ± 0» — a) V —T— '

»

in the former case the figure is nearly

the same as above, when the points C and D coincide ; in the latter, sup-

posing the points B and G to coincide, or the oval to become a conjugate

point.

Case (3). If two of the roots be impossible, we, have only the bell-

shaped part of the curve from J).

Case (4). If the three roots be equal, the equation is a y
2 =s (a? — ay.

The figure now consists of two branches proceeding*

from B with their convexity towards the axis. This

curve is called the semi-cubical parabola ; its equa-

tion is the most simple when the origin is at the vertex

B ; that is, putting co instead of x — a, when a y
2

z=z

oc\

This curve is remarkable as being the first curve

which was rectified, that is, the length of any portion

of it was shown to be equal to a number of the com-

mon rectilinear unit.

309. The equation a2 y = a?
3

-f m x2
4- n oc + jh can be traced exactly

as in the last article : the accompanying figure applies to the case when
the three roots are positive, real, and unequal. If two of them be equal,

one of the semi-ovals disappears; if three are equal, both disappear : in

this case the equation is of the form a2
y zz (pc — a)3

, or a2 y = x8
, if

the origin be transferred to B ; the curve is then called the cubical

parabola,

Y

AhFisITCTi)

F
310. If the equation be a oc ij = #3 + m oc

2 + n oc + p, the axis of y
is an asymptote, and there is a branch in the angle YAo?; the rest
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of the curve is like that in the last figure, supposing' the lower branch

from B to come to A y as the asymptote, the form will vary as the roots

<*}<* «_ ffi

vary. We shall take the case where y = —^T-

1

1 2 3 4 5 6 7

Values of x a <a > a GO r~ •— CO

Values of y CD _ + GO 4* -f oo

From (1) A y is an asymptote; from (2) the curve cuts the axis at B
(A B — a) ; from (3, 4, 5) it is below the axis of x from A to B, and

above from Bto oo; from (6) and (7) we have the branch F C Y.

This curve is called the trident, from its form. This curve enables us

to point out the difference between what are called parabolic and hyper-

bolic branches of a curve : B y and C Y are hyperbolic, because they admit

of a straight line Y y for the asymptote ; but B E and C F are parabolic,

because they admit of a parabolic asymptote, represented by the dotted

curve FAE,

whose equation is y i (196).

Ex. Find the locus of the equation or y — y— cc
B ~~ a = 0.

If the equation be x y
2
-f «2

y — -?
3

-f" ^ #3 + n x + p t
the form of

the curve will depend on the nature of the roots of the equation a?
4 + mxB

a4-

-]- n $* + p x -fc —-^0; there will be no difficulty in any particular

case. Generally the equation to the asymptotes is y tzz ± (x + J m) ;

and the axis of y is an asymptote.

311. If the terms a? and m of are wanting, the equation is
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x y 3 4- a*y *=l n x Jr p.

y
± a/ {a 4 + i p x + 4w« !'2

1

2 a?

If the denominator of this expression had been constant, the equation

would have belonged to an ellipse, hyperbola, or parabola, according1 as n
was negative, positive or nothing ; hence if such constant quantity be

replaced by the variable quantity 2 a?, the conic section becomes " hyper-

bolized" by having an infinite branch proceeding to the axis of y as an

asymptote.

For the nine figures corresponding to the values of p }
see Newton,

Enum. Lin. Tert. Ord.

From the last article it appears that all curves of the third order have

infinite branches ; and this must necessarily be the case, for every equation

of an odd degree has at least one real root, so that there is always one
real value of y corresponding to any real value of x,

312. The conchoid of Nicomedes.

Let X x (fig, 1) be an indefinite straight line, A a given point, from
which draw the straight line A C B perpendicular to X a?, and also any
number of straight lines AE P, A E P /r

, &c. ; take E P always equal to

C B, then the locus of P is the conchoid.

If in E A we take E P; = E P the locus of P' is called the inferior

conchoid ; both conchoids form but one curve, that is, both are expressed

by the same equation.

C B is called the modulus, and X# the base or rule

;

Let A C ^ a, C M = at,

C B == b, M P = y,

then EP:PM: : AP: AN,

or b : y:: *J x
2

-\- (a + yf ; a + y,

:. f ^ + y* (a + y)* = &» (a + y)\

/. a?
8 = (6

2 - if) f— * ^

... * s± !±l^
We have three cases according as b is > #, = #, or < a.
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Case 1. 6 > a.

2 3 4 5 6 7 8

Values of y 6 <b >b — a - b <~ a > - <z, < - 6

Values of a? CD pos. imp. pos. pos.

From (1) X x Is an asymptote; from (2) the curve passes through B;
from (3) and (4) the curve extends from the asymptote upwards to B and
no higher; hence the branch B P P /;

. Again from (5) and (6) the curve

passes through A and D if C D = b ; from (7) there is a branch A X
extending from A to the asymptote ,* and from (8) the curve exists

between A and D ; the double value of x gives the same results along C#.
Case 2. h = a ; in the table of values put b = a, and omit (8) ; thus

the figure will be the same as the preceding, with the exception of the

oval AP'D, which vanishes by the coincidence of A and D.

Case 3. b < a ; in the table of values put b for a in (7), and for (8)
write ' G if?/is> — b3 oo is impossible;" the upper part of the curve

is not altered, but the point D falls between A and C ; from (8) no part

of the curve is between D and A ; but from (5) A is a point not on the

curve, but belonging to it, and called a conjugate point. In this case the

lower curve is similar to the upper one.

The generation of the conchoid gives a good idea of the nature of an
asymptote, for the line E P must always be equal to C B, and this condi-

tion manifestly brings the curve continually nearer to C X, as at P'7, so

that the curve, though never actually coinciding with C X, approaches

nearer to it than by any finite distance.

This curve was invented by Nicomedes, a Greek geometrician, who
flourished about 200 years B.C. He called it the Conchoid, from a Greek
word signifying "a shell;" it was employed by him in solving the

problems of the duplication of the cube, and the trisection of an angle.

To show how the curve may be applied to the latter problem, let B C A
(fig. 2) be the angle to be trisected ; draw AE F meeting the circle in E,
and the diameter produced in F, and so that the part E F equal the radius

C A, then it is directly seen that the arc D E is one-third of B A.

Now it is not possible by the common geometry, that is, with the

straight line and circle alone, to draw the line A E F, so that EF shall

be equal to C A (the tentative process, though easy, being never considered

geometrically correct), and for a long time the ancient geometricians

would not hear of any other mathematical instruments than the ruler and
compasses ; hence the problem was quite insuperable : finding at last that

this was the case, they began to invent some curves to assist in the solu-

tion of this and other problems: of these curves, the most celebrated is

the conchoid of Nicomedes. It may be thus applied to the present

problem. Let A be the pole of the inferior conchoid, B F the asymptote

or base, and A C the modulus, the intersection of the curve with the circle

evidently gives the required point E. The superior conchoid may also be

used for the same purpose.
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Unless the curve could be described by continued motion, the solution

would be incomplete. Nicomedes therefore invented the following" simple.

machine for describing it. Let a? X be a straight ruler with a groove cut

in it ; C D is another ruler fixed at right angles to x X ; at A there is a

fixed pin, which is inserted in the groove of a third ruler A E P ; in A P
is a fixed pin at E, which is inserted into the groove of x X ; PE is

any given length ; then, by the constrained motion of the ruler PEA,
a pencil at P will trace out a conchoid, , and another pencil fixed in E A
would trace out the inferior curve.

This curve was formerly used by architects ; the contour of the shaft of
a column being the portion B P P" of a conchoid.

The polar equation to the conchoid is thus found

:

Let A (fig. 1, page 156) be the pole, AP = r, PAB = 0;

.*. y + a tzz r cos. 0, and a? = r sin. 0.

Substituting these values in the equation, and reducing, we arrive at the

polar equation r = a sec. + 6.

The polar equation may, however, be much more easily obtained from
the definition of the curve. We have

r-APsAE-f EP-AC sec. CAE+CB~a sec. + 6.

313. The following method of obtaining the equation to the conchoid
will be found applicable to many similar problems.

Let any number of lines, A E P, fig. 1, be drawn cutting C X in dif-

ferent points E, &c. ; from each of these points E as centre, and with
radius 6 describe a circle cutting the line A E P in P and P' ; the locus
of the point P is the conchoid.

Let A be the origin of the rectangular co-ordinates.

A B the axis of y, and A X parallel to C X in the figure.

Let the general equation to the line A E P be y •^ ax, where a is in

determinate

:
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Then y' = #, and oc
f =r — are the equations to the point E ;

The equation to the circle which has the point E for its centre and

radius 6, is

(y - y
rf + O - oc'f =- 62

,

or (y - a) 8 + ( a; — —
j
= h\

And eliminating a between this equation, and that to the line A E P, we
have the final equation to the curve,

(3,_ )»+U-— ) =6»,
\ y j
j^2 _L qjQ,

or (y — a)2 - ~ ~ 6
2

.

In general if the line C X be a curve whose equation is y = / (a?), the

co-ordinates of the point E are found by eliminating x and ?/ from the

equations y zz a a?, and yzi f (pc)\ hence we find a? ~ /' (a), and

£,• cr: ay («), and the equation to the circle is

{y - af> («)} + {* -/'(«)} 2 = 4s
.

And the general equation to the curve is

{»-Mf)M-/<f)}
,=*

314. A perpendicular is drawn torn the centre of an hyperbola upon a

tangent, find the locus of their intersection.

The equation to the tangent is

a* yy' _ &aa?a?'=: - a* b*. (1)

The equation to the perpendicular on it from the centre is

^-¥7'' (2)

In order to get the equation to their intersection, we must eliminate

x f and y
r from these two equations and that to the hyperbola ; from (1)

and (2) we find

,
cfix . - b

2

y

oc* + y* * ~ «a + y*°

Substituting in the equation a2
y
h - 62 a?'

2 = — &2
6
2
, we have

0* "I- 2/

2

)
2 + &2

3/
a - ^ ®* = °>

which is an equation of the fourth degree,
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We shall only investigate the figure in the case when b = a, that is

when the hyperbola is equilateral, in which case the equation is (a?
a + y

2

)
9

:. ?/
4 + (2 a? + ea

) f -f *4 - «2
tf

s = 0,

and y = ± ^ {
- (*» + ~) ± a \/2 x* + -£}.

If the sign of the interior root be negative, y is impossible ; hence we
shall only examine the equation

here y is impossible, if x* -f-
—

- is > a V 2 <2?

2 + 4'

if a?* + a2 x2 + — is > 2 a2
cT
2 4- ~

4 4

if#4

if x is > + a

;

hence we have the following table :

1 2 3 4

Values of x ±a <±a > ± a

Values of y pos. imp.

From (1) the curve passes through C ; from (2) it passes through A and
A' ; from (3) it has two branches from C to A and from C to A' ; from
(4) it does not extend beyond A and A'.

We may judge yet more nearly of the form of these ovals, for the tan-

gent at the vertex of the hyperbola being perpendicular to the axis, the

oval will cut the axis at A at a right angle ; and again at C in an angle
of 45°, because the tangent nearly coinciding with the asymptote, the

perpendicular on it makes an angle of 45° with the axis ultimately.

This curve was invented by James Bernouilli; it is called the Lemnis-
cata, and forms one of a series of curves corresponding to different values
of b.

To find the polar equation to the lemniscata,

Let y ~ r sin. 0, and x z=i r cos. 6
;

hence the equation (a?
2 + #

2
)
2 = a2 (x2 — y*) becomes r

2 ^ a2
cos. 2 6.

Any curve that is of the form of this figure is called a lemniscata.

315. In the following example the curve maybe easily traced by points.

Let a circle be described with centre C and any radius C Q ; draw the

ordinate Q M, and in Q C take QP=tQM; the locus of P is a lem-
niscata.

Again, if in MQ we take MR = a third proportional to M Q and
C M, the locus of II is another lemniscata whose equation is

a?
4 ~~ a2

x« -f a2 y
2 = 0.
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x2
) belongs to the same

a2 4* <#
2

The equation a2
(y - af = (j? - a) 2

(2 a a?

curve referred to a different origin.

Ex. Trace the locus of the equation y* = a?

316. AM, fig-. 1, is a tangent to a circle A C Q, M Q an ordinate to the

abscissa A M ; M P is taken a mean proportional between A M and M Q ;

required the locus of P.

U) 1?
\

z
,//

''

-?

4
A\ \1'

*N. \

Let A M =±: x, and M P == y, be the rectangular co-ordinates of P, and

let the radius of the circle = 6,

then the squai^e onMPr: the rectangle AM, M Q.

To find M Q, we have the equation to the circle

(y - y'T + (* - *')* = A
or y* — 2 b y -f ^2 — 0, since #' = 0, and y

r =z v ^ b,

MQ = 6 ± V&a -"

C. M P or 7/ = ± V {6 a? ± a? V&2 - ^2
}»

Since fr

2 - a?
2 is< 5

2
, there are four values of ?/ to each positive value

of x < 6, and no value of y to x negative ; hence if A B = b, fig. 1, the

straight line CBC perpendicular to A B is a limit to the curve, and when
X zz b, the ordinate to the curve is equal to the extreme ordinate of the

circle, that is, to the tangent B C.

Between x = 0, and x == 6, we have four values of y, which give the

two dotted ovals of fig. (1).

To make the question more general we shall suppose the line A B to be

a chord of the circle, figs. (2) (3) (4),

Then if 6 and a are the co-ordinates to the centre of the circle, and A
the origin, the equation to the curve will be

y- ±
,J
{bx±x*J b

2 + 2 ax - x*}
9

and we have four cases depending on the values of b and a ; hence we
have four curves of different forms,, vet partaking of the same character

and generation.

Case (1).- a = 0, fig. (]) already discussed.

a and b positive, fig. (2). A E ^ a -f V a%

b = 0, fig. (3).

b negative, fig. (4), the equation is

'

{ - h x ± x V

&

8"+lTa *~~~

Case (2).

Case (3).

Case (4),

+ b\

y ± X2
}.

M
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There are two values of y for oo positive, and < 2 a; but four values

for x negative, and < V #2
-f b2 — a, that is, < A E.

The gradual transition of one curve to another is apparent, but that the

same problem should produce such very different curves as (2) and (4)

requires some explanation.

In fig-. (1) P and P' are determined by mean proportionals between
A M and M Q, and also between A M and M Q r

. Moreover P may be in

QM produced as well as in M Q, thus we have the double oval, fig. (1.) On
the left of A the abscissas A M will be negative, and the ordinates M Q
positive ; hence no possible mean proportional can exist, or no part of the

curve can be on the left of A.

In fig. (2) A M and M Q determine the points P and P' ; but A M and
M Q' give only an imaginary locus.

Fig. (3) requires no comment.
In fig. (4) the reasoning on fig. (2) will explain the positive side of A;

on the left of A the abscissa and both ordinates are negative ; therefore

two mean proportionals can be found, or four points in the curve for each
abscissa.

Such curves may be invented at pleasure, by taking the parabola or

other curves for the base instead of the circle.

To find the locus of the equation y*
\ a co y

2 — a oc
s •=.

117. To find a point P ;

5
such that drawing straight Hues to two given

points S and I~I, we may have the rectangle S P, H P constant.

Join the points S and H, and bisect S II in C ; let C be the origin of

rectangular axes, S H z~ 2^CMr cc, M P == y and let the rectangle

SP
5
HP, = fi b.

Then since S M ^ a -f &\ and H M=^ a — a\ we have

{y
2 + (a -f- xy } {y~ + {a - %y} = a* b%

or (y
Q Jr a?

2 + "a
2

-f 2 a a?) (y
2
-f #s

-f a2 -2 a x)^a2
6
2
,

or, {y
2 + a;

2 + a2
}
2 - 4 a2

a?
8 = a2

b* ;

hence y = + J { - (a2 + oc
2
) + a V^+T^}.

Let y ^s 0, e°„ x zz ± ^ a {a ± b) (1).

Let , 0, y = db V a (b — a) (2).

1. Let a be less than 5.

Then from (I) we have the points A and Ap

7
and from (2) we have the

points B and B'*
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Also by comparing the values oft/ in the original equation and in equation

(2) we shall find thatM P is greater than C B as long as cc is greater than

/J 2 a (2 a — 6) ; thus the form of the curve must be like that of the

figure APBA'B' A.

As b increases, the oval becomes flatter at the top, and takes the form of

the outer curves,

2. Let a ~ 6, then we have the dotted curve passing through C ; also

since the equation becomes (a?
2 4- 2/

2

)
2== 2 a9

- (#
2 — $

2
) the locus is in this

case the lemniseata of Bernouilli.

3. Let a be greater than 6.

Then from (1) we have two values of a?, and from (2) an impossible

value of y ; hence the curve must consist of the two small oval figures

round S and H.

As h decreases, the little ovals decrease ; and when 5 zz 0, we have the

points S and H themselves for the locus.

These curves are called the ovals of Cassini, that celebrated astronomer

having imagined that the path of a planet was a curve like the exterior

one in the above figure.

The equation (y
2 + O2 — b^y* -f a%

oc\ found in art. (123), gives a

figure like that in case 1,

318. There are some cases in which it is useful to introduce a third

variable; for example, if the equation be y* + x* y
1 + 2 y

3
-f x3 = 0,

it requires the solution of an equation of three or four dimensions, in

order to find corresponding values of x and y ; to avoid this difficulty,

assume oc = uy,

:. y" +u"yi + 2y*--u*y*=: 0,

or, y + u2 y + 2 - u3 = 0,

u3 - 2 , u* - 2
,\ y = —-, and x = u. —r—.—— ;u

w,
a + 1 u2 + 1

from these equations we can find a series of corresponding values for

x and ?/.

w = -. 3 y = ~ 2 9
TO"

2

1 i

1 ft

2

1*
X
'2

1 1

2 6

1 1
5

2
I
•2

3 if

-Z-,

2 = — 2 rs 4

1 = - li 14

= o

14 a
= 2 =
s 3 =
= 4 - =
&c. &c

5.?

2 -?-

74
14 -H

&e.

M2
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Also when y = 0, cc zz 0, hence the curve passes through A, Let

AX, A Y be the axes ; along the axis of y take values equal to those in

the table for y ; and from the points thus determined draw lines equal to

the corresponding values in the table for x (these are the dotted lines in

the figure) ; by this method we obtain a number of points in the curve

sufficient to determine its course.

This example is taken from the " Analyse des Lignes Courbes, by

G.Cramer. Geneva. 1750," a work which will be found extremely use-

ful in the study of algebraical curves.

319. To trace the curve whose equation is f — 5 aa?y2
-f x5 — 0.

Let x be very small .% x& being exceedingly small may be omitted,

and the equation becomes y
b =n 5 a cc

2
y

2
, or if ~ 5 a a?

2
, which is the

equation to a semi-cubical parabola PAP' fig. (1.) ; and if y be very

small, we have x* r= 5 a 2/

2
, which gives the parabola Q A Q' ; hence

near the origin the curve assumes the forms of the two parabolic branches.

Again when x is infinitely great, x1 may be neglected in comparison with

'x 5 and the equation becomes y
5 ~ — x5

, ,\ y =r — x ; hence for x posi-

tive, we have an infinite branch in the angle XAy, and for os negative an
infinite branch in the angle Y A x.

To find the asymptote :

y
b sr — ^5 + 5 a x2

y*,

r
ay'

t

y^ -*^l - 5^ l5

5

— oe i\ <2a"
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ss — a? -f- a(F + 2 a"
a5

- , &e.

=:~a?-f-a+2—-s-K &c. when « " — os

:

Xd

Therefore the equation to the asymptote is y -J- x ^ a; this being" drawn
and the branches AP', AQ' produced towards it, we have nearly a cor-

rect idea of the curve.

If the equation be ?/
5 - 5 a2 x 2 y -j- #5 ~ 0, the curve will be traced

in the same manner, fig. (2).

If the equation be y
6 — a2 x2

?/
2 + *2?° = 0, we have fig. (3) ;

And the equation y
6 — a? x2

y
% — xQ t= will give fig. (4).

Ex. Find the locus of the equation y
4, — 4 a2 x y — <2

4 .= 0.

For the above method of tracing curves of this species, see a treatise

on the Differential Calculus, by Professor Miller. Cambridge, 1832.

320. B C is a straight line of given length (2 6), having its extremities

always in the circumferences of two equal circles, to find the locus of the

middle point P of the line B C.

Let the line joining the centres O, O f of the circles be the axis of -x, and

let the origin of rectangular axes be at A, the bisecting point of O 0\

Let x y be the co-ordinates of B.

x
f

y
f "..... C.

XT . . . . . P.

A O = A O r = a,

the equation to B is if + (x - af = c2 (1) ^

to C is y
f2 + O' + a 1

)* - c
2

(2)

also (y - y')" + (x - x f

f = 4 6
a

(3)

2Y-y + y' (4)

2 X = x + a?' (5) I

From these five equations we must eliminate the four quantities y, x,

y' and a;'; from (1) and (2)

f y' a;
2 - a?'

2 -2a (a? 4- a') = 0,

or (y _ y) y + (a; - a?') X ~ 2.<z X = (6),

from (4) and (5) f + #'* + ^2 + *' 2 + 2 y ?/ + 2 ara/= 4 Y2 + 4 X"

from (3) 2/

2 + y
n + x* + a?'

2 - 2y#'— 2a?a?' = 4 6
2
,

from (1) and (2) 2^ + 2 y' 2 + 2 x* + 2 a?' a - 4 a (.r-a/)~ 4 c
2 — 4 a2

:

/. by substitution 4 a (x - a') =: 4 (Y* i X2 f &
8 + a9 - c

9
),
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Y2 + X2 + m*

160

or (a? - x 1

) s= 1—LJ^-Z^l, if m« — tf» + fe
9 - c\

Cb

and from (6)

, r rt , ,m X / n Y2 + X* + m2 \ X
2/ - y' = {2« - (* - a')} y s=

(^2
-
~_-^~™~J

—
Substituting these values of a? — cv

f and y ~~ y' in (3) 5
we have

\* a-—T— Iy2+ { a }
S=4 *'

or 4 a* X« - 4 (Y« + X2 + m2
) X2 + (J!±^±^)\x^ + Y8

) =4 h* Ys

= 0..-. a2 X - 62 Y2 - X 2 (X2+ Y2+

m

2
) + (X 2 + Y2

)

X2 + ¥2 + mf
2a

This equation, being of the sixth dimension, and the highest terms

being both positive, the curve must be limited in every direction : when X
is very small, there are four values of Y ; also when X = 0, we have

Y- 0; hence the curve is a species of double oval, or lemniscata.

If the circles be unequal, and P be any point in the line B C, the curve

will be of the same nature, but the investigation is much longer.

The very beautiful contrivance of Watt to reduce a circular to a recti-

linear motion is well known to every one. Suppose the point B to be the

extremity of an engine-beam, moveable about its centre O. this beam is

required to moved a piston-rod always in the same vertical position ; .it is

plain that this motion cannot be obtained by fixing the piston-rod to B, or

to any point in O B. Suppose now, a beam O' C, called the radius-rod,

to move about a centre 0'
9
and join the extremities B, C, by a bar B C ;

the extremity of the piston-rod is fixed to the middle of the beam B C, and
its motion, according to the above demonstration, is in a portion of the

curve, such as the dark part of the lemniscate in the first figure, and
consequently the rod itself continues much more in the same vertical line

than if attached to B. The comparative lengths of the rods neces-

sary to render the motion as nearly vertical as possible are stated in most
works on the steam-engine, and in the Mechanics* Magazine. For a

more complete but very different method of finding the equation to the

above curve, see u Prony, Hydraulique."

321. We have no space for the discussion of any higher algebraic

curves, if it were necessary ; but in fact we have not the means : it must
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have been already seen that many of the preceding curves have not been

drawn with mathematical exactness ; for unless we took the trouble of

tracing1 them by points, we could not easily determine their curvature ; we
shall therefore pass to the consideration of the general equation of the

nth dimension, and then proceed to the intersection of algebraic curves*.

322. The general equation of the nth degree
9
with all its terms com-

plete, is

y
n + (a ce + h) y

n~ l + (ex* + dx+ e) y
n~ % + . . . . + /\v

n + gxn~ l

+ h a*'* +.....+&a? + 2 = 0;

it contains all the possible combinations of x and y, so that the sum of

the exponents in no one term exceeds n.

The number of terms is 1 + 2 + 3 + . . . . + (?i + 1), or is the

sum of an arithmetic progression, whose first term and common difference

is unity, and the number of terms is n+1; therefore the sum of this

. . (?i -f 2) (n 4- 1)
series is —- - -•-- —

.

The number of independent constants is (dividing by the co-efficient of

y
n

if necessary) one less than the number of terms in the equation, that is,

"
2

'

2

323. An algebraic curve of the nth degree may pass through as many

. , , n (7i + 3) .

given points as it has arbitrary constants, that. is, through - - points,,

for giving to x and y their values at each one of the given points
3
we have

72> (Tl -'" 3 J

-_^___L_ different equations, by which the values of the constants may

be determined. For example,

* We must refer our readers to our treatise on the Differential Calculus for information

on the curvature of lines. It must not, however, be imagined that algebraic geometry is

incapable of exhibiting the form of curves; the following method of determining the

curvature is an instance to the contrary.

Let y u ?/2 , and y\ be three consecutive ordinates, at equal distances from each other;

then drawing a corresponding figure, it will be seen that the curve is concave or convex

to the axis, according as wq is > or < —1~~-
; as an example, take the cubical para-

. bola, whose equation is a" y = %3
,
then the curve is convex, if 2 x3

is < (x — 1) 8

~]~ (x -j- I)3 is ]> 2 x3
-f 6 x, which it is, and therefore the curve is convex. The

distances at which the ordinates are drawn from each other must depend on the con~

stants in the equation.

Again, to determine the angle at which a curve cuts the axis of cc, transfer the
origin to that point; then the tangent to the curve at that point and the curve itself

make the same angle with the axis ; but the value of the tangent of the angle which

y o
the tangent to the curve makes with the axis is then -j— =— , which may be any

value whatever s for example, let a1 y ~ oo „•„— = — =r when x =2 3 therefore

the curve coincides with the axis at the origin. Again, take the example in art. 307
y% 2 ct >—

' x 1 y
?y
3-'-= x2

(2 a-- x) « at A we have-—- = ——— = — , and at B we have —^^—

—

rs -5 = -—
5 hence the curve cuts the axis of 00 in both, cases at an angle of 90°«
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The general equation to the conic sections, dividing by the co-efficient

of y\ Is

y
2 -{- bxy~j~cxq -\-dy-\~ cr-f/^2 0?

in which there are five co-efficients, and therefore a conic section may pass

through five given points ; substituting the co-ordinates of the given points

separately for x and y we obtain five equations from which the constants

can be determined, and thence we have the particular curve required ; it

will be an ellipse, hyperbola, or parabola, according as h2— 4 c is negative,

positive, or nothing. (79.)

324. The elimination is long, but the trouble may be much lessened by

assuming one of the given points for the origin, and two lines drawn from

the origin to other two given points for the axes.

For example, if it be required to pass a conic section through four

given points BCDE, join B C and DE, and let them meet in A ; let

A B be the axis of y and A D the axis of a?,

Y

Let AC=yn AB^y8 ,

AD- x, , A E = x2 ;

Assume the equation to be

2/
2
-f bxy -f- ex* -f dy -f ex +/= 0;

we have for x = , y*
-f- d

y

1 -f-/ =
and yf + dy2+ fz=. 0;

.% d = - {y x -f y&), and/= y v y2 .

Similarly for y = 0, e = — c (x t -f- x\), and/— ex, ay

equating the values of/, we have c r= ^-2

.

x x x.

Substituting and dividing by y x y2 , we have

2/
2

. b x* y 1 -f- 7y2 f

,2?. -j~ tT2

an equation involving only one unknown co-efficient b.

There are some restrictions depending on the situation of the given
points

;^
thus no more than two can be in the same straight line, or else

the conic section degenerates into two straight lines.

^

The five given points are the same as five conditions expressed analy-
tically

; four are sufficient if the curve is to be a parabola ; for b* — 4 c
== 0, is equivalent to one. If the curve has a centre, whose position is

given, three other conditions suffice, because we may assume the equation
to be #

2 + 6 j?y + cra +/= 0. If the position of two conjugate
diameters be given, only two more conditions are requisite.

Newton, in his Universal Arithmetic, gives excellent methods for de-
scribing, by continued motion, a conic section passing through five given
points.
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325. If it be required to pass a curve, whose species is not given,

through a number of given points, we may with advantage assume the

equation to be of the form

y zn a -{- bx + c x2
-f d x3 + , &c.

The elimination of the constants is more regular, and therefore easier

in this equation than in any other : such curves are called parabolic (the

three first terms giving the common parabola) and consist of a series of

sinuosities, such as in (309), which are easily traced. For the elimina-

tion of the constants, see Lagrange, or Lardner's Algebraic Geometry,

art. 617.

326. We saw in article (79) that the general equation of the second

order sometimes gave straight lines for the loci; such will be the case when-

ever any equation is reducible into rational factors of the first degree

;

so that we must not always conclude that an equation of the ?ith

order has a curve of the 7Z th order for its locus. If the equation be re-

ducible into factors of lower degrees, there will be a series of lines corre-

sponding to those factors ; thus if an equation of the 4th degree be com-

posed of one factor of two degrees, and two factors of the 1st degree,

the loci are a conic section and two straight lines ; and hence a general

equation of any order embraces under it all curves of inferior orders: if

any of the factors be impossible, their loci are either points, or imaginary.

If the sum of the indices of x and y be the same in every term, the loci

are either straight lines or points ; for an equation of this species will have

the form

y
n + ay n- x x+ by^x3

, . . . . + Za?
n ^0

s

»+•(*)"-<*)"•••+'=*
let the roots of this equation be «, /3, y, &c, then the equation will be

5-)(*-0(*-»)-=*
each factor of which being r= 0, its corresponding locus is evidently a

straight line ; if the roots of the equation be impossible, the correspond-

ing loci are points.

Ex. y
2 — 2xy sec. a + x2 = 0. The locus consists of two straight

i.i . 1 i sin. a Am a \
lines whose equations are y ^ x ^ x tan. 45u

-f- — andH *
cos. a \ — 2 )

therefore the lines pass through the origin, and are inclined to the axis of

cc

x at angles of 45° ± —

.

)£

327. Since the general equation includes all equations below it, the

properties of the curve of n dimensions will generally be true for the lower

orders, and also for certain combinations of the lower orders ; thus, a

property of a line of the third degree will be generally true for a conic

section, or for a figure consisting of a conic section and a straight line,

or for three straight lines. Moreover the lower orders of curves have

generally some analogy to the higher curves, and hence the properties of

inferior orders often lead to the discovery of those of the superior.

328. From the application of the theory of equations to curves, an
immense number of curious theorems arise, which may be seen in the
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works of Waring; and Maclaurin : we have only room for two or three of

the most important.

If two straight lines, AX, AY
cut a curve of n dimensions, in the

points I*QR,&c., STU, &c, so

that A P, A Q, A R, &c. = y» yiy

y3 , &c. respectively, and A S, A T,

A U, &c. = zl9 «r2 , x3 , &c. respec-

tively, then if A X and A ¥ move
parallel to themselves, we shall

always have yl . y2 . yQ . &c. : &\ . #a

. x3 . &c, in a constant ratio.

Let the equation to the curve be referred to the origin A
5
and to axes

AX, AY, by means of the transformation of co-ordinates, and suppose

the equation to be

y
n + (ax + 6) y"

-1 + o . . cx n-+ dx"' 1 + . - . h x + I = 0.

Lety= 9

° c^ 71 + do; B - 1 + . . . . hx + * = 0. (1)

a? = *

y
n + 6 y"- 1 + . . . . fcy + Z = 0. (2)

The roots of (1) are A S 3 AT S AU9 &c. ; A ^ . a?a . o%. &c, = —

.

, y8 . &c.The roots of (2) are A P, A Q, A li, &c. ; /. # x . ys

•*• y*yz • 2/3 5
&c.

: ^ . o?2 . tr3 , &c. :i c : 1.

Now the transformation of the axes, parallel to themselves,, never alters

the co-efficients of y
n and x n

; hence the above ratio is constant for any

parallel position of A X and A Y„

Article 293 is an example of this theorem.

329. A diameter was defined in (76) to be a straight line, bisecting a

system of parallel chords; more generally it is a line, such that if any

one of its parallel chords be drawn, meeting the curve in various points,

the sum of the ordinates on one side shall equal the sum on the other

;

thus, in the figure, if P Q + P' Q + &c. = R Q -f II' Q = &c„ and the

same be true for all lines parallel to P R, then B Q is a diameter.

To find the equation to the diameter B Q let the equation to the curve,

referred to A X and a parallel to P Q, &c.

y* + (ax+ b) y«~ Y + (ex* -h dx + e) y
n-*+, &c. = 0,

Let M Q ^ u, and P Q = y\ ;. y zz y
1 + u,

by substitution we have

y
fn

-f- (a x + b + n u) y
fn~ l+ {c x? -f d x + e + n - 1 u . a x + b

77—1
+ n.-5-M«}»"'-

s +,&c.=0
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By the definition the sum of the values of y
f must equal nothing, and thai;

sum is the co-efficient of the second term in the last equation with its

sign changed,

.\ a x + b 4* n u =2 0,

ax + b
or ms ~ —

3

n

and this is the equation to the diameter B Q.

Again*, Ly the same reasoning, the equation

c x* -\- dx + e -\- n •— \u . a x •{• b 4~ n , —r— u?sz0
2

is that to a conic section drawn so that the sum of the products of the

values of y, taken two and two together, shall equal nothing.

We might proceed on with the co-efficient of the fourth term.

These curves are sometimes called curvilinear diameters.

330. The method of finding the centre, if any, of a curve, is given in

(81) ; the operation is too long to apply it to a general equation of high

dimensions, and therefore we shall take an example among the lines of the

third order as fully illustrating the subject.

Let the equation be x y
2 4- ey =: ax3 + b x% 4- c x 4- d, under which

form are comprehended most of the curves of the third order.

Let x ^ on + m, y =z y 4- n; the transformed equation is

x if 4- 2 n x y -j- m y
%
-f (2 nm + e) y — a x 2, -— (3 a m + b) z*

+ (ji
2 — 3 a

m

2 — 2 b m — c) x 4- m ?i
2
4- en — a

m

3— bm2

— cm ~* d = 0;

in order that the curve may have a centre, the 2nd, 3rd, 6th, and last

or constant term must each =: ; .*. n — 0, m = 0, 6=0, rf sn' 0,

so that the corresponding curve has a centre, which is the origin, only

when the co-efficients b and d are wanting.

CHAPTER XIII,

ON THE INTERSECTION OF ALGEBRAIC CURVES.

331. The intersection of a straight line with a line of the 71th order is

found by eliminating y from the two equations ; hence the resulting equa-

tion in terms of x will be of the nth order, and therefore may have

n real roots ; thus there may be n intersections : there may be less,

since some of the roots of the resulting equation may be equal to one

another, or some impossible.

Generally speaking, a curve of n dimensions may be cut by a straight

line drawn in some direction in n points ; but the curve, in its most general

form, must be taken ; otherwise certain points as conjugate and multiple
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points,, must be considered as evanescent ovals- or evanescent branches of

the curve, and thus a line passing through such points is equivalent to

two or more intersections.

332. The intersections of two lines of the with and nth orders are

found also by eliminating y from both ; hence the resulting equation may
be of the mnth. order, or there may be m n intersections ; there are often

less, for not all the real roots of the equation X zr will give points of

intersection: for example, if we eliminate y from the equations

y% == 2 a as — x2 and ^s=2« (a?— b) we find a? = J 2 ah;

hence, apparently, there is always an intersection corresponding, to the

abscissa V 2 a b ; but this is not the case ; for then y
2 =r 2 a ( *]

%2ab — 6),

and therefore y is impossible, if b is > 2 a, which is evident on drawing
the two curves ; hence after the abscissa is found, we must examine the

corresponding ordinates in each curve ; if they are not real, there can be

no intersection corresponding to such abscissa.

If we have the two equations y
2
-f 2 jo = 0, y* -J- 4 x% — 10 a? - 16 = 0,

the elimination y gives the abscissas of intersection cc = 4 and x =: — 1,

the second of which alone determines a point of intersection,

333. In finding the intersections of lines, we often fall upon a final

equation of an order higher than the second, or arrive at an equation

whose roots are of a form not readily constructed ; to avoid this difficulty

a method is often used which consists in drawing a line which shall pass

through all the required points of intersection, and thus determine their

situation,

Let y =/ (V) * (1), and y zz (a?) (2), be the equations to two lines,

then at the point of intersection they have the same ordinates and abscissas;

or calling X and Y the co-ordinates of the point of intersection, we have

simultaneously ¥ =/(X) and Y = (X) ; hence /(X) = (X), from

which equation X and Y might be obtained, and their values constructed

But since Y = / (X) . . . . (3)

and Y = (X) o . . . (4)

we have by addition 2Y =/(X) + 0(X) . . . . (5)

or by multiplication Y 2 = / (X) . (X) . . . . (6)

or generally Y = F {/(X), 0(X)} . . . .(7)

F implying any function arising from the addition, subtraction, multipli-

cation, &c. of (3) and (4).

Now any one of these equations gives a true relation between the co-

ordinates X and Y of the point of intersection of (1) and (2); but by
supposing X and Y to vary, it will give a relation between a series of

points, of which the required point of intersection is certainly one ; that is,

drawing the locus of (5) or (6) or (7), it must pass through the required

point of intersection of (1) and (2).

It is manifest that if one of the equations (5), (6), or (7), be a circle

* The symbols F (#), / (cc), <p (V), serve to denote different functions of oc, that

is, indicate expressions into which the same quantity os enters, but combined in dif-

ferent ways with given quantities. But / (#), / (?/), indicate similar formulae for both
x and y ; thus, if / (V) — 2 a x — a?

2
, then f' (y) z=z 2 a y — y\ or 2 b y *— y'K
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or straight line, it will be much easier to draw this circle or straight line
than to find the intersection by means of elimination.

Also we may often find the intersection of (1) and (2), when one of
them is a given curve, by drawing the locus of the other, and this method
is the simplest when that other is a straight line.

We shall give a few examples to illustrate the subject.

334. From a given point Q without an ellipse, to draw a tangent
to it.

Let the co-ordinates of Q be

m and n, and let X and Y be the

co-ordinates of the point P, where
the required tangent meets the

curve.

Then by (111) the equation to

the tangent through P is

a2yY + b*xX — a* b q
,

and since this passes through Q we
have

a*nY + b*mXzza*l* (1)

and dl Y2 + & X2 = a2 h\ (2)

From (1) and (2) we might, by elimination, find X and Y, and their con-

structed values would be the co-ordinates CM, MP of the required

point.

Now (1) is not the equation to any straight line, but only gives the

relation between C M and MP; but if we suppose X and Y to vary, it

will give the relation between a series of points, of which P is certainly

one ; and therefore, if the line whose equation is (1) be drawn, it must
pass through P, and consequently, with the ellipse (2), will completely fix

the situation of P.

To draw the line (1),

Let X = ; Y= —

;

n
Let Y = ; /. X = a

.

5m

in C y take CBr= — , and in C x take C A m ;
join B A ; B A pro-

duced is the locus of (1), and it cuts the ellipse in two points P and P ;

hence if Q P and Q V be joined, they are the tangents required.

The same method may be employed in drawing tangents to the para-

bola and hyperbola.

To take the more general case, let a y
2 + ex2 + d y -f e x = (1)

be the equation to the curves of the second order referred to axes parallel

to conjugate diameters.

Then the equation to a tangent at a point x f y' is

d e
a yy

f + c xx f + — (y + y') + - (x -f x f

) = 0,
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or (2ay f +d) y + (2 c x + e) x -f dy' + exf = (2).

Let this tangent pass through a point m n, then (2) becomes

(2ay'+ d) n+ {2cxf +e) m + dy 1 + ea?' = (3),

or, (2 a n + d) 2/' + (2 c m + e) d + ^ ^ + e m — (^)«

Now let xf and ^'in (4) be considered variable, and construct the straight

line, which is the locus of (4) ; this with the curve itself, determines the

position of the secant line which joins the two points on the curve, whence

tangents are drawn to the point ran,

335. Again, suppose the secant line (4) to pass through a given point

mf
n' ; Then the equation (4) becomes

(2 an-\r d) n l

4- (2 cm + e) mf

-f d n -f e m = (5),

and of course the point on n 9 whence tangents were originally drawn,

must have a particular position corresponding to each secant line passing

through m' n' ; if therefore we make m and n variable in (5) we shall

have the equation to the locus of the point m n

(2 a n f + d) n -f (2 c w! + e) m + d nf+ e mf s=

where m and ?z are the variable co-ordinates.

Hence we have the following theorem : if from any point secants be

drawn to a line of the second order, and from the two points where each

of these secants intersect the curve, tangents be drawn meeting each other,

the locus of all such points of concourse is a straight line.

336. To draw a normal to a parabola from a point Q (a, &,) not on

the curve.

Let y
2 = 4 m x, be the equation to the curve, and let: X and ¥ be the

co-ordinates of the required point, then the equation to the tangent at the

point XY, is by (232)

and therefore that to the normal at X Y is

Yy- -S7S<—

^

and since it passes through {a b) we have

Y
Y:

2 m {a ~~ X),

jj^~*-~"~K
A Q '- *""•'-».-,

""""-•. \ c\e
is

or, XY - (a — 2m) Y ~~ 2 m 6 = 0, (1)

also, Y a = 4mX . . . . . (2)

The elimination of X gives Y3 - 4 m (a— 2 m) Y — 8 m" 0^0 (3), an

equation whose roots would give the three required ordinates.

To avoid this equation we shall construct the locus of (1), which is the

equation to an equilateral hyperbola. The axis of x is one asymptote

(198), and the other is parallel to the axis of y 9
and at a distance A C = a

— 2m from A ; the equation to the hyperbola referred to its centre C and

asymptotes isXY — 2m6; moreover the hyperbola cuts the axis of y in

2 11% b
the point D, where A D =—-— ; hence this hyperbola (the dotted

2 m — a

curve in the figure) may be constructed,
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We have drawn the figure, so that there shall be only one intersection

of the curves, and hence only one normal is drawn from Q. If the curves

touched, as at E, there would be two normals ; and if the hyperbola cut

the parabola in the lower branch, there would be three normals drawn
from Q. These cases correspond respectively to the equation (3), having
one real root; three real roots of which two are equal ; and, lastly, three

real and unequal roots.

337. We must particularly observe that, in the construction of loci, those

are to be selected which admit of the easiest description, and of all curves

the circle is to be preferred ; hence, in the present case, we must look
carefully to see if it is possible, by any combination of (1) and (2), to

obtain the equation to the circle ; for by 333 this will pass through the

/equired normal points.

Multiply (1) by Y, then

XY2 - (a — 2 m) V* — 2m&Y = 0,

or, X . 4 m X — (a — 2 m) 4 m X — 2 m b Y r= ;

.\ X2 - (a - 2 m ) X~ -|- Y = 0,

and Y 2 — 4 m'X = 0, from (2)

>\ by addition Y2 + X2 - (a + 2m) X - -|- Y =

which is the equation io a circle, the co-ordinates of whose centre are

+ m and—-j and whose radius is ^ j
( "7T

"*" m
)

"*"
TSf

e Although

this circle passes through the vertex of the parabola, yet that point is not

one of the required intersections, but merely arises from the multiplication

of(l)byY.
If the parabola and circle be drawn, the latter in various situations

according to the position of Q, we shall see
?

as before, that there will be

one, two or three intersections : such practice will be found very useful.

The problem of drawing a normal to an ellipse is of the same nature,

only in this case there may be four intersections.

338. The intersection of curves has been employed in the last articles

to avoid the resolution of equations resulting from elimination, but the

principle may be extended, so as to render curves generally subservient to

the solution of equations ; for as two equations combined produce one

whose roots give the intersection of their loci, so that one may in its turn

be separated into two, whose loci can be drawn, and their intersection will

determine the roots of the one.

This method, known by the name of " the construction of equations,"

was much used by mathematicians before the present methods of approxi-

mation were invented ; it is even now useful to a certain extent, and

therefore we proceed to explain it.

Let there be two equations : y + x ~ a (I), y® + #8 ^ &
2

(2)i by

elimination we find

a? — b
Q

^ — 00+ ——- esO (3),
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We already know that the roots of (3) are the abscissas to the points of

intersection of the loci (1) (2) ; but, conversely, it is manifest that the

roots of (3) can be determined by drawing the loci of (1) and (2), and

measuring" the abscissas of intersection.

Hence if it be required to exhibit geometrically the roots of (3), let

it be decomposed into the two equations (1) and (2), and let CPQB
be the locus of (1), and the circle EPQof
(2), having the same origin and axes : draw the

ordinates M I\ NQ, then A M and A N are

the roots of (3).

The method consists in parting any given

equation into two others, and then drawing the

loci of those two ; and as it is obvious that

there are a great many equations which, when
combined together, may produce the given

equation, so we may construct a great many loci, whose intersections will

give the required roots : thus, in the above case, the equation (3) may be

resolved into the two a? = ay> and ay — a % +
a"

= 0, and the

corresponding parabola and straight line being drawn, their intersections
will give the roots of (3).

In general the roots of an equation can be found by the intersection of
any two species of curves whose indices, multiplied together, are equal to
the index of the equation: thus, a straight line and a curve of the third
order will give the solution of an equation of the third order ; and any
two conic sections, except two circles, will give the roots of an equation of
the fourth order.

339. As equations of the third and fourth order are of frequent recur-
rence in mathematical researches, we proceed to the solution of the com-
plete equation of the fourth order,

y*+py3 + qy* + ry + s — 0.

Here the circle and parabola, as curves of easy description, ouo-ht to be
chosen, and assuming the equation to the parabola a slight artifice will
give us that to the circle

Let y + £# = x (I);
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•••
2/

4 + V f + -j f = ^

but 2/
4.+ p2/

3 + 92/2 + ry + 5 - o,

•\ by subtraction Iq —
•

j
y* + o?

a + ry + s =: 0,

2/ ) + oc
% + ry + s = 0;or from (1), (

g —

or ^ + ( q
- !__

j x + ^ _ V± + £
j y + s _ 0)

and from (1), if + -<r 2/ — # = 0,

Ay' +^+fr+Tf +|-- LSfjy+^g- l -^a? + * = (2).

The locus of (1) is the parabolaA E Q, the origin being* at E f BE= -
J,

and the co-ordinates rectangular. The locus of (2) is the circle QPR; the

co-ordinates E D, D C of the centre, and the radius are readily deter-

mined from (2). The roots of the equation are drawn as if two, FM
3

Q N were positive, and other two RS, TU were negative. If the circle

touch the parabola, two roots are equal ; the eases of three or four equal

roots can only be discussed by the principles of osculation, but as two roots

are sufficient to depress the equation to one of the second order, we need

not here consider those cases. If there be only two intersections, two

roots are impossible ; and if there be no intersection, all four roots are

impossible.

340. In practice the operation is shortened by first taking away the second

term of the equation; for example, to construct the roots of the equation

z* + 8x3 + 23^-f 32„? + 16 = 0. (1).

Let x = y — 2, and the reduced equation is

y
4

~tf + 4y -4 = 0. (2).

Let 3/
2 == x (3) ;

.\ by substitution x2 — # + 4 ?/ — 4^=0,

by addition y
2
-f- a?

2
~J~ 4 y — 2 x — 4 t=i 0,

or, (y 4 2)
2 + {x - I)2 = 9 (4).

Let P A Q be the parabola (3), whose parameter is unity, the co-ordi-

nates of the centre C of the circle (4) are AB z=i 1, and B C = — 2, the

radius = 3. Describing this circle, the ordinates BP and QN are

the possible roots of (2) ; measuring these values we shall find P B = 1,

and Q N ~ — 2 ; hence the possible roots of (2) are 1 and — 2, and
therefore those of (1) are — 1 and — 4.

'

341. The construction of equations of the third order is involved in that

N
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of the fourth order. Take away the second term, if necessary, multiply the

resulting- equation Y = by y, and then proceed precisely as in the last

article. The circle will always pass through the vertex of the parabola, but

this intersection gives the root y = 0, introduced by multiplication, and

has therefore nothing- to do with the roots of the given equation. This

circumstance of the circle passing through the vertex of the parabola, is

singularly convenient, as it entirely saves the trouble of calculating the

radius to decimal places, which is often necessary in the preceding cases.

Ex. 1. x3 — 6 a2 ~~ x + 6 = 0. Let x — y + 2;

;. y
3 - 13 y - 12 = 0,

or, y±- 13 y
a — 12 y — 0.

Let ?/
2 — x = - (1)

.'. a2 — 13a?- 12 y— 0,

.\ y* — 12 y + a?
2 - 12 a? = 0,

or
3 (y - 6)2 + (a; _ 6) 2 == 72 (2).

The three roots of y, as given by the figure, are 4, — 1 and — 3

;

hence the values of x are 6,-1 and — 1.

Ex. 2. 4 af + 6y -5 = 0. There isone possible root nearly =—

~

V 2

Ex. 3. 4#8 — 3y + l = 0.

^

There never can be any difficulty in constructing the loci of these equa-
tions ; having once drawn a parabola, whose parameter is unity, with
tolerable exactness, it will serve for the construction of any number of
such equations.

As another example, we take the following question.

342. To find two mean proportionals between two given lines a and b.

Let y and x be the required lines
;

then a : yiiy : a?, .% y
2 ^a x (I),

y: xv.xi b, :. X*— by (2),

\ y* = a2
a?
8 = a2 b y, or y

3 - a2 b = ;

but by addition of (1) and (2), ?/
2 — b y -f jr

2 — a x z=z 0,

or, (^- TJ
+^„J:=_- (3).

Let PAQ be the parabola (1), then the intersection of the circle

will give M P and A M, the two mean proportionals required.

The other roots of the equation y
s — cfibzzO are impossible,
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This problem was one of those so much celebrated by the ancient ma-
thematicians. Menechme, of the school of Plato, was the first who gave
a solution of it : his method being particularly ingenious, as well as being*

the first instance known of the application of geometrical loci to plain

problems, is well worth insertion.

With a parameter a, draw the parabola PAQ (fig
1

. 2), and on AY
perpendicular to AX describe the parabola PAR with parameter b.

Then the rectangle a, A M or a9 N P is equal to the square on M V

;

,
e
. <2, M P and N P are in continued proportion.

Again, the rectangle 6, AN or 6, M P is equal to the square on N P

;

.*. MP, N P, and b
9
are in continued proportion

;

hence we have at the same time the two proportions

a:MP::MP:NPandMP:NP::NP:6;
,\ a, M P, N P, and 5, are in continued proportion.

Menechme also gave a second solution depending on the intersection of

a parabola and hyperbola.

343. To find a cube which shall be doable of a given cube.

Let a be a side of the given cube, then the equation to be solved is

y
z ^z 2 a3

, or y* — 2 a3 y^O,

Let 2/
2 = ax(l), .% a2 «2 -2fl8 p0, or, -a?

2 — 2 a y ==: ;

/. by addition, y
2 ~~ 2 a y ™f x

2 — a x = (2) ;

The loci of (I) and (2) being drawn, the ordinate P M of their intersection

is the side of the required cube.

This problem, like the former, occupied the attention of the early geo-

metricians ; they soon discovered that its solution is involved in the pre-

ceding one ; for if 6 = 2 a> the resulting equations are the same.

In this manner a cube may be found which shall be m times greater

than a given cube.

344. We may thus find any number of mean proportionals between

two given quantities a and b.

For if y be the first of the mean proportionals, they will form the fol-

lowing progression

:

Let there be four mean proportionals, then the sixth term of the pro-

y
5

gression being b we have —- = 6, or y
b —

• a4
b s= 0.

Describe the parabola whose equation is g/
2 = a x, and then draw the

locus of the equation y x° — a2,

b ~ 0. The last curve consists of an

hyperbolic branch in each of the angles Y A X, Y A x, and therefore the

ordinate corresponding to the real root is readily found.

345. Newton constructed equations by means of the conchoid of Nico-

medes : he justly observes that those curves are to be preferred whose,

mechanical description is the easiest ; and he adds, that of all curves,

the conchoid next to the circle is, in this respect, the most simple. See

the instrument in (312). The following is one of the many examples

given in the Universal Arithmetic.

N2
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Let the equation be xs + Q % + ^ = 0, draw a

straight line K A, of any length 7/. In K A take

KB = — , and bisect B A in C ; with centre k
n

and radius K C describe a circle, in which inscribe

T
the straight line CX- —

: ;
join A X, and be-

tween the lines C X and A X produced, inscribe

E Y equal to C A, so that, when produced, it passes through the

point K.

A geometrical proof follows to show that, from this construction, the

equation for the length of XY is a?
3 + q x -f r = 0, so that X Y is a

root of the equation.

The conchoid is employed to insert the line EY between CX and C A.
Let K be the pole, AXE the base, and CA the modulus; then the

common description of the curve determines the point Y on the line CXY,
such that EY = CA.

346. With regard to the higher equations, there is not much advantage

in constructions, since it is extremely difficult to draw the curves with

sufficient exactness. The method, however, is so far useful as enabling

us to detect the number of impossible roots in any equation, as we can

generally trace the curves with sufficient accuracy to determine the num-
ber of intersections, though not the exact points of intersection.

Ex. y
5 - 3 y +1 = 0. •

Lety=*. . . . . (1),

/. y aa— 3 y + 1 = 0, (2)

1
or y = ———

-

the locus of (1) is a parabola PAQ, that of (2) is a curve of the third
order, and there are three intersections ; and, therefore, three possible
roots, two positive, and one negative.

347. There is some uncertainty in the employment of curves in finding
roots ; we stated in (332), that real roots may correspond to imaginary
intersections; so, on the contrary, imaginary intersections, or what is the
same, the absence of intersections, does not always prove the absence of
real roots; for example, if to prove the equation a?* + 15a? + 14 =
we^ assume y

2 = a8
(1), and therefore x if + 15 a? + 14 = (2), the

loci of (1) and (2) will not intersect, but yet two roots are possible. The
error was in choosing a curve (1), which proceeds only in the positive
direction, when from the form of the equation it is apparent that there
are negative roots. Taking the circle and common parabola for the loci,

as in (340), we shall find the roots to be - 1 and - 2. Hence, in
general, to ascertain real roots it will be advisable to try more than two
curves,



THE LOGARITHMIC CURVE.

CHAPTER XIV.

TRANSCENDENTAL CURVES,

848. It was slated in art. (23), that those equations which cannot be

put into a finite and rational algebraical form with respect to the vari-

ables, are called Transcendental ; of this nature are the equations y -n sin. a?

and y =r a*. In Chapter XII. we have obtained the equations to curves,

generally from some distinct Geometrical property of those curves ; but

there are many curves whose equations thus obtained cannot be expressed

in the ordinary language of algebra ; that is, the equation resulting from

the description or generation of the curve is dependent upon Trigonome-

trical or Logarithmical quantities ; these curves, from the nature of their

equations, are called Transcendental.

We shall here investigate the equations and the forms of the most

celebrated of these curves, and mention a few of the remarkable pro-

perties belonging to them, although they can be only fully investigated by

the higher calculus.

349. In this class will be found some curves, as the Cardioide, whose
equations may be expressed in finite algebraic terms ; but these examples

are only particular cases of a species of curves decidedly Transcendental,

and which cannot be separated from the rest without injury to the general

arrangement.

Some of the Transcendental class have been called Mechanical curves,

because they can be described by the continued motion of a point; but

this name as a distinction is erroneous, for it is very probable that all

curves may be thus described by a proper adjustment of machinery.

THE LOGARITHMIC CURVE.

350. The curve Q B P, of which the abscissa A M is the logarithm

of the corresponding ordinate M P, is called the Logarithmic curve.

a
T M X

Let A M = x, M P =r y^ then x ~- log. y, that is, if: a be the base of
the system of logarithms, y = cf.

To examine the course of the curve we find when x = 0, y == a9 = 1

;

as x increases from to go, y increases from 1 to od ; as — x increases

to oo, y decreases from 1 to 0. In AY take A B = the linear unit, then

the curve proceeding from B to the right of A B, recedes from the axis
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of x, and on the left continually approaches that axis, which is therefore

an asymptote.

This curve was invented by James Gregory ; Huyghens discovered that

if P T be a tangent meeting* A X in T, M T is constant and equal to the

modulus
\log.a

of the system of logarithms. Also that the whole area

MPQ« extending infinitely towards x is finite, and equal to twice the

triangle P M T, and that the solid described by the revolution of the

same area about X x is equal to 1-J times the cones by the revolution of

P T M about X a?.

That such areas and solids are finite is curious, but not unintelligible

to those who are accustomed to the summation of decreasing infinite

series.

If the equation be y =r a"**, the curve is the same, but placed in the

opposite direction with regard to the axis of?/.

351. The equation to the curve called the Catenary, formed by suspend-

ing a chain, or string, between two points B and C, is

y~i(e» + e-')

where A M = a?, MP=y,
and A D = 1.

This equation cannot be obtained by the ordinary algebraical analysis*

but it is evident that the curve may be traced from this equation, by add-
ing together the ordinates of two logarithmic curves corresponding to the
equations y ^=z e" undy ^=l c~~

x
.

_i

352. Trace the locus of the equation y rz a*. (Fig. 1.)

/ T

i X

353. To trace the curve whose equation is y ~ of. Let $ ==

/. y = I ; let x ==: 1 /. y ==i 1 ; and between x =s and x =: 1, we have

y less than 1 5 also x increases from 1 to co, y increases to infinity
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hence if A B = 1 (fig. 2,) and A C
corresponding to positive values of x.

Let x be negative •*. y s= ( — x)
~ m

1, we have the branch BPQ

now if we take for x

three consecutive values, as 2, 2-J-, 3, it is evident that y will be positive,

impossible, or negative ; hence the curve must consist of a series of iso-

lated points above and below the axis A x.

For further information on this subject see a very interesting memoir
by M. Vincent, in the fifteenth volume of the " Annales des Math." M.
Vincent calls such discontinuous branches by the name " Branches Fonc-
tuees ;" and he also shows, that in the common logarithmic curve there

must be a similar branch below the axis of w, corresponding to fractional

values of x with even denominators,

THE CURVE OF SINES

354. The curve A P E C 5 of which the ordinates MP,BE are the

sines of the corresponding abscissas A M, A B 9 is called the Curve of

Sines.

Let A M = x, M P ^s y, then the equation is y ^ sin« a?,

x

r
y r sin.

I

1 2 S

7T r

4 5
j

Values of ir

7r r

IT
St? r

2 it r

Values of y T — T |

Take A B =
w r AGs ttt, ADs2?rr; then from (!) the

curve cuts the axis at A; from (2), if BEs r, the curve passes through

E, and this is the highest point of its course, because between (1) and

(2) y increases, and between (2) and (3) y decreases ; the curve cuts the

axis again in C ; from C, y increases negatively until it equals — r, and

then decreases to 0, so that we have a second branch C F D equal and

similar to the first. Beyond D the values of y recur, and the curve con-

tinues the same course ad infinitum; also since sin, (— w) s= >— sin. $
there is a similar branch to the left of A.
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This curve may be supposed to arise from the development of circular

arcs into a straight line X x, ordinates being drawn corresponding to the

sines of these circular arcs.

In a similar manner the curve of cosines, of versed sines, of tan-

gents, &c, may readily be investigated.

If the ordinates of the curve of sines be increased or diminished in a

given ratio, the resulting curve (y ~ m sin. x) is the curve formed by the

simple vibration of a musical chord : hence this curve is called the Har-

monic Curve. (

\ '

!

i >
I :.

;

,, •:•'. 7'
.
.v ..' .';

,

355. The accompanying figure belongs

to the curve whose equation is y zz

x tan. a;. Such curves are useful in finding

the roots of an equation as x tan. x ^ a ;

for, supposing the curve to be described, in

A Y take A B =: a, and from B draw a

line parallel to A X ; then the ordinates

corresponding to the points of intersection

of this straight line with the curve are the

values of y, that is, of x tan. x.

A

THE QUADRATRIX.

w-X

356. Let C be the centre of a circle A Q B D ; let the ordinate M R
move uniformly from A to B C, and in the same time let the radius C Q,
turning round C, move from C A to C B ; then the intersection P of C Q
and R M traces out a curve called the Quadratrix.

Let A be the origin, A M = #, MP = y, AC=r, angle ACQ^e,
Then AM : A C :: A Q ; A B,

rO
it r 7T X

TV'

ButM P = M Ctan. 6>,

y = (r x) tan. -—— , which is the equation to the curve.

When x = 0, y ss ; ,\ the curve passes through A ; as x increases

from to r, y increases, because the tangent increases faster than the
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angle ; when x £= r — A C, y —77-9 the real value of which found by

2 ^ 2 t
the Differential Calculus is —— ; hence if C E ^ , the curve passes

7T 7T

through E ; as x increases beyond r the tangent diminishes but is nega-

tive, and so is r —
* x ; /. y is positive and diminishes until it finally

becomes 0, when x = 2 r = A D ; when x is greater than 2 r the tan-

gent is positive, therefore y is negative and increases ; when x = 3 r, the

tangent -r co ; .\ ?/ r- — cd ; this gives an asymptote through F. As x
increases beyond 3 r the tangent decreases but is negative ; hence y is

positive ; when x ~ 4 r
9 y ==: 0, when ^ = 5 r, y ss — 00, and between

# ==: 4 r and 5 r, 2/ is negative : therefore we have the branch between

the asymptotes at F and H, and proceeding onwards we should find a

series of branches like the last. The part of the curve to the left ofA is

the same as that to the right of D.
This curve was invented most probably by a Greek mathematician of

the name of Hippias, a cotemporary of Socrates ; his object was to tri-

sect an angle, or generally to divide an angle into any number of equal

parts, and this would be done if the curve could be accurately drawn ;

thus to trisect an angle ACQ, draw the quadratrix and the ordinate

M P, trisect the line A M in the points N and O, draw the ordi nates

7T X
NS, T to the quadratrix. Then from the equation s=r —— , we

> n 2 r

shall see that C S and C T trisect the angle ACQ.
This curve was afterwards employed by Dinostratus to find the area

or quadrature of the circle, and hence its name : supposing the point

E to be determined by mechanical description we have the value of ir

2 r
o-iven by the equation C E s=. , and therefore the ratio of the cir-

cumference to the diameter of the circle would be known.

There is another quadratrix, that of Tschirnhausen, which is generated

by drawing two lines through Q and M parallel respectively to A C and

B C, and finding the locus of their intersection ;
its equation will be

(j
v =r r cos. ~ r sin. v t= r sin. —-.
* \2 1 2r

THE CYCLOID.

357. If a circle E P F be made to roll in a given plane upon a straight

line BCD, the point in the circumference which was in contact with B at

the commencement of the motion, will, in a revolution of the circle, describe

a curve B P A D, which is called the cycloid.

This is the curve which a nail in the rim of a carriage-wheel describes

In the air during the motion of the carriage on a level road ;
hence the

venerating circle E P F is called the wheel. The curve derives its name

from two Greek words signifying " circle formed/
1

The line B D which the circle passes over in one revolution is called

the base of the cycloid ; if A Q C be the position of the generating circle in
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the middle of its course, A is called the vertex and A C the axis of the

curve. The description of the curve shows that the line B D is equal to

the circumference of the circle, and that B C is equal to half that circum-

ference. Hence also if EPF be the position of the generating circle,

and P the generating point, then every point in the circular arc PF
having coincided with B F, we have the line B F e= the arc P F, and

FC = the arc EPorAQ;

B II

Draw PNQM parallel to the base B D.

Let A be the origin of rectangular axes,

A C the axis of a?, and O the centre of the circle A Q C 6

Let AMs^AOsa,
MP = y, angle A O Q^O;

then by the similarity of position of the two circles, we have

PN = QM, andPQ =sNM;
;.MP = PQ + QM = NM + QM=FC + QMaarcAQ + QM

that is, y ^ a Q -f a sin. 6 zz a (0 4- sin. 0) (1)

x ss a — a cos. == a vers. (2)

The equation between y and so is found by eliminating between (1)
and (2)

a — X JO
\ n. rr — «&

cos. =£ ——~ /. sin.
/J2 a x

and y =s a 6 ~j~ a sin.

'a — a
a cos.

a
+ a/ 2 ax

But we can obtain an equation between x and y from (1) alone ; that is

from the equation, MP ^ arc AQ-f QM,
For arc A Q - a circular arc whose radius is a and versed sine cc

= a <a circular arc whose radius is unity and vers. sin. — 1

a vers.

'
lX

a

l x
f.yzza vers. - +^o-^
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If the origin is at B, B It £= a? and RP-^/, the equations are

x ss a — a sin. ) u... c-/i /:/ , ;, -#
.

187

y a — a cos.

We shall not stop to discuss these equations^ as the mechanical descrip

lion of the curve sufficiently indicates its form.

The cycloid, if not first imagined by Galileo, was first examined by
him ; and it is remarkable for having" occupied the attention of the most
eminent mathematicians of the seventeenth century.

Of the many properties of this curve the most curious are that the

whole area is three times that of the generating circle, that the arc A P is

double of the chord of A Q, and that the tangent at P is parallel to the

same chord. Also that if the figure be inverted, a body will fall from any
point P on the curve to the lowest point A in the same time ; and if a

body falls from one point to another point, not in the same vertical line, its

path of quickest descent is not the straight line joining the two points,

but the arc of a cycloid, the concavity or hollow side being placed

upwards*

358. Given the base of a cycloid to trace the curve.

B7 7 6-3 4. £ £ >' J>

Let the base B D be divided into twenty-two equal parts, and let them

be numbered from B and D towards the middle point C ; from C draw the

perpendicular line C A equal to 7 of these parts ; and on A C describe

a circle A Q C. Along the circumference mark oif the same number of

equal parts, either by measurement or by applying the line B C to the

circle C A. In the figure the point Q is .supposed to coincide with the

end of the fifth division from the top.

Then the arc C Q being equal to the length C 5 measured on the

base, if P Q be drawn parallel to the base, and equal to the remainder of

the base, that is, to B 5 or A Q, it is evident that P is a point in the

cycloid, and thus any number of points may be found.

The ratio of the circumference to the diameter of a circle is generally

taken as in this case to be as 22 to 7.

359. Instead of the point P being on the circumference of the circle,

it may be anywhere in the plane of that circle, either within or without

the circumference. In the former case the curve is called the prolate

cycloid or trochoid, (fig. 1,) in the latter case the curtate or shortened

cycloid, (fig. 2.)



188 THE CYCLOm.

/^
&

-fr
K^

^V
a)

[u j\
T (

u

M.

/

^^.^
-^"C v..

" "^V
i

\ " /
i

B ¥ c B

B D is the base on which the generating circle ARC rolls, O the centre

of the generating circle, P the describing point when that circle is at F*

Draw PNQM parallel to the base.

Let A be the origin of rectangular axes,

A M' = a?, M P = y, A O = a, K O = m a, angle A OR — 9, then

MP=MN + PN = MN + QM = FC + QM = arcAR+QM
and A M = A O + M ;

/. y = a -f ma sin.

and oc t^. a,-vers; #.

;

These are the equations to the prolate, curtate, or common cycloid,

according as ni is less -than, greater than, or equal to, unity.

If the vertex K of the curve be the origin of co-ordinates in figs. (1)
and (2,) we have KO = a„ and A O = ma : also MP^FC + QM
= arcAR + QM

/. y zz m a 9 -j- a sin. 9

: m vers.
x

a
+ *J2 a x

The curve whose equations are y e= a 6, and x = a vers. is called the

companion to the cycloid.

360. The class of cycloids may be much extended by supposing the

base on which the circle rolls to be no longer a straight line, but itself

a curve : thus let the base be a circle, and let another circle roll on the

circumference of the former ; then a point either within or without the
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circumference of the rolling circle will describe a curve called the epitro-

choid; but if the describing point is on the circumference, it is called the

epicycloid.

If the revolving* circle roll on the inner or concave side of the base> the

curve described by a point within or without the revolving circle is called

the hypotrochoid ; and when the point is on the circumference it is called

the hypocycloid.

To find the equation to the epitrochoid.

Let C be the centre of its base E D, and B the centre of the revolving

circle D F in one of its positions : CA M the straight line passing through

the centres of both circles at the commencement of the motion ; that is,

when the generating point P is nearest to C or at A.

C A I M
Let C A be the axis of #,

C M = a?, M P = y9

C D = a, D B = b,

BP = m6, angle ACB^O
Draw BN parallel to MP, and P Q '

parallel to EM. Then,

every point in D F has coincided with the base A D, we have DF = at

angle DBF=y; also angle F B Q '= angle FBD- angle QBD

since

», and

aO

T
a + b 7T

.2 ' ) ~ b

Now CM = CN + NMrrCB cos. BCN+.PB sin. PBQ
'a + b

£= (a 4 s- b) cos. 6 + mb sin.

And MP-BN-BQ = (a + i) sin. B - m b cos.

a + b
or x = (a + 6) cos. - mo cos. —-

—

, •
a + h

,

and y e= (a + o) sin. 9 — mb sin. —r— t

e -

b

(i)
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The equations to the epicycloid are found by putting b for m b in (1.)

a + b

;, x = (a + b) cos. ~~ b cos. ——•
t

and y zz. {a + b) sin. — 6 sin. -—-

—

.6

(2)

The equations to the hypotrochoid maybe obtained in the same manner

as the system (1), or more simply by putting- b for b in the equations (1.)

a — b
.*. ,xr (a— 6) cos. 0_+ m6 cos. —r— '

and y zz (a ~ b) sin. 6 - mb sin. —-
7—

-

The equations to the hypocycloid are found by putting

and m b in system (1.)

,\ x ~ (a — 6) cos. + 6 cos.——
and y t=i {a — 6) sin. — b sin.

(3)

6 for both 5

(4)

We have comprehended all the systems in (1), but each of them might

be obtained from their respective figures.

361. The elimination of the trigonometrical quantities is possible, and

gives finite algebraic equations whenever a and b are in the proportion

For then cos. 0, cos. —~— 0, sin. #
5
&cM canof two integral numbers.

be expressed by trigonometrical formulas, in terms of cos. <j> and sin. <j> 9

a -f~ b
where is a common submultiple of 6 and

—

j
—

; and then cos. (j> and

sin. may be expressed in terms of x and y. Also since the resulting

equation in xy is finite, the curve does not make an infinite series of

convolutions, but the wheel or revolving circle, after a certain number of

revolutions, is found, having the generating point exactly in the same
position as at first, and thence describing the same curve line over again,

For example, let a t=L 6 3
the equations to the epicycloid become

x = a (2 cos. 6 — cos. 2 0),
y irr a (2 sin. — sin. 2 0)

,\. x ~ a (2 cos. — 2 (cos, 0)
2
-f 1)

and y zn 2 a sin. (1 — cos. 0).

From the first of these equations we find cos. 0, and then from the

second we have sin. 0, adding the values of (cos. 0)
2 and (sin. 0)

2 together

and reducing, we have
/ 2 x\

(y°~ + x2 - 3 d) 12 = 4 &4
f 3 — •—

J

or {a?
2 + 2/

2 - a2

}
2 - 4 a2

{ (00 - a) 2 + y*} = 0.

This curve, from its heart-like shape, is called the cardioide.

Let A be the origin ; that is, for x put x + a in the last algebraical

equation, and then by transformation into polar co-ordinates, the equation

to the cardioide becomes
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r = 2 a (1 — cos. 0).

362„ If 6 s —- the equations (4) to the hypocycloid become

$ = a cos. 6

and y := ;

and the hypocycloid has degenerated into the diameter of the circle A C E»
In the same case the equations to the hypotrochoid become

a? = — (1 -f- Wl ) cos. 6

y (1 — m) sin.

which by the elimination of give the equation to an ellipse, whose axes
are a (1 4- m) and a (I — rri).

363. If a thread coinciding with a circular axis be unwound from the

circle, the extremity of the thread will trace out a curve called the involute

of the circle.

Thus suppose a thread fixed round the circle ABC D; then if it be

unwound from A, the extremity in the hand will trace out the curve

APQRS; the lines BP,DQ,C R, A S, which are particular positions

of the thread, are also tangents to the circle, and each of them is equal to

the length of the corresponding circular arc measured from A.

The curve makes an infinite number of revolutions, the successive

branches being separated by a distance equal to the circumference of the

circle.

To find the equation to the involute.

Let CAs^CPsr, and angle ACP^O; then from the triangle

B C P, we have BC^PC cos. P C B, or angle PCB = cos.
" l -

;

BP = BA =..a[ cos.- 1
a

r
+ e

or V (r
2 - a9

) = a fcos.
-A ~ +

J

=
a

-i a
cos. - — *
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The involute of the circle is usefully employed in toothed wheels
; for

there is less waste of power in passing from one tooth to another when

they are of this form than in any other case.

In the figures (2) and (3) we have examples of two equal wheels

which have each two teeth ; and by turning- one wheel the other wheel

will be kept in motion by means of the continual contact of the teeth.

The dotted line of contact is, by the property of the

involute, a common tangent to the two wheels ; this

dotted line is the constant line of contact, and the

force is the same in every part of a revolution.

Fig. (3) is another example ; and by making the

teeth smaller and more numerous we shall have
toothed wheels always in contact, and therefore giving

no jar or shake to the machinery.

Again, in raising a piston or hammer, the involute

of the circle is the best form for the teeth of the

turning-wheel, as the force acts on the piston entirely

in a vertical direction.
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ON SPIRALS.

864. There is one class of transcendental curves which are called

spirals, from their peculiar twisting form. They were invented by the

ancient geometricians, and were much used in architectural ornaments.

Of these curves, the most important as well as the most simple, is the

spiral invented by the celebrated Archimedes.

This spiral is thus generated : Let a straight line S P of indefinite

length move uniformly round a fixed point S, and from a fixed line S X,

and let a point P move uniformly also along the line S P, starting from S, at

the same time that the line S P commences its motion from S X, then the

\a -""""^
\ *o~~'

-"~ ^<;^^ X

N. ^ \
/

/
/
/ \ \

/ P \ \

J a/ /* ) i ? /

s
i i
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V \ y /

1

\ —~"^'^ / /
V

\
s
\ B, s

•...^
-._..— *****

D
point will evidently trace out a curve line SPQRA, commencing at S,

and gradually extending further from S. When the line S P has made
one revolution, P will have got to a certain point A, and S P still con-

tinuing to turn as before, we shall have the curve proceeding on regularly

through a series of turnings, and extending further from S.

To examine the form and properties of this curve, we must express this

method of generation by means of an equation between polar co-ordinates.

LetSP- r, SA = 6,ASP = 0;

then since the increase of r and 6 is uniform, we have

S P : S A : : angle ASP: four right angles : : : 2 tt

/. r = --— = a By if a =
2< 2tt

From this equation it appears that when S P has made two revolutions

or := 4-7T, we have r =: 2 6, or the curve cuts the axis S X again at a

distance 2 S A ; and similarly after 3, 4, n revolutions it meets the axis

S X at distances 3 ; 4, n times S A. Archimedes discovered that the

area S P Q R A is equal to one-third of the area of the circle described with

centre S and radius S A.
365. The spiral of Archimedes is sometimes used for the volutes of the

capitals of columns, and in that case the following description by points

is useful.

O
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Let a circle A B C D, fig. (2), be described on the diameter CSA^
and draw the diameter BD at right angles to C A ; divide the radius

1
S A into four equal parts, and in S B take SPs~ S A, in S C take

1 3
S Q £s — S A, and in S D take S R :=— S A; then from the equation

2 4

to the curve these points belong to the spiral ; by subdividing the radius

S A and the angles in each quadrant we may obtain other points as in

the figure. In order to compl&te the raised part in the volute, another

spiral commences from S B.

366. The spiral of Archimedes is one of a class of spirals comprehended
in the general equation r = aOn

. Of this class we shall consider the

cases where n -~

Let ft := — 1 ; r es aB e

Let S be the pole, SX the axis from which the angle is measured,
S P = r.

Vvnen - 0, r s co
; as increases, r decreases very rapidly at first

and more uniformly afterwards; as Q may go on increasing ad infinitum
r also may go on diminishing ad infinitum without ever actually becoming
nothing : hence we have an infinite series of convolutions round S :

Describe a circular arc PQ with centre S and radius S P, then P Q = r0
= a

; and since this value of a is the same for all positions of P,
we must have PQ — P'Q' = the straight line S C at an infinite dis-
tance, and therefore the curve must approach to an asvmptote drawn
through C parallel to S X.

^

This curve is called the reciprocal spiral from the form of its equation,
since the variables are inversely as each other, or the hyperbolic spiral,
from the similarity of the equation to that of the hyperbola referred to its

asymptotes (pc y = A?
2
).

1
367, Let n = r=z aO 2 or r 2# ^ a2

. This cur¥e 9
called

the lituus or trumpet, is described as in the figure
;
proceeding from the

asymptote S X
3

it makes an infinite series of convolutions round S,
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S68, If in the equation rO zz a, we always deduct the constant quan-
tity, 6, we have the equation (r '— b) z=i a\ this curve commences its

course like the reciprocal spiral ; but as 6 increases we have r — 6 ap-

proximating to nothing, or r approximating1 to b ; hence the spiral, after

an infinite number of convolutions, approaches to an asymptotic circle,

whose centre is S, and radius b,

369. Trace the spiral wrhose equation is
*J ar — r* z=i b \ this curve

has an infinite number of small revolutions round the pole, and gra-

dually extends outwards to meet an asymptotic circle whose radius is a.

370. The spiral whose equation is (r — a)
2

z=z b
2 commences its

course from a point in the circumference of the circle whose radius is a,

and extends outwards round S in an infinite series of convolutions. This

curve is formed by twisting the axis of the common parabola round the

circumference of a circle, the curve line of the parabola forming the

spiral.

371. The curve whose equation is r = a6
is called the logarithmic

spiral, for the logarithm of the radius vector is proportiona.1 to the angle 6L

Examining all the values of from to ± oo we find that there are an.

irr&nite series of convolutions round the pole S. This curve is also called.

the equiangular spiral, for it is found by the principles of the higher

analysis that this curve cuts the radius vector in a constant angle.

Descartes, who first imagined this curve, found also that the whole

length of the curve from any point P to the pole was proportional to the

radius vector at P.

372. It will often happen that the algebraical equation of a curve is

much more complicated than the polar equation; the conchoid art. 312
is an example. In these cases it is advisable to transform the equation,

from algebraical to polar co-ordinates, and then trace the curve from the

polar equation. A
For example, if the equation be (a? + 2/

2)'2 ^ 2~a ccy, there would be

much difficulty in ascertaining the form of the curve from this equation ;

but let os = r cos, and y = r sin. (61)

/. r
3 es 2ar2

cos. sin. 0,

or r =s a sin. 2 6,

Let A be the origin of polar co-ordinates ; A X the axis whence 6 is

measured ; with centre A. and radius a describe a circle BCD. Then
for sss we have r cs 0* as increases from to 45°, r increases from,

O 2
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to a ; hence the branch A PB. Again, as 6 increases from 45° to 90°,

sin. 20 diminishes from 1 to ; ,\ r diminishes, and we trace the branch

BQA. As 6 increases from 90° to 180°, sin. 2 increases and decreases

as before ; hence the similar oval in the second quadrant. By following

from 180° to 360°, we shall have the ovals in the third and fourth quadrant :

and since the sine of an arc advances similarly in each quadrant of the

circle, we have the four ovals similar and equal.

In this case we have paid no regard to the algebraical sign of r ; we
have considered to vary from to 360°, which method we prefer to that

of giving all values from to 180°, and then making the sign of r to vary.

If the equation had been (a? -f- y*) 2 == 2a?ccy,we should have found

two equal and similar ovals in the first and third quadrant.

The locus of the equation r === a (cos. 6 — sin. 0) is the same kind of

figure differently situated with respect to the lines AX and A C.

The equation to the lemniscata r
2 =z a2

cos. 2 art. (314), may be
similarly traced.

373. In many indeterminate problems we shall find that polar co-ordi-

nates may be very usefully employed. For example,

Let the corner of the page of a book be turned
over into the position B C P, and in such a man-
ner that the triangle B C P be constant, to find

the locus of P.

Let A P — r, angle PAC^O, and let the

area ABC ~ a2
; then since the triangles ABE,

P B E are equal, we have AE = —, and the
•6

angle A E B a right angle

and AE = AB cos,

AE^AC cos.

= AB sin.

Hence the locus is an oval A P B Q as in the lastor r = a' sin. ;

figure.

^

If a point be taken in the radius vector S P of a parabola so that its

distance from the focus is equal to the perpendicular from the focus on the

tangent, the locus of the point is the curve whose equation isr =;. a sec—

'
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PART II.

APPLICATION OF ALGEBRA TO SOLID GEOMETRY.

CHAPTER I.

INTRODUCTION.

374. In the preceding part of this Treatise lines and points have always
been considered as situated in one plane, and have been referred to two
lines called axes situated in that plane. Now we may readily imagine a
curve line, the parts of which are not situated in one plane ; also, if we
consider a surface, as that of a sphere, for example, we observe imme-
diately that all the points in such a surface cannot be in the same plane

;

hence the method of considering figures which has been hitherto adopted
cannot be applied to such cases, and therefore we must have recourse to

some more general method for investigating the properties of figures.

375. We begin by showing how the position of a point in space may
be determined.

z

©

/
—

—

It

V

A m:

/
Let three planes ZAX, Z A Y, and X A Y, be drawn perpendicular

to each other, and let the three straight lines AX, AY, AZ be the inter-

sections of these planes, and A the common point of concourse.

From any point P in space draw the lines PQ, PR, and PS respec-

tively perpendicular to the planes X A Y, ZAX, and Z A Y ; then the

position of the point P is completely determined when these three per-

pendicular lines are known.
Complete the rectangular parallelopiped A P, then P Q, P R, and P S

are respectively equal to A O, A N, and A M.
These three lines A M, A N, and A O, or more commonly their equals

AM,MQ, and Q P, are called the co-ordinates of P, and are denoted by
the letters x, y, and z respectively.

The point A is called the origin.
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The line A X is called the axis of a?, the line A Y is called the axis of

y 9 and the line A Z is called the axis of z.

The plane X A Y is called the plane of xy, the plane Z A X is called the

plane of z x, and the plane Z AY is called the plane of zy*.
From P we have drawn three perpendicular lines, PQ, PR, and PS,

on the three co-ordinate planes. The three points, Q, R, and S are called

the projections of the point P on the planes of xy
% #£, and zy respec-

tively.

The method of projections is so useful in the investigation and descrip-

tion of surfaces, that we proceed to give a few of the principal theorems

on the subject so far as may be required in this work.

PROJECTIONS,

376. If several points be situated in a straight line, their projections on
any one of the co-ordinate planes are also in a straight line.

For they are all comprised in the plane passing through the given

straight line, and drawn perpendicular to the co-ordinate plane ; and as

the intersection of any two planes is a straight line, the projections of the

points must be, all in one straight line.

This plane, which contains all the perpendiculars drawn from different

points of the straight line, is called the projecting plane ; and its intersec-

tion with the co-ordinate plane is called the projection of the straight

line,

377. To find the length of the projection of a straight line upon a

plane.

Let, A B be the line to be projected on the plane PQR; produce
A B to meet this plane in P ; draw A A ; and B B ; perpendicular to the

plane, and meeting it in Af and B'. Join A' B' ; then A' B' is the pro-

jection of AB.

* This system of co-ordinate planes may be

represented by the sides and floor of a room,

the corner being the origin of the axes, the

plane XY is then represented by the floor of

the room, and the two remaining planes by the

two adjacent sides of the room.
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Since A B and A' B^ are in the same plane, they will meet in P. Let
the angle B P B' or the angle of the inclination of A B to the plane ss

9

and in the projecting plane A B' draw A E parallel to A' B', then

A'B'sAEsABcos.BAEsABcos.0
The same proof will apply to the projection of a straight line upon

another straight line, both being in the same plane.

378. To find the length of the projection of a straight line upon another

straight line not in the same plane.

m
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Let A B be the line to be projected ; C D the line upon which it is to be
projected. From A and B draw lines A A7 and B B' perpendicular to

C D, then A' B' is the projection of A B.

Through A and B draw planes M N and P Q perpendicular to C D.
These planes contain the perpendicular lines A A' and B B'.

From A draw A E perpendicular to the plane P Q, and therefore equal

and parallel to A' B' ; join B E ; then the triangle ABE having a right

angle at E, we have A'B'sAE^AB cos. B A E
3
and angle B A E

is equal to the angle of inclination between A B and G B§ hence

A'B'^AB cos. a

Also any line equal and parallel to A B has an equal projection A' B'

on C D 3
and the projection of A B on any line parallel to C D is of the same

length as A' B'.

379. The projection of the diagonal of a parallelogram on any straight

line is equal to the sum of the projections of the two sides upon the same
straight line.

Let ABCD be a parallelogram, AZ any straight line through A
inclined to the plane of the parallelogram. From C and B draw perpen-

diculars C E and B F upon A Z, then A E is the projection of A C upon
AZ or A E - A C cos, C A Z $ and AF is the projection of A B upon
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A Z or A F = A B cos. B A Z. Also F E is the projection of B C or

A D upon A Z or F E ~ BC cos. D A Z

and AE = AF + FE;
hence the projection of AC s the sum of projections of A B and B C.

380. To find the projection of the area of any plane figure on a given

plane EDGH,
A.

' g
[ yc^l

\
ir^ ^^vm\ \

Let A B C be a triangle inclined to the given plane E D G H at an angle

; draw A E, CD, perpendicular to the intersection E D of these planes
;

then the triangle ABC and its projection GKH have equal bases A B
f

G H, but unequal altitudes C F, K M ;

.*. area A B C : G K H : : C F k M : : D F
or area GKH = ABC cos.

DM:: 1 : cos. o

and this being true for any triangle, is true for any polygon, and therefore

ultimately for any plane area.

CHAPTER II.

THE POINT AND STRAIGHT LINK

381. We have already explained how the position of a point in space

is determined by drawing perpendicular lines from it upon three fixed

planes called the co-ordinate planes. If, then, on measuring the lengths

of these three perpendicular lines or co-ordinates of P we find A M~-a
3

A N~6, and A 0==c, we have the

position of a point P completely de-

termined by the three equations x^=.a>

y^=.b and 2~c ; and as these are suf-

ficient for that object, they are called

the equations to the point P.

This point may also be defined as

in Art. (25) by the equation

[x-a) 2+ (y-6) 2+ (*-c) 2=0,
since the only values that render this

expression real are oc~a
y y= h, and

2=e.
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382. The algebraical signs of the co-ordinates x, y, and z 9 are deter-
mined as in Plane Geometry, by the directions of the co-ordinate lines:
thus A O is positive or negative according as it is drawn from A along A Z
or A z, that is, according as it is above or below the plane of x y : and so
on for the other lines : hence we have the following values of co-ordinates
for a point in each of the eight compartments into which space is divided
by the co-ordinate planes.

+ on + y + z a point P situated in the angle X A Y Z
+ <r — y + z . . . XAyZ
—x—y+z . . # xAyZ
— x + y + z . . . a? A Y Z
+x+y-z . . . XAYz
+ x — y — z 9 • . XAyz
*>- x - y — z o . . co Ay z

— oc-\-y — z . , . x AYz
383. A point also may be situated in one of the co-ordinate planes, in

which case the co-ordinate perpendicular to that plane must ==: ; thus,

if the point be in the plane of x y, its distance z from this plane must s= 0:

hence the equations to the point in the plane of x y are

x "= a, I/— b, 2^0
or (x - ay. + (y - by + 2

2 — 0.

If the point be in the plane of x z, the equations are

x = &, ?/ = 0, z =5 c

And if the point be in the plane of y z

x = 0, 3/ = 6, 2 =s c.

Also, if the point be on the axis of a?, its distance from the planes xy and
«/ z sr 0, therefore the equations to such a point are

x t==t a, y = 0, s =s ;

and so on for points situated on the other axes.

384. The points Q, R, and S, in the last figure, are the projections of the

point P on the co-ordinate planes ; on referring each of these points to the

axes in its own plane, we have

The equations to Q on x y are x ~ a, y = b

R on x z are x =s a, z ~ c

S on z/ ^ are 3/ s= 6, 2 = c

Hence we see that the projections of the point P on two of the co-ordi-

nate planes being known, the projection, on the third plane is necessarily

given: thus, if S and R are given, draw S N and RM parallel to AZ,
also N Q and M Q respectively parallel to A X and A Y, and the position

of Q is known.
385. To find the distance APof a point from the origin of co-ordi-

nates A.

Let A X, A Y, and A Z be the rectangular axes ; AM = ^,MQ-^
and PQ^3, the co-ordinates of P,
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2
I

/
..««»«.

p7
MA^^/^ X

a

The square on A P si the square cm A Q ~h the square on P Q
ss the squares on Al 3

M Q + the square on P Q

or d? £2 a?
2 + y* +"32

.

386. Let or, ft y, be the angles which A P makes with the axis of a?, y,

and 3, respectively;

then cg = AM = AP cos P A M = d cos <x

2/sMQsAN = APcos.PAN^ <ieos,/3

* =PQ = APsin. PAQ = dcos. 7

/. riP =2 tf
2 + 2/

2 + a8 = d 2 (cos. «)
9 + d* (cos. ^)

2 4- dfl (cos. y)
2

/. (cos. a) 3 + (cos. /3)
2
~j~ (cos. y)

2 = 1.

387. Again d2 = o?
a + y

2+ s
2 = x d cos. a -j- y d cos. /3 + z d cos. y

•\ d = a? cos, a + 2/ cos> /3 + ~ COSo "/ 8

388. To find the distance between two

points, let the co-ordinates of the points P
and Q be respectively x y z and x x y x z x ;

then the distance between these points is

the diagonal of a parallelepiped, the three

contiguous sides of which are the differ-

ences of the parallel co-ordinates ; hence
3

by the last article we have

cP=(*-aO'+(y-yi)8 + (*-*i)
fi

If d
l
and d2 be the distances of the points ccY y Y z x

and a?2 2/2 zz respectively

from the origin, the above expression may be put in the form

d* =2 d? + d£ - 2 {xx oc2 + y x ya + z, za).

THE STRAIGHT LINE,

389o A straight line may be considered as the intersection of two planes,

and therefore its position will be known if the situation of these planes is

known ; hence it may be determined by the projecting planes, and the

situation of these last is fixed by their intersections with the co-ordinate

planes, that is, by the projections of the line upon the co-ordinate planes

;

hence, the position of a straight line is geometrically fixed by knowing its

projections ; and it is also algebraically determined by the equations to

those projections taken conjointly. Taking the axis of z as the axis of

abscissas the equation to the projection on the plane # z is of the form
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so =2 a % + « (31) 9 and the equation to the projection on the plane ofyz
is y = /3# + 6.

As these two equations fix the position of the straight line in space,

they are, taken together, called the equations to a straight line.

390. To illustrate this subject we shall let PQ be a portion of the

straight line, 11 S its projection on ^2,TU its projection on y z, V W its

projection on xy

;

And let x :=: a z + a, be the equation to R S, and yzz$% +6, be the

equation to T U :

f* i,£ JL

then any point Q in the projecting plane P Q R S has the same values of

z and x that its projection S has, that is, the co-ordinates A M and M S

are the same as NW and W Q ; hence there is the same relation between

them in each case ; and therefore, the equation x z=i & z -\~ a expresses not

only the relation between the x and z of all the points in R S, but also of

all the points in the plane P Q R S.

Similarly the equation y t=i (3 z -f h not only relates toTU 9
but also to

all the points in the plane TUQP.
Therefore

3
the system of the two equations exists for all the points

in the straight line P Q3
the intersection of the two projecting planes, and

for this line only ; hence., the equations to the straight line P Q are

x = a z + a
"

y — fiz Jr &.

The elimination of % between these two equations gives

1 1
- (x - a) ts — (y — b)
<x p

y — h =e— (x — a}
ot

andthis is the relation between the co-ordinates AM and M W of the

projectionW of any point Q in the line P Q ; and therefore, this last equa-

tion is that to the projection VW on the plane xy.

391. in the equations #== a* + and yzs(3z + b% a is the distance
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of the origin from the intersection ofR S with AX, or a sAR; similarly

b = AL.

Let a? = /. 'z = - — == A O .\ A K == - a A O, but A K = A O
a

tan. AOKs — A O tan. Z O R .\ a is tangent of the angle which R S

makes with A Z, and similarly /3 is tangent of the angle which UT makes

with A Z.

392. The straight line will assume various positions according to the

algebraical signs of #, b, a and /3 : however, it would be of very little use

to go through all the cases arising from these changes of sign, especially

as they offer nothing of consequence, and no one case presents any diffi-

culty. We shall only consider the cases where the absolute value ofa
% 6, m

and /3 is changed.

Let a =z and Z> :== 0, then x =: a z and y = flz, and the two projections

pass through the origin, and therefore the line itself passes through the

origin ; the equation to the third projection is y ==— x,
a

Let an then x = a z and y = (3 z + 6, the projection on x z passing

through the origin, the line itself must pass through the axis AY perpen-

dicular to x z: similarly, if b =z 0, the equations x = a z + a, y = j3 z

belong to a line passing through the axis of x
9
and if the equations are

7j =z ax, y zz /3 z -±- b, the straight line passes through the axis of z : this

last case may be represented by supposing (in the last figure) W V to

pass through A, then the equation to V Wis of the form y := a #, and
the equation to OTU is y ^ p z + b ; now, if two planes be drawn, one
through T U perpendicular to y s, and the other through VW perpendicular

to xy, both planes pass through the point O, and therefore the line itself

must pass through O.

393. Let/3 = ,\ *x — a z -f a, y ^ b, the line is in a plane parallel

to x z and distant from it by the quantity b. If the last figure be adapted

to this case we should have U T perpendicular to A Y, and therefore P Q
equal and parallel to R S situated in the plane WNUQ perpendicular

to xy.
Let a = .*. xz2a

9 y^zfiz*\*b 9
the line is in a plane parallel to

to y z.

Similarly z — c, y ^z a!x + a! belong to a line in a plane parallel to xy9

394. A straight line may also be situated in one of the co-ordinate

planes as in the plane of y z ; for example, the equations to such a line are

y = /3 z + b, x = 0. If the line be in the plane of xz the equations are

x = a z + a, y =z ; and if the line be in the plane of xy the equations
become y = od

' x + cb
f
% — 0.

395. If the straight line be perpendicular to one of the co-ordinate

planes, as x y for example ; a and /3 must each equal 0, and therefore the

equations to this line are

x = a, y s= 6, 2 =s —

.

Similarly the equations to a line perpendicular to #z are
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and the equations to a line perpendicular to y z are

x — -q-» y = h
>
z — c-

396. To find the point where a straight line meets the co-ordinate

planes :

Let x zz <x z +• a and y =: /3 2 -j- & be the equations to the line ; when it

meets the plane of xy we have 2^0 ,\ x x=l a, y := b are the equations

to the required point.

b a
Similarly z t=i — -^-, a? =: -* -rr & + a are the equations to the point

p p
& /?

where the line meets the plane of x z
9
and z =: — — , ?/ == « -4-5

a a

are the equations to the point where the line pierces the plane of z y.

397. There are four constant quantities in the general equations to a

straight line, and if they are all given, the position of the line is completely

determined ; for we have only to give to one of the variables as z a value

z\ and we have

x zn a z + flsaz'+fl^a/ and y = j3 z + b = /3 z
f + & — #'

;

or, a;' and 3/' are also necessarily determined ; hence, taking A M = a?',

(see the last figure,) and drawing MW (= y
r

) parallel to A Y, and lastly,

drawing from W a perpendicular W Q = ^', the point Q thus determined

belongs to the line ; and similarly, any number of points in the line are

determined, or the position of the line is completely ascertained. Again,

the straight line may be subject to certain conditions, as passing through

a given point, or being parallel to a given line; or, in other words, condi-

tions may be given which will enable us to determine the quantities a, (3,

a and 6, supposing them first to be unknown ; in this manner arises a

series of Problems on straight lines similar to those already worked for

straight Hues situated in one plane (40, 50).

PROBLEMS ON STRAIGHT LINES.

398. To find the equations to a straight line passing through a given

point

:

Let the co-ordinates of the given point be xlt yx and zu and let the

equations to the straight line he x ~ a z -\- a, y z=. fi z -\- h>

Now since this line passes through the given point, the projections of

the line must also pass through the projections of the point ; hence the

projection x zz a z -\- a passing through xl
and z l , we have x

L
= a z x + a,

.\ a? — a?! = a (z — z{)

and similarly y — y x
= /3 (z — z{)

hence these are the equations required : a and /3 being indeterminate,

there may be an infinite number of straight lines passing through the

given point.

If the given point be in the plane of x y, we have z x
~ 0,

X — xx
£= a z\

y — yi — P % \
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If the given point be on the axis of x, we have 2^0 and yx
ss ,

oc — x 1
t=z a z 1

y = 0* I

And the equation would assume various other forms according to the

position of the given point.

399. To find the equations to a straight line passing" through two given

points, xx 2/1 Zi and x2 y2 z2 .

Since the line passes through the point xx yx z x
its equations are

x — XX T=2 a (z — 2
X)

And since the line also passes through x2 y2 .%2 the last equations

become
x2
— ol\ zz. a (z2

— Zj)

y*—yi — (3 (ga
— ^)

hence the equations to the required line are

Xo — a?.

x — xx

Zq - Z\
? (2 - *)

"2 ~™~ %\

These equations will assume many various forms dependent on the

position of the given point, for example : If the first point be in the plane

of y 2, and the second in the axis of #, we have xx ^0; y2 ==: 0, z2 :~

y - yi = -7- (» - *0-

If the second point be the origin, we have x2 y2 z2 each ss 0,

.\ X — Xx
~ (2 — 2j) = — £ — 0?!

Zl %i

hence the equations to a point passing through the origin are

*i a yi
x =: — 2, and ty ~ — %•

And these equations may be also obtained by considering that the pro-

jections pass through the origin, and therefore their equations are of the

form x £=s a z> y sr j3 z, and the first passing through xx z t we have

cf = -— , and similarly p = —

,

400, To find the equation to a straight line parallel to a given straight

line.
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Since the lines are parallel their projecting" planes on any one of the co-

ordinate planes are also parallel, and therefore the projections themselves
parallel ; hence, if the equations to the given line are

x rz a z + a> y xzl j3 z + & ?

the equations to the required line are

x ^ a z Hh a\ y = (3 z +[br
.

J If the straight line pass also through a given point x\ y l 2^ its equations

are

x —^ = a (2 — 2 X) > 2/ — 3^i =s= /5 (« — 2i) .

401. To find the intersection of two given straight lmes

Two straight lines situated in one plane must meet in general, but this

is not necessarily the case if the Tines be situated anywhere in space,

hence there must be a particular relation among the constant quantities in

the equation in order that the lines may meet ; to fiild this relation, let

the equations to the lines be

x ss a z + a\ co ~ o! z ~f- d\
y = 0z + 6j yzzPz + b']

For the point of intersection the projected values of #, y and z must be

the same in all the equations ; hence

r , 9 *
d - a

a % Jc a = a % + ar and % =—

—

ja —- a

y —5
and A g + 6 = /3

;

2 <~f-
&' and 2 — -a—7r,

/J ~/3'

••«-.«' - /3"

or, (a' - a) (^ - )3) = (6' - b) (a ? - a).

And this is the relation which must exist amongst the constants in order

that the two lines may meet.

Having thus determined the necessary relation among the constants, the

co-ordinates of intersection are given by the equations

a! — a ^ b' ~~ h
2 - v^ or " ~f^w

y = f> * + 6 = jgz-^ + 6 - ~^-z^~
a! — a a a f — a! ax^ a% +asa— -—r + a ^ ___^ o

a — a! a — «'

402. To find the angles which a straight line (7) makes with the eo-or

dinate axes ; and thence with the co-ordinate planes :

Let the equations to the given line be

x = a % -j- a

y = /3 2 -f- * 5!

the equations to the parallel line through the origin are

x^ #z,y~ /3 s;

also let r be the distance of any point (#, #, £•) in this last line from the

origin t
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/. r2 = cc
2

-f y*+ e

or, z*~
l + a2

+/3
2

But /a?, ly, and Zs being the angles which either line makes with the axes

of x, y and z respectively, we have from the second line

cos. ix =1 — = = —

—

i

r r Ji + as + p
2

COS. / £ =
r Vl + «2 + /3

2

Also (cos. /<.r)
2 + (cos. /?/)

2 + (cos. lz)
2 = 1

;

and this is the equation connecting- the three angles which any straight

line makes with the rectangular axes.

Since the system is rectangular, the angle which a line makes with any

axis is the complement of the angle which it makes with the plane per-

pendicular to that axis : hence the angles which a line makes with the co-

ordinate planes are given.

403. To find the cosine, sine, and tangent of the angle between two

given straight lines.

Let the equations to the two straight lines be

x zz a z + a\ x t=s a! z + af\

y^pz+b] y-fi'z + b']-

These two lines may meet, or they may not meet ; but in either case

their mutual inclination is the same as that of two straight lines parallel

to them and passing through the origin ; hence the problem is reduced to

find the angle between the lines represented by the equations

x ~
y ;

Let r = the distance of a point x y z in (1) from the origin,

7\ t=z . . . . . . x, y x z x
in (2) . . . .

d zz, the distance between these points,

6 zn the angle between the given lines,

then d2~ r% + rx
% — 2 rrx cos.

t= (x - x,y + (y— yi)« + (2 - z,y (388)

= x* + 7/
2 + z 2 + j"i

2 + y* + z? — 2 (xxx + yyx + z z
x)

— r2 + r*>~2(xxl +yy 1 + z z x)

:. r rx cos. r= x xx + y yx -f- z z i

Now 3?^ -f yyx + zz
x ~aZo!z x + fizftz x + zz

x
^(a<x f + fip

f + l)zz
l

And rrx = ^(j>
a + 2/

2 + z 2
) ^(a^2 + y* + Zl

2
)

= Z z' ^(a* + /3* + iy («'* + 0'a + l).

.^eos.^^±Hiii£L

= Pz)V> y = /3'zj<
2)
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~ VC^T^ + i) V(«'
2 + P* + i)

/ { (gff - g'j3) a + (« - «') 2 + Q6

V (*
2 + P* + 1) V(«

2 + 0'a
•+

. sin. ,s/{(*/y -«'/3)« + («-«')» + 06-/3')*}
And tan. = — z=i 7-

—
-^

cos. e ad 4-/3/6'+ 1.

The value of the cosine of the angle between two straight lines may
also be expressed in terms of the angles which the two straight lines

/ and lx make with the co-ordinate axes.

For os = r cos. I x, y = r cos. ly, % = r cos. 2 z9

and a?i ~ r^cos. Z
x
a?, 2^= rx cos. /

: 2/, 2
X
trz i\ cos. /1 2,

.% cos. e =—- + ^^ + —

-

zz cos. I x cos. / a? + cos. / y cos. I y -\- cos. / £ cos. /x £,

404. If the lines are parallel, we must have sin. z=l 0.

.-. (a 13' - «' /3)» -f. (« _ «') 8+ (/3 " /3')
2 = 0,

an equation which cannot be satisfied unless by supposing # = «', /3 = /3',

and afi
r
z=l «'/3, the first two of these conditions are the same as those

already shown to determine the parallelism of two lines (400), and the

third condition is only a necessary consequence of the other two, and
therefore implies nothing further.

405. If the lines are perpendicular to each other, v^e must have cos. zz 0.

.\ aa' + /3/3'-+ 1 = 0.

or, cos. / x cos. /j x -j- cos, / y cos. lY y -f- cos. / z cos. lx z = ;

Now, one line in space is considered as perpendicular to a second straight

line, whenever it is in a plane perpendicular to this second line ; hence

an infinite number of lines can be drawn perpendicular to a given line;

and this appears from the above equation, for there are four constants

involved in the equation to the perpendicular line, and only one equation

between them.

406. If the lines also meet, we have then the additional equation,

(a? _ a) /J' - j3= (&' - b) («' - a) '(401),

However, even yet an infinite number of straight lines can be drawn, meet-

ing the given line at right angles, for an infinite number of planes can be

drawn perpendicular to the given line, and in each plane an infinite number
of straight lines can be drawn* passing through the given line.

407. To find the equation to a straight line passing through a given

point #i?/iZi, and meeting a given line (1) at right angles.

Let the equations to the lines be,

hence the two equations of condition are,

ofa' + 00' + l = O (3)

(a f - a) (/3 - /3') ~~ (&' -&)(«- a') -
or since a! rrz ^ — a' 2 1? and 6' =r ?/x — jj % Y

iSh -V z x -a) (/3 - jS') - Ga - 0' ^ - b) (a - «') =: (4).
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The elimination of &! and ft from (3) and (4) give the equations

{(x^a) « + gl}]3 - (yi - b) (1 + ««)

(2/i - 6) /3 + (*f- «) « - C«
2 + /

32
) *i

a ' -. {(^i — &) /3 + gi> « - (*i - ct) (1 + ffi)^

(yi -- &) £ H- 0*1 - «) « - («
2 + /^'

2

) «i

°

These values of a! and /3' substituted in (2) give the final equation to the

straight line, passing through a given point, and meeting a given straight

line at right angles.

In particular cases other methods may be adopted, for example, to find

the equations to a straight line passing through the axis of y at right

angles to that axis

:

here x\ =r
l
and z

l
~ 0, therefore the equations to the line are

X == a z

but because the line is perpendicular to the axis of y we have /3 = Q t

hence the required equations are x = az, y ==: yu By assuming the axes

of co-ordinates to be conveniently situated, this and many other problems

may be worked in a shorter manner. This will be shown hereafter.

CHAPTER III.

THE PLANE.

408. A. Plane may be supposed to be generated by the motion of a

straight line about another straight line perpendicular to it,

Let A be the origin, AX, AY, AZ the axes, B C D a portion of a plane,

A O the perpendicular from the origin upon this plane, P any point in

this plane ; then, according to the above definition, we suppose the plane

to be formed by the revolution of a line like O P round A O, the angle

A O P being a right angle.

To find the equation to the plane.

Let x, y, z, be the co-ordinates of P, and o?i, yv z i} those of
5

and let the fixed distance AO ess d.

vX
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Then the square -on AP- the square on A. O + ^Je square on O P

;

or
9 x* + if + z* — d2 + (x - x

xy + (y - yiY + (2 - sO 8

t== d? + a?
8 4- 2/

2 + s 2 + .r;
2 4^ 4- 2 2~2 xx

l
~2yy i -~2zzl >

:. 2 (xx\ + ^2/i 4- ^ «i) ~ d3 4- da = 2 d2

or <# Xi 4- y ?/i+ z 2 X ^ d2
.

409. Let ~ =r m, — = ?z, and ~=zp. then the above equation becomes

m a? 4* n y -\~

p

z — i.

And it is under this form that we shall generally consider the equation to

the plane.

d2 d2 d2.

Let — = a,— e^ b and — ss c
5
then the equation to the plane is

5. 4. L. + JL — i
a b c

And this is perhaps the most intelligible form in which the equation to

the plane can be put, the constants a, b and c being equal to AB, AC
and A D the respective distances of the origin from the intersection of the

plane with the co-ordinate axes ; this is found by putting y and z both ss
§

x
hence — =1, orABsa, and similarly for the other lines.

410. Let the word "plane" be 'represented by the letter P
9
and let

the angles which A O or d makes with the co-ordinate axes be repre-

sented by d x ; d y ; d z ; and let the angles which the plane makes with

the same axes be denoted by Pa?; P#; Pz; then
9 since AOB is a

right angle, and ABO is the angle which the plane makes with A X,
we have

d~z a cos. d x ~ a sin. P x

d = b cos. dy = b sin. P y
d = c cos. d z z=z c sin. P z ;

therefore the last equation to the plane may be put in either of the forms

x cos. d x r̂ y cos. dy 4* z cos. d z = d

or <# sin. P a? 4* 2/ sin. P y 4- 2 sin. Pz = d.

411. LetP,yz represent the angle which the plane makes with the

co-ordinate plane y z, then since angle OAB. is equal to the angle of

inclination of the plane to y z
9
we have cos. dec = cos. P

3 2/2, hence the

equation of the plane becomes

x cos. P, y z 4 2/ cos. P
3
x z 4- z cos. P

3
x y = d.

412. Since by (386) (cos. cLi) 2 4~ (cos.dy) 2+ (cos. df s) a = 1

we have (cos. P
5 y z) 2 4- (cos. P a? zf -f (cos. P a? yY= 1 *

* If A be the area of a plane?, the projections of this area on the co-ordinate planes are

represented by A cos. P, a? y ; A cos. P, x z ; A cos. V,yz\ hence (A cos. P, xyf4 (A cos.

p, x xf + (A cos. P, y zf = A2
{ (cos. P, xyf 4 (cos. P, a? *)

2 + (cos. P, y zf} = A2 by

(412). This theorem, referring to the numerical values of the projected areas, is of use

in finding the area of a plane between the three co-ordinate planes. Thus, if the equation

to a plane be JL 4- JL 4. JL zz 1, we have by the last figure the area ABC^-j-,* areaaba *

ADC^^, and area A B D= ?£; hence the area B G D = ^Ji(J¥+^?T¥^)
2 2

_„, ctb ah c

by the above theorem. The volume of the pyramid ACDb s — -y= ~-q"" p

P 2
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413. To find the angles which a plane makes with the co-ordinate

planes in terms of the co-efficients of the equation to the plane.

Let the equation to the plane be

mx + ny + pz = 1.

Now the equation to a plane expressed in terms of the angles which it

makes with the co-ordinate planes is given by (411.)

x cos. P, y z -}- y cos. P, x z + z cos. P, x y =r eZ
s

hence equating" co-efficients, we have

cos. T?,yz _ cos. P, x z cos. P, xy

d d

m2 + ?i
8 + p

2 —
d^

and d :

1

and cos. P,^^md^
v^

Cos. P, a?? — nd( =:

Cos. P, xy ~ pd ==.

+ ^2 + p
2

n

V?ft2 + ^2

p

4-p2

Vm2 + wa + £>
2

"

414. The equation to the plane will assume various forms according

to the various positions of the plane.

Let the plane pass through the origin, then d rr ; therefore, putting

dm- Q in the equation, art. (408), we have the equation to the plane pass-

ing through the origin ; but as the equation to the plane has been

obtained on the supposition of d being finite, it becomes necessary to give

an independent proof for this particular case.

Let A O (= d) be the length of a perpendicular from the plane to a

given point O ; whose co-ordinates are xu y l} z
x ; x, y, z, as before, the

co-ordinates of any point P in the plane, then

the square onOP = the square on A O -f- the square onA'P;

or (x — x Yy + (y — y xy + (* - zj = dl
-f x* -f y* +*a

.

/. — 2 (x x1 + y y x + z z x ) + d? ==: d\

or x Xx + y y x + z %i = 0.

Pv« ;,>0

A X

So that the equation to the plane in this case is the same as the original

equation without the constant term.

415. Let the plane be parallel to any of the co-ordinate, planes, as x y
x y

for example, then a.zz go and&=r oo ; therefore the equation — .+ t~ +*
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z z—s 1 becomes a? + 0w + — = 1; .V z ^ e, x t=t -—-and y .

ss -—-;

c c

of these three equations the first signifies that every point in the plane is

equidistant from the plane x y, and the other two signify that for this

single value of z, every possible value of x and y will give points in the

plane. The two latter equations are generally omitted ; and we say that

for a plane parallel to oo y the equation is z = c ; similarly for the plane

parallel to x z it is x = a> and for a plane parallel to y z the equation is

y = h
The equations to. a co-ordinate plane, as x y for example^ are £=

3

x r= — • y =z —-; or, more simply, % c= 0.

416. The lines B C, B D, and D C
5
where the plane intersects the

co-ordinate planes, are called the traces of the plane. The equations to

these traces are found, from the equation to the plane, by giving to x, y,
or z the particular values which they have when the plane intersects the

co-ordinate planes.

Let the equation to the plane be m x -f n y + p % ~ 1 ; then for

the intersection B C we have the equations

z z=i 0, m x -f ny z=t \.

Similarly the equations to the traces B D and C D are respectively

y z=, Q, m x -\- p z ^= I

# ss 0, n y + p z ss 1.

PROBLEMS ON THE PLANE.

417. To find the equation to a plane parallel to a given plane*

Let the given plane be m x + n y -f- p z = 1,

and the required plane be m7
<r -f w'y -f- 7/ £ ^ I.

Then the planes being parallel, their traces on the co-ordinate planes must

be parallel ; now their traces on x z are

m x -f p z — I) w! x ~{- p' z =z 1
;

m irJ . m . . M , . w- ,

, . — = —-- or m z= — p ; similarly w = — p\
p

pf p j- *

p
Hence the required equation becomes

— p x -f — / 2/ -f p' s ~ 1
3

or m x 4- ?i y + ?> £ — -^r

F
In this case the resulting equation contains one indeterminate constant

.//, and therefore shows that an infinite number of planes, can be drawn
parallel to a given plane, which is also geometrically evident. Three con-

ditions are apparently given, since the three traces of one plane are paral-

lel to the three traces of the other plane ; but if the traces on two of the

.co-ordinate planes be parallel, the traces 1 on the third co-ordinate plane

•7 ii i r -r m m
i
n nT

x
m

are necessarily parallel ; for if — = —r, and- — t= — . vve have — ~
: V P P P' n
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—, or m x'• + n y == 1 parallel to m! oo + nf y
r = 1, Thus, in reality,

only two conditions are given to determine the three constants,

418. To find the equation to a plane parallel to a given plane, and
passing through a given point oc19 yl9 #x .

Let mr x + nf y -j- p
f % = 1 be the required plane

9

then since the plane passes through x x yx zl we have

mf xx + nf

yx + p
f

*i = 1

.\ m' (a? - fli) + ft' (y - 2/0 + #' - *i) — a

Also —r t= -—3 and —7 ts —
-

;

p jp i3 p

,\ ^ p
f (x - ^) + ~ p' (y - ^i) + V' (* - *i) = ;

or m (x — ^) + n (y — y x) + p (z ~~ ^) =: Q 8

419. To find the intersection of a straight line and plane.

Let m x Jr n y -\- p z ^ I he the equation to the plane,

x

y

then, since the co-ordinates of the point of intersection are common, we
have ,

m ( a z -j- a) -\- n (/S z + 6) + p g s 1,

1 —ma — w 5

n
i ?

f
^he equations to the line ;

m a -{- rc fi + p'

(

y = /3 « 4" & ~

a — nb a + n 6 a +p a
and a? = a*+ & ——^ — '_

m a -f- ?i (j -4- p

ft
—* m a /3 + m a b + p &

732 # -f- 71 /J -f- jp

Thus the required point of intersection is found.

420, To find the conditions that the straight line and plane be parallel

or coincide.

If they are parallel, the values of a?, y, and z must be infinite

.'. »i « -) n j3 + j) = 0.

If they coincide, the values of a?, y 9
and z must be indeterminate, or

each s= --*.

.\ m« + 7l ^+P='°9 and 1 ~ ?ft & - tz & ^ Q
;

and these are the two conditions for coincidence, the numerators of x and
y being both given =2 by combining the last two equations.

Hence, to find the equation to a plane coinciding with a given straight
line, we have the two conditions

m a + nh = 1,

m & + n /3 + p = ;

whence, by elimination, we have

+ ^ &
,

Of + » fi5

0/3 — & «
-•- " a

~fi
S~£ m

%
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therefore the equation to the plane is

(fi + pb)x ~ (a + p a) y + p (a Q -~ b ot) z zz a (Z •• b ot9

where p remains indeterminate.

421. To find the equation to a plane coinciding' with two given lines.

ma?-\r?iy*frpzzzl.

x = a z ~j~ a) x = «' z + ar

\
y^fiz + bj p^/3 f z+b f

i

the plane coinciding with the given lines, we have

m a -f n b = 1 (1) m« + w/3+jpc=:0 (3)

ma' + ^&'^l (2) mot' + nfi' + pzzO (4)

From (1) and (2) we have m and ?i, and these values being substituted

in (3) and (4), give two values of p, hence we have the equation of con-
dition

03' - /3) (a - a!) + (a' - «) (6 -6') = 0.

This equation is verified either if the lines are parallel (in which case

of t=i oc and /5' = /3), or if they meet ; hence in either of these cases a

plane may be drawn coinciding with the two lines ; the equation to this

plane is found, from the values of m, n^ and p, to be

(h> ~b)x~-{af ~a)y + {(af - a) (3 - (b f - b) a}z=zab' - af
b.

422. If it be required to find the equation to a plane which coincides

with one given straight line, and is parallel to another given straight line,

we have the three equations

n . ^> for coincidence with one line.mw + wp + ^-Oj '

m «' -f w |3' -f ]? — for parallelism with the other

;

and from these three equations we may determine m, ti, and p, and then

substitute these values in the general equation to the plane

423. To find the intersection oftwo given planes.

Let the equations to the two planes be

m x + 7i y + p z — 1

m! x -f nf

y -f p' £ — 1.

By the elimination of z we obtain an equation between x and y, which

belongs to the projection of the intersection or" the planes on x y,

hence (m p
! —

• mf p) x + (n p
f — n! p) y — p' — p

is the projection on x y of the required intersection.

Similarly

(m nf — m' w) x + (p ft' — p
f n) z ^ nf — n

is the equation to the projection on x za

But the equations to the projections of a line on two co-ordinate planes

are called the equations to the line itself; hence the above two equations

are the required equations to the intersection.

The third projection is given by the other two, or it may be found sepa-

rately

(n mf — nf rri) y + (p mf •— m p
f

) % ^ m! -* ?n,

424. To find the intersection of three planes,
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Let the intersection of the first and second, found as in the last article^

be expressed by the equations

x = a z ~f- a

y zp pz + b,

and let the intersection of the first and third planes be denoted by the

equations

X ~ oi Z -f ol

y cr: (5
r

z -h b
r
.

Then, finding the intersection of these two lines from their four equations,

we have the values of x, y, and z, corresponding to the point of intersec-

tion of the two lines, and therefore to the point of intersection of the three

planes.

In this manner we may find the relation among" the co-efficients of any

number of planes meeting- in one point.

425. To find the relation among the coefficients of the equations to four

planes so that they may meet in the same straight line.

Let the equations be

m x + n y + p z = 1

m x x 4- n
x y + p i z = 1

m2 x + rt 2 y + p,2 z = 1

«z 8 a? + w8 2/ + i^8 - = 1

.

Then the first and second plane intersect in a line whose equations are

y = (5 z + &

The first and third intersect in the line

x =r « l
z + #i

3/ = ft s + 6i

And the first and fourth in the line

x tz. oto z 4- ^2

Now, in order that these intersections ail coincide, we must have

a •==. « L ^ c<2 ; /3 == A = ft ; « — ci\ = «2
'; and 6 == o x = 62.

And the values of a, /3, a and 6 are given in terms of m, n, p, &c, by

article (423), hence the relation among the co-efficients is found.

The same relation exists among the co-efficients of any number o

planes meeting in one point.

426. To find the relation among the co-efficients of a straight line and-

plane, so that they may be perpendicular to one another.

Let (X y 1 2 X) be the point in which the plane and line meet, then the

equation to the plane is

m (x ~~ #0+ n (y-yj+ p (z— *i) = (1)

And the equations to the line are

xzz a z + a\ /9 n

y = Pz-bb\^}

Also let the equations to a line perpendicular to (2) and passing through

the point (a, y {
zj in (2) be
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00 — O?! = cd (z — Zi)l fO\

But since these two lines are perpendicular to one another, we have the

cosine of the angle between them = 0,

,\ a«' + ]3j3'+l=:0 (402)

Now, this equation combined with that to the last line (3), will give the

relation among the co-ordinates of #, y, and z, so that the point to which

they refer is always in a locus perpendicular to the first given line ; hence

substituting for ol and jS', we have the equation to the plane which is the

locus of all the lines perpendicular to (2), this equation is

z — z l z — Z L

or a (j?--^) + fi (y — 2/0+ 2 — *i = (4)

and as this equation (4) must coincide with (2) we have, by equating the

."co-efficients,.

azz — and p zz -—,

and these are the conditions required.

427. Hence, if the line be given* the equation to the plane perpendi-

cular to it is

cca + fiy+ zzz ~~.

Or if the plane be given, the equations to the straight line perpendicular to

it are

m
$ zz —> % + a,

V

y zz — z + L
V

From the form of these equations to the plane and perpendicular

straight line, it appears that the trace of the plane is perpendicular to the

projection of the line upon the same co-ordinate plane.

428. If the plane pass through a given point x
x y x z l9 and be perpendi-

cular to a given straight line, (x =: a z + a, y = fi z + b) its equation is

a O -.#0 +p(y-yi) + z—z l
=z 0.

429. If the straight line pass through a given point, and be perpendi-

cular to a given plane (in a; + ny + pz = 1) its equations are

m
OD - #! = — (Z - Zt) 9

430. To find the length of a perpendicular from a given point on a given

plane.

Let cc
x yY z Y be the co-ordinates of the given point,

mx-\-ny Jr ,pz~\ the equation to the given plane.

It was shown in Art. 413, that if d be the perpendicular distance of the

origin from a plane, whose equation is
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moo + ny -f- pz — 1

1

we have d :

a/ m2 + n2 + p
2
.

Now, the equation to the plane
5

parallel to the given plane, and passing

through the given point, is

m (a? — a\) + w (y - y x) + p (« — *i) = (418).

mo? + ?i ,v + p#
or _—__£_£__— £= l t

m^! 4- ^2/i+P^i

Hence the distance d x of the origin from this plane k

, m o?x
Jr n y, 4p*i

a x ——-~pzzz:— ... .-r>

Vm2 + ?t
2 +/

But the disianoe of the given point from the given plane is evidently the

distance between the two planes, that is
3
= c?x — d

^ m xY 4 n Vi + p %i — 1

V ma
-f" ?L

"2
"^ £>

2
«

431. To find the distance of a point from a straight line.

Let the equations to the given line be # =£ a a + 0, 3/ == /3 2 -i- 6, then the

equation to the plane passing through the given point <£, y l %, and perpen-

dicular to the given line, is

a (a? — *i) + £ (y — &) +•* — *! = 0.

Eliminating a?, ?/, and z by means of the above equations to the straight

line, we find

*^
l + ^+'/J8

;

M
or, if this fraction = ~ , we have

M M Q M , 7

These are the co-ordinates of the intersection of the given line, with the per-

pendicular plane passing through the given point; and the required perpen-

dicular line (P) is the distance of the given point from this intersection.

Hence P2 == fo - xf + (ft
- yf 4 (^ - z) 3

/ MV / T n MV / MY

which, after expansion and reduction, becomes

^fa-ay + lft-.by + z?-^*.

432. If the given point be the origin, we have a\ y x z l9 each equal ^

/. P3 = a8 + b* - ^-_LJ_£-
1 + a8 + /3*

483. To find the angle 6 between two given planes.

Let the equations to the planes be

m x + ny + pzzzl (I)

m v % Jr n
x y 4 pi ssl (2).
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Then, if from the origin we draw perpendiculars on each of these planes,

the angle between these perpendiculars is equal to the angle between the

planes : let the equations to the two lines be

y = /3 2 J
(3) yzzP'ziW-

In order that (3) may be perpendicular to (1), we must have

« =s —
, /3 B5 — (426), and similarly «' = ^L, & g= JUL.

P P Pi Px
Then the angle between the two lines is found from the expression

««' + /3/3'+l „„„,
cos> e = v(i-+*+Eo? fl + «» + /*)

(403)l

mmi +n n x + PPi
/. cos. 0=— — i-1-^.^ 1—

V m8
-f 7i

2
-|- p3 ^mi+n? + Aa

-

434. This value of cos. may also be expressed in another form by
means of Art. (413.)

cos. = cos. P, x cos. P', .3? -f- cos. P, 2/ cos. P', y + cos. P, s cos. P', z.

or cos. $=cos. P, yz cos. P',^-f-cos.P, ccz cos. P', <#£+ cos. P, xy cos. P', xy*

43b. If the planes be perpendicular to each other, we have cos. 0=0,
.% m m x + nn l + pp l

?=z 0.

Hence, if the equation to any plane bema + ny+pzzz I, the equa-

tion to the plane perpendicular to it is

m m, + nn.
mi x + Uiy — —-i—

•

—— 2 ss 1,

where two constants remain indeterminate,

436. If the planes be parallels we have cos. 0=1; and putting there-

fore the expression for cos. equal to unity, we shall arrive at the results,

971 _^Wli , ^ ™>i

71 ~ Tli p = |?!

the same as already obtained when two planes are parallel.

437. To find the angle between a straight line and a plane.

This angle is the angle which the line makes with its projection on the

plane ; and therefore, drawing a perpendicular from any point in the line

to the plane, is the complement of the angle which this perpendicular

makes with the given line.

Let the equations to the plane and the line be

mx + ny+pzzzl
oc ==! a.z + a,y = /3 s + b

$

then the equations to the perpendicular from any point x
1 y;l

z x in the line

to the plane are x = — (z — zj, y — — (z— &i)« (429)
P P

a— + p — -fl

P P
.% cos. (is — 0) es sin. 0£=; ~

wi a + w /3 + p

V" 1 + a8 +' j3
8 V w8 4- n*'+ p*
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CHAPTER IV

THE POINT, STRAIGHT LINE, ANT) PLANE REFERRED TO
OBLIQUE AXES.

438. If the co-ordinate axes are not rectangular but inclined to each

other at any given angles, they are then called oblique axes. The equa-

tions to the point, Art. (3S1.) remain exactly the same as before, but the

quantities a, 6, and c, are no longer the representatives of lines drawn

perpendicular to the co-ordinate planes, but of lines respectively, parallel

to the oblique axes.

439. To find the distance of a point from the origin referred to oblique

axes.

Let AX, A Y, A Z, be the oblique axes ; and let x, y, z, be the co-

ordinates of P, draw P N perpendicular on A Q produced,

then the sq. on AP=the sqs. on AQ and PQ-}- twice the rectangle AQ,QN,

Now, Q N =z P Q cos. P Q N =: z cosl-Z A Q
and A Q cos, Z A Q = A M cos. MAZ + M Q cos. Y A Z (379)

t^.x cos..XA.Z + ycos. YAZ
,\ the rectangle A Q, Q N = z (x cos. XZ-j-y cos. Y Z)

also the square on A Q = a?
2 + y

% + 2-xy cos. Y X,

.\ - d* — x2
-f %f + z2 + 2 x y cos. XY-+2j?5 cos. X Z -f 2 y z cos. Y Z.

440. To find the distance between two points when the axes are oblique

Let x y'z be the co-ordinates 'of one point,

and Xi y 1 z 1 . . the other point,

then the distance between these points is the diagonal of"a parallelopiped, of

which the sides are the differences of parallel co-ordinates (388) ; hence,

& - (a?.- x,y +(y- yd* + (* -ziy.+ 2 (x - x\) (y - yd cos. X Y
-f 2 (x — xd (z — z x) cos. X Z + 2 (7/ — y x) (2. — zd cos. Y Z.

441. To find the equation to a straight lire referred to oblique co-ordi-

nates. The straight line must be considered to be the intersection of two

planes formed by drawing straight lines through the several points of the

given straight line parallel respectively to the planes of xz, y z ; the traces

o£ these planes on the co-ordinate planes are of the same form as for rect-
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angular axes 5 that is, the equation to the traces, and therefore to the line

itself are of the form
x = a z + cl

y=zPz-Jr b

but the values of a and (j are not the tangents of any angles, but the ratio

of the sines of the angles which each trace makes with the axes in its

plane (51).

The quantities a and b remain the same as when the straight line is

referred to rectangular co-ordinates, and since the equations are of the

same form as before, those problems which do not affect the inclination of

lines will remain the same as before.

44:2. To find the angle between two straight lines referred to oblique

co-ordinates we shall follow the plan adopted in Art. 402.

Let the equations to the parallel lines through the origin be

a? = a 2) ,,v x ~ a! z\ /Ci .

And let ?*be the distance of a point xyz in (1) from the origin
3
and r

v
the

distance of a point xl y l
2

X
in (2) from the origin.

Then if d be the distance between these points, we have

cl
2 = r2 + r

z _2rr' cos.

= (x - x,y + (y - yxy + (s -zj* + 2, (x ~~ ^) (y - ^) cos. XY
+ 2(a? - a?0 (* - 2 X) cos, XZ+2(y- #0 (2 - 2,) .cos, Y Z,

= ^+^-2 (a? .»! + ##! + 22O
*-2{(«r1 y + a?y

1
)cos.XY+(,r1 2+«2

, 21)cos. XZ+ (yi% + y zjcos. YZ}
.*. r ?\ cos. = x xx + ?/ t/x -f-

2 2
X

-

+{(^i2/ + <3?^i)cos.XY +(^2 +#20 cos. XZ + (2/i2 4- 2/2^ cos. YZ}

a «H-/3 /3
X+ 1+ (a1 jS+a-jS

1

) cos. X Y + («*+ cQcgs._X Z+QS 1 + /3) cos.YZ

V{ 1+ «a +j3
sl+ 2a/Jcos.XY+ 2 a cos. XZ + ^cosTYZ} </{l + «'* +/3"&c.}

443. To find the equation to a plane referred to oblique axes.

We consider a plane as the locus of all the straight lines which can be

drawn perpendicular to a given straight line, and passing through a given

point in that given straight line.

Let the equations to the given line be

x ==: a 2 ~f- a

y ^z'/jz + b

Also the equations to the straight line passing through a point x
lr yu % l9

in the above line, are

x —> xt
zz af (2'— z

x)

y - 2/1 = P lz ~ »i)

But these two last lines being perpendicular to each other, we have the

angle between them = 90°, ov cos. = ; hence by the last article :

a a'+p /3
/+l+ (^iS+«:

1

80cos.XY+(«^|-«)cos.XZ+03H-/J) cos.YZ=0
and eliminating a1 and $'
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_ ^ i3 —__ + 1 -f —-— h + ——~ ot cos. A Y

jr (
LLZJ5 + ^\ cos . x Z + (V^J± + jS

") cos, YZ-0
V * — ^ J \ z - %

x J

or, (« -f /3 cos. X Y + cos. XZ) (.3? — x
x) -f (/3 -f- a cos. X Y 4- cos.

YZ)(y-y
l) + (1+ acos.XZ + /3 cos. Y Z) (« - 2^) =0

and this equation, which is the locus of all the straight lines meeting* the

given straight line at a given point and at right angles, is called the equa-

tion to the plane.

444. To find the conditions that a straight line be perpendicular to a

given plane
;

The method is the same as that in article 426.

The equation to a plane passing through a point x l y L z
l
in the given

line is

m O - a?0 + n {y - y,) + p (z ~~ %
x) = 0,

But the equations to the given line being

the equation to the plane perpendicular to it is given at the end of the

last article ; hence, equating co-efficients we have

m ^ a + P cos. XY + cos. XZ,
7i = + a cos. X Y + cos. Y Z,

p = 1 + a cos. XZ + /3 cos. Y Z.

From these equations we have the values of rn, n, p ; or the values of

a and /3 in terms of m, n
% p.

445. To find the angle between a plane and straight line.

Let the given equations be

m x-\- ny + pz ^ 1 (1)

y=zfiz + bi W
And let the equations to a straight line perpendicular to the given plane

be
cc = a' a + ^l/ox

where «' and j5
f have the values of a and ,6 in the last article.

Also the angle between the lines (2) and (3) is given in article

(442.)., and the angle between the plane and the line (t) being the com-
plement of the angle between the two lines (2) and (3) may be obtained.

446. To find the angle between two planes.

The equations to the lines perpendicular to the given planes, and pass-

ing through the origin are given by Article (444.) ; and the angle between
these lines, which is the angle between the given planes, is given by

Article (442.)
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CHAPTER V*

THE TRANSFORMATION OF CO-ORDINATES,

447. To transform an equation referred to an origin A to an equation

referred to another origin A', the axes in the latter case being parallel to

those in the former

The co-ordinates of the new origin being a, 6 5
and c, it is evident that

if a point be referred to this new origin and to the new axes, that each

original ordinate is equivalent to the new ordinate together with the cor-

responding ordinate to the new origin ; hence if #, y, z be the original co-

ordinate of a point P, and X, Y, Z the new co-ordinates, we have

oo = a
-fc- X,

y = h + Y,

*=c + Z;

Substituting these values for a?, y and z in the equation to the surface,

we have the transformed equation between X
3
Y

3
and Z. referred to the

origin Ar
.

448. To transform the equation referred to rectangular axes to an

equation referred to oblique axes having the same origin.

'.Let A <#, A y, A z be the original axes,

A X, A Y, A Z the new axes,

AM=^) AM'=X
M Q = y \ M' Q' = Y
QP= * J Q'P = Z

Through the points M', Q^
3
P draw planes parallel to y z, or,^ which is

the same thing, perpendicular to A x and meeting hoc in S
5
T and M

(these planes 'are represented by the dotted lines in the figure). Then

A S, S T and T M are the respective projections of A M', M' Q f and Q! P
on A #, also
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am = as + st + tm;
^AM'cos.XA^ 4- M' Q' cos. Y A a 4- Q'Pcos. Z A* (378)

. .\ x zz Xcos. X x 4* Y cos. Y a? -f Z cos. Z a?

y = X cos. Xy + Y cos. Yy 4- Z cos. Z ?/

*
' = X cos. X x + Y cos. Yz+ Z cos. Z *

x ~ m'X + »ii Y 4- m2 Z
Or, y =i n X + ?i

l
Y + n 2 Z

where w is put for cos. X <r, &c.

We have also, by art. 397, the following equation between the angles

which one straight'line, as A X, makes with the axes of a?, y 9 z>

(cos. X x) 2 4- (cos. X y)
2 + (cos. Xz)" ^ 1,

Hence the following system,

m* + n* + p* - 1
1

mf + ?h* + pf zz 1 \ 2.

^22 + ^a
a + K ~ 1 J

449. If the new system be rectangular, we have also the equations in

art. (405), which signify that the new axes are perpendicular to each

other ; hence the system

mwii +«??! 4"2>Pi':== 1

m m2 4- n n2 4- p p2 = > 3.

7^ 7??2 4" ^1 ??2 + Pi P2 — j

Hence we observe that of the nine cosines involved in the system (I)

three are determined by the system (2), and other three by the system (3) ;

and therefore that there are only three arbitrary angles remaining.

450. In the place of these three systems the following three may also

be used:

X = m x 4- ny 4- p z\

Y = m x x 4- n
x y -\- p x

z

Z ^ m2 x '4- ?i2 y~Vp%z\

?n® f m x

2 4- ?ft2
2— 1) m n 4- m P 4- n P — ^

n2
4- ^ 4- 7? 2

2 — 1 > 5. W'i ?ii •\-m x p l 4- 71^^ —
p* 4- JK 4- jpa

a = 1 j
wz 2 ?za 4- ^2^2 4- n 2pa

~

For, multiplying the values of ,r, ^ and z in (1) by m, w and _p respec-

tively ; then adding the results together, and reducing by means of (ji)

and (3), we have X = ??2#-4- ny 4- pz; and repeating this operation

with the other multipliers m
x
n

l p l
and rn2 ?hp2 9 we have the system (4).

Also, since the distance of P from the origin is the same for both systems,

we have a* + if + z
2 = X 2

4- Y 2 + Z 2
;

putting here, for X, Y and Z,
their values in (4), and then equating co-efficients on both sides, we have

the two systems (5) and (6).

Whenever we see the systems (2) and (3), we may replace them
by (5) and (6) ; this may be proved independently of any transforma-

tion of co-ordinates, by assuming the quantities mnp, &c. to be connected

as in (1).

451. The transformation from oblique axes to others oblique, is

effected by drawing a perpendicular from M in the last figure upon the
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plane of y z and by projecting x, X, Y, arid Z on this perpendicular, we
shall have

x sin. jr, y z nr: X sin. X, y z + Y sin, Y, y £ + Z sin. Z, y £ ;

and similarly for the other two, x and y,

y sin. y, a? 2 — X sin. X, a? z + Y sin. Y, a? 2 + Z sin. Z, <r ^,

2 sin. z,xyz=:X sin. X, jcy -f Y sin. Y, x y + Z sin. Z,xy.

452. Another useful method of transformation from rectangular axes to

others also rectangular, is the following

:

Let the equations to the axes of X,Yand Z be respectively

x z= a % \ x = #! z \ x = a z }

and let

1 _ _ _ 1 __
^ , _ I

VI + a2 +"/?" VT+~af "W-V Vl + «2
2 + ft

2

then by art, (402.) we have

cos. X a? == m a, eos. Xy tn m ft cos. X .? ^ m ; &c.

Hence by substitution, the first formulas for transformation in art.

(4-48.) become

x =: m «X + ???! «! Y 4* wa a2 Z

y =sm(Z'X + ??h ft Y -f wi 2& 2

* = wiX+ wz LY + wa Z.

And the nine angles in (1) are replaced by the six unknown terms

a. ce
ly
a2 » A A, ft.

Instead of these systems, we may obtain a system involving only five

arbitrary constants by supposing the solid trihedral angle formed by the

original co-ordinate planes to turn about the origin into a new po-

sition : such a system has been ably discussed by M. Gergonne in the
iu Annates de Maths.," tome vii. p. 56.

453. It appears throughout these articles that only three arbitrary

quantities are absolutely necessary ; and therefore it might be supposed

that formulas for transformation would be obtained involving only three

angles : such formulas have been discovered by Euler, and as they are

generally useful in various branches of analysis, we proceed to their in-

vestigation.

Let A C be the intersection of the original plane of xy with the new
plane of XY, and suppose the plane CXY A to lie above the plane

C xy A, which last we may assume to be the plane of the paper.

Let a sphere be described with centre A and radius unity, cutting all

the axes in the points indicated by their respective letters.

Q
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Let Ca1 ^ 0, CXsiJ/, and let the angle X C x between the planes on y
and X Y be called 9.

Then the object is to substitute in formula (1) art. (448.) the values of

the cosines in terms of the new variables 0, ^, and 0.

This is effected by means of the elementary theorem in spherical trigo-

nometry for finding one side of a triangle in terms of the other two and

the included angle. In the triangles C X os and C Y <r, we have

cos. X oo t=^ cos. 6 sin \jj sin. + cos. \p cos.

cos.Y x = cos. 6 sin. (90° + \j/) sin. + cos. (90° + \L) cos.

sss cos. cos. $ sin. — sin. ip cos. .

Similarly cos. X y and cos. Y y may be found.

Also, supposing Z a? and Z C to be joined by arcs of the sphere, we
have from the triangle Z C a?

cos. Z^r™ cos. ZCa; sin. Z C sin. Cr 4* cos. Z C cos. C jc

= cos. (90° + 0) sin. 90° sin. + cos. 90° cos

:= — sin. #sin, 0.

Similarly cos. Z y, cos. X *, and cos. Y % may be determined.

And cos. Z z zz cos. 6 ; hence the system (1) becomes

x = X (cos. sin. i£ sin. + cos. ^ cos. 0)

4- Y (cos. cos. il/ sin. — sin. i[f cos. 0)

— Z sin.0 sin.

y = X (cos. sin. tp cos. — cos. ^ sin. 0)

-f- Y (cos, cos. *// cos. -f" sin. ^ sin. 0)

— Z sin. cos.

£ es X sin. sin. if»f Y sin. 9 cos. tp + Z cos. 0.

These are the formulas investigated, but in a different manner, by
Laplace, " Mec. C6L" i. p. 58. They will be found in most works on
this subject, but often with some slight alteration in the algebraic signs of

the terms,, arising from the various positions of A Ca
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THE INTERSECTION OF A SURFACE BY A PLANE.

454. The last system may be advantageously employed in finding- the

nature of the intersection of curve surfaces made by planes. If we propose

to cut a surface, as a cone for example, by a plane, we should eliminate z

from the equations to the surface and plane ; but this gives us the equa-

tion to the projection of their intersection on ocy<> not the equation to the

intersection itself; and as the projection will not always suffice to deter-

mine the nature of a curve, it is requisite to find the equation to that curve

traced on the cutting plane.

This may be done by a transformation of co-ordinates.

Let the cutting plane be that of X Y, and the trace A C the axis of X,

the surface will then be referred to new axes X, Y, Z, of which X and Y
are in the cutting plane. By putting Z ^ in the equation thus trans-

formed, we shall have the intersection of the surface with the plane XY,
which is the intersection required.

Now, as the present object is only to obtain the curve of intersection
3

we may at first put Z = 0, and then transform the equation.

Let therefore Z =: 0, and the angle C AX or $ = 0, then the last

formulas become

x =s X cos. + Y sin. cos. 9

y =2 —• X sin. 4- Y cos. cos.

z— Y sin. 6>.

These formulas may be separately investigated, with great ease, without

deduction from the general case.—See u Francceur," vol. ii, art. 369, or
ec Puissant, Geometrie," art. 1 34.

455. In applying these formulas to a particular case, a little considera-

tion will greatly alleviate the labour of transformation: thus, in many-

cases, we may suppose the cutting plane to be perpendicular to co z 9

without at all diminishing the generality of the result, but only add-

ing much to its simplicity ; for in this case the trace A C either

coincides with Ay or y A produced, and therefore ~ 90°; hence the

ast formulas become

x ~ + Y cos.

z^ Y sin. 0.

These formulas may be readily investigated by drawing a figure like the

last, but letting A C, AX and y A produced coincide, = 90° and C¥s
90°, and then taking the original formulas (1) in art. 448,

456. If in the above cases the origin is also changed, we must iritro

duce the quantities a, 6, c into the left side of the above equations.

Q2
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CHAPTER VI.

THE SPHERE AND SURFACES OF REVOLUTION.

457. A curve surface as a sphere being given for discussion, we proceed

as in plane geometry to find its equation from some known property of

the surface ; and generally we arrive at a relation between three un-

known quantities at, y, and z, which relation is expressed by the symbol

f(x, y-> z) — , or z =f(ci\ y). This equation is called the equation

to the surface, and it corresponds to all points of the surface, and to it

alone.

458. Conversely, an equation of the form /(a?, y,z) = , where a?, y,

and z represent the co-ordinates of a point, refers to some surface. That

it cannot belong to all the points in a solid may be thus shown.

Let there be two equations f(or,y, z) = , and /' (#, y, z) = ;

giving to cT, y, and z the same values in both these equations, and then

eliminating z, we have the equation to the intersection of the above loci

projected on the plane of ocy: this equation is of the form (x y) = 0,

and therefore it belongs to a line. Similarly the projections of the inter-

section on the other co-ordinate planes are lines ; but if the projections of

a locus on three different planes are lines, the locus itself must be a line,

that is, it cannot be a surface. Hence the intersection of the two loci of

f (a?, y, z) == , and / ;
(«r, y, z) — being a line, each of these equations

must belong to a surface.

459. Surfaces as well as lines are divided into orders, and for the same

object, to avoid the confusion of ideas and to allow us to unite the im-

portant properties of generality and simplicity in our investigations as far

as possible. Hence a plane which is the locus of a simple equation

between three unknown quantities is called a surface of the first order
;

the locus of an equation of two dimensions between three unknown quan-

tities is called a surface of the second order, and so on. The length,

rather than the difficulty of the mathematical operations, renders this part

of the subject tedious. Hence we shall omit many of the investigations

which merely require manual labour, and rather dwell upon what we con-

sider the important steps.

A much more serious difficulty arises from the state of the figures : we
cannot give complete graphical illustrations of this part of geometry, and

a mind unaccustomed to the conception of solid figures cannot always

comprehend the meaning of the corresponding analytical results. We
have endeavoured to obviate this difficulty as much as possible by descrip-

tions of what the figures intend to represent, and to these descriptions we
beg the particular attention of our readers, for we are convinced that this

part of geometry is by no means difficult, if attention be paid to the

form of the body; but without this care it is quite unintelligible.

We commence with the discussion of the Sphere.
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THE SPHERE.

460. To find the equation to the surface of a sphere.

Let the surface be referred to rectangular axes, and let X, y, z be the

co-ordinates of any point on the surface, and a. b, c the corresponding

co-ordinates of the centre. Then since the surface is such that the dis-

tance of any point in it from the centre of the sphere is constant or equal

to a line r, called the radius, we have by art. (388.)

(#_«)*+ (y -Z,) s + (~~-c) 2 -r\
461. This equation will assume various forms corresponding to the

position of the centre.

Let the centre be in the plane ofwy .". c = 0,

.\ (:c — ay + (y - b)
2 + z

2 — r\
Let the centre be on the axis of z .\ a = , and b =r ,

/. x 2 + y
5 -'

r (z — c)
2 = r\

462. Let the centre be the origin ,\ a = b = c = 0, and the equa-

tion is

®* + 2/
2 + £ 2 — ?'

2
-

And this is the equation to the surface of the sphere most generally used.

463. The general equation upon expansion becomes

#a + y
* + 2 s _ 2 ax - 2by-2bz + a 2 + 6

2 + c
2 - r 2 == 0.

And hence the sphere corresponding to any equation of this form may be

described as for the circle, art. 67.

464. The sections of a surface made by the co-ordinate planes are

called the principal sections of the surface, and the boundaries of the

principal sections are called the traces of the surface on the co-ordinate

planes.

The equation to a trace is determined by putting the ordinate perpen-

dicular to the plane of the trace rr: in the general equation. Thus,

to find the curve in which the sphere cuts the plane of xy, put 2 = 0, and

then we have the equation to .the points where the plane and sphere meet,

which in this case is

cc _ a) 2 + {y - b) a + c
2 =: r 2

.

Hence the section on x y is a circle as long as x and y have real valueij

And, similarly, the other traces are circles.

The theorem that the intersection of any plane with a sphere is a circle*

is best proved geometrically, as in Geometry, b. v. 19.

465. To find the equation to the tangent plane to a sphere.

Let x
1 y x z x

be the co-ordinates of the point on the surface through

which the tangent plane passes, and let the equation to the spherical sur-

face be

(x - a) a -f (y — b) 2 + ( z - c) 2 = r 2
;

then the equation to the plane passing through the point x l y l zL is

m (x - x
x) + n(y — yd + p (z - z x) =r 0..

Also, the equations to the radius passing through the points (a b a

Oi Ifi 3i) are
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* - ^1 = ~

—

t (* - *0 > y - 2/1 = ~—- O - -i)«

And since every line In the tangent plane, and therefore the plane itself,

is perpendicular to the radius at the point of tangence, we have from the

equations to the plane and line

p zx
— c p Si —

Hence the equation to the tangent plane becomes

or, (a?
t
- a) (a? - a?0 + (yl

— 6) (y ~ 1/1) + (-1 - c) ( 3 — *0 t==0

This equation maybe modified by means of the condition

(*!-«)» + (yx- &)
2 + fa-cy^r*,

or, (^ - a) fa — a) + (^ '- 5) (^ - 6) + («i - c) <X - c) i= r 9
.

Adding this equation, term by term, to the above one for the tangent

plane, we have

fa - a) (a? - o) + (yi - 6) (y — 6) + (*i - c) (s - c) = r3

.

466. If the origin is in the centre of the sphere., the equation to the

tangent plane is

% ® f + y y
1 + g ^ ^ r a

»

which equation is at once obtained from that to the sphere a? + ?/

2 + 22 = ?"a
j

or, a? # -f yy + 2 2 = r2 , by putting a? a?', 2/ 2/'* atld 2; 2' for a? #, ?/ y, and
££ respectively.

The line in which the tangent plane cuts any co-ordinate plane is

found by putting the ordinate perpendicular to that plane = ; and the

point in which the tangent plane cuts any axis is found by putting the

two variables measured along the other axes each 0.

467. The equation to the spherical surface referred to oblique co-

ordinates by (440.) is

O - a) 2 + (y — 6) 2 + (2 - c) 2 4-2 {x - a) {y— b) cos, XY +
2 (a? — 0) (55 - c) cos.X Z + 2 (y - 6) (z - c) cos'. YZ = r

a
.

ON COMMON SURFACES OF REVOLUTION.

468. A right cone is formed by the revolution of the hypothenuse of a
right-angled triangle about one of its sides.

Let A C be the side which revolves about A B as an axis, so that any
section Q P perpendicular to the axis is a circle.

Let A X, A Y, A Z be the rectangular axes to which the cone is re-

ferred, having the origin at the vertex of the cone, and the axis of Z
coincident with the axis of the cone.

Let A N = z \

N M ^ x >be the co-ordinates of any point on the surface,

MP=yJ
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Then the squares on N M and M P ££ the square on N P

Z

andNP = NQ = AN tan. CAB,

therefore the equation to the surface is

a* + f = e
2
z
%

,

where e ss tangent of the semiangle of the cone.

469. Let the line A C be a curve, as a parabola, for example, in which
case the surface is called the common paraboloid.

Let the equation to the generating- parabola A Q C be N Q = *Jp z •

Then the squares on NM,MP — the square on N P = the square on NQ,
.'. x2 + y

2 = p z.

470. Let A C be an ellipse, centre and origin at B.

Let BN = 2,NM=:^ and M P =: ?/, CB = b and BAsc,
Then the squares on N M and IP= the square on NQ; and N Q

being an ordinate to the ellipse A QC, whose semiaxes are a and 6
3
we

have

NQ-
I- Af^^l\

and therefore the equation to the surface is

a?
3 + if (tf ~~ *«)

,

or, a* Jr if + — z* zz &

.

Let a and b change places in the equation, we have then for the surface

of revolution round the axis minor the equation

s <r

,

a" + y
8 + gj

z
2

The former surface is called the prolate spheroid, the latter the oblate

spheroid.
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471. The equation to the hyperboloid round the transverse axis is

b2

a? + f ^22 - — b
2

.

° a2

And putting a for & and h for a, we have the surface by revolution round

the conjugate axis.

472. In general the equation to all these surfaces may be compre-

hended under the form x2
-j~ if =/(s) if AS be the axis of revolution

;

or, z
2

-f- if z=z f (x) if A X be the axis of revolution.

To find the curve of intersection of a plane and a surface of revolution.

473. Let the section be made by a plane perpendicular to xz
9
and as

the nature of the curve is the same in whatever part of the cutting plane

we place the origin, we shall let the origin be in the plane % z>

Then the formulas for transformation are

os = a -j- y cos. 6

y^—x
z = c -J- y sin. 0.

Hence by substitution in the equation to a surface, we shall have the

required curve of intersection.

474. Let the surface be a paraboloid

;. {a J
r y cos. 6) 2 -{-x2 =p (c~{- y sin. 0)

or, y
2
(cos. 6)

2
~j- x2

-f (2 « cos. —• p sin. 0) y — , since a8 = p c
;

hence the curve of intersection is a line of the second order.

It is an ellipse generally (76) ; a circle if := ; and a parabola similar

to the generating one, if z=l 90°.

475. Let the surface be the spheroid formed by the revolution of an

ellipse round its axis major

by substitution this equation becomes
b
2

b2

y
2

{ (cos. 0)
2
4- -a (

sin
-
6)

2

} + ^ + 2 V i c " sin
* ° ~~ r/ i

cos * e } ^ °-

This is the equation to an ellipse generally, and to a circle when = 0,

476. Let the surface be the hyperboloid, whose equation is

J a2

the sections will be found to depend on the value of tan. : if tan. is

less than — , the curve is an ellipse ; if it is equal to — , the curve is a
a a

parabola; and if tan. is greater than — , it is an hyperbola ; and lastly,

ix circle if =
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CHAPTER VII.

SURFACES OF THE SECOND ORDER.

477. The general equation to surfaces of the second order is

a ^ 4- b y
2 4 c z

% 4 2d xy 4 2 e x z 4 2fy z 4 2 g x -f 2 A 3/ 4 2 £ 2

the number 2 being prefixed to some of the terms merely for convenience.

In order to discuss this equation, that is, to examine the nature and posi-

tion of the surfaces which it represents;, we shall render it more simple by
means of the transformation of co-ordinates.

h%t the origin be transferred by putting

x rs x' 4* wz. y— y
1 4- n, z ^ %

r 4 j?,

substituting these values in the general equation, and then putting the

terms containing the first powers of the variables each ss 0, we have the

equation

ax' 2 + hy'* + cz'* + 2dz'y f + 2ex' z' -{-2fy' z' + A/= 0.

This equation remains the same if we change x\ y\ z\ into ~~x 1,—y',— z
f

respectively ; thence we conclude that any straight line drawn through the

origin, and intercepted by the surface, will be divided into two equal parts

at the origin ; this new origin therefore will be the centre of the surface,

attributing to this expression the same signification as we did in treating

of curves of the second order (81.)

478. The values of m, w, and p, are to be determined from the three

equations

a m 4- dn ~f e p 4 g = 0, co-efficient of a?',

b n 4 dm -\-f-p 4- h — 0, . . . y\

c p -f g m 4 f n 4" * " ^? • • • <?'•

Eliminate j5 from the first and second of these equations, and also from

the first and third, then from the two resulting equations eliminate n, and

we shall arrive at an equation of the first order involving m, whence we
have the value of wi, and therefore of n and p.

The denominator of the values of m, n and p is

abc + 2def— ap -~be*-~cd2

hence, if this quantity = 0, the values of m and p are infinite, or the sur-

face has no centre when there is this relation among the co-efficients of the

original equation. This circumstance corresponds to the case of the para-

bola in lines of the second order (81.)

479. To destroy the co-efficients of the terms involving xf

y\ xr

/, and

?/V, we must have recourse to another transformation of co-ordinates,
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Taking the formulas in (452) we have

x f = ma xn + #h a
i
y" + m2 ^2 *"

y' ~ mfi x" + ???•! ft y -1- ma ft «
/;

&
f

~t=L mx' ? + m x y
tf + ?wa s"

Substituting in the general equation, and then putting the co-efficients of

x" y"
9
x" z

f

\ and y
ff g", each =r 0, we have the three equations

(acc + dfi + e) <*x + (d« + 6/8+/) A + e« + //3 + c — ° ^V
(aa + d0 + e)as + (da+ 6/3+/)ft + e ^ +- //3 +• c=r0, a?"*"

(a

*

g+ dp2 + e)oc
l + (d a2 + 6 ft +/) ft + e

a

8 + /ft + c =2 0. . .3/"/'

Our object is now to ascertain if this transformation can always be

effected, that is, to determine the possibility of the values of the six un-

known quantities in the last three equations.

480. The equations to the new axis of y
rf are x t=t a

x
z,y =2 ft z (452.);

hence, by substitution, the first of the above three equations becomes

(acc + dfi + e)x+ (doc + bfi+f)y+ (eoc+ffi + c) z~ 0,

which is the equation to a plane passing through the origin.

Now the co-ordinates of every point in this plane satisfy the condition

that the co-efficient of x'
f yn == 0, that is, give the necessary relation

between a
x
and ft ; hence, if the new axis of y

!f be drawn in this plane the

condition is still satisfied. Thus, the direction of the axis of x!l being

quite arbitrary, that of y
,! is determined to be in the particular plane given

above ; and the term xlf
y

f
' is gone.

Again, by a similar elimination of a2 and ft from the co-efficient ofa?" 2",

and from the equations of z ,f {x =: a2 2, y = ft 2), we have, from the

similarity of the equations, the same plane as before ; hence, if the axis of

z
tf be also drawn in this plane, the term x" z'

1 will disappear.

Also, cc% and ft being thus obtained, the relation between #i and ft may
be found from the co-efficient of y

r/
z

ff
-t=z 0.

Thus, fixing upon any position of the axis of x'\ that is-, giving any

values to a and ft we have determined a plane passing through the origin,

in which plane any two straight lines whatever drawn from the origin may
be the axes of y' 1 and z", and one of them as zn being so drawn, a2 and ft

are given, and then the relation between cx
x
and ft is determined from the

co -efficient of x'
f

y
1
' z=l 0.

But since the relation between these quantities a
x
and ft, and not the

quantities themselves, is given by the last equation, it appears that there

are an infinite number of systems to which, if the axes be transferred, the

products of the variables may be destroyed.

481. Let the new axes be rectangular.

In this case the axis of a?'
7 must be perpendicular to the plane of y

ff x }

\
or the line whose equations are x zz az> y ^ /3 z is perpendicular to the

plane

(aa + dfi + e)x + (da+bfi+f)y+(etx+ffi + c) 3 =

/. a a+ d/3 + e = (e a +//3 + c) a (426)

d«+&/3+/=(e«+/0+O0
Substituting in the first of these equations the value of a obtained from

the second^ we have the following equation for j3 :
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{(a-b)fe + (f*~e*)d}P
+ { (a - 6) (c - 6) e + (2 d2 ~/2 - e

2
) e + (2 c~ a - 6)/d } /3

2

+ { ( c -a) (c - 6) d + (2 c2—

/

2 - d2
) d + (2 6 - a - c)/c } /3

+ {(«-c)/<*+(/8 - d*)e}^0.
This equation of the third degree has at least one real value for /3, and

hence a real value of <x\ thus the position of the axis of oc
n

is found, and
also the position of the perpendicular plane in which y" and z

n are situ-

ated.

Again, we might find a plane a?" z
,f perpendicular to y

r,

9
and such that

the terms in a?" y
ff

,
y'

1

z
n should disappear, and the necessary conditions

will, as appears from the similarity of the equations, lead to the same
equation of the third degree in /3 t ,

and the same is true for the axis of z".

Hence the three roots of the above equation of the third degree are the

three real values of /3, /3j and j32 .

These three quantities give the three corresponding values of a, at

and #2> and since there are only one value of each quantity, it appears

that there is only one system of rectangular axes to which the curve sur-

face can be referred so as not to contain the products of the variables.

For further information on this subject, see €C Annales Math.''
1

ii. p. 144.

482. By the last transformation, the equation when the locus has a

centre is reduced to the form

a l
x"* + b

l
y"*+ c^'a+^cs

or, L^-fM^+ N^sl
by substitution and the suppression of accents, which are no longer neces-

sary.

The order of transformation might have been inverted, by first de-

stroying the products of the variables exactly in every respect as in the

last article, and then the resulting equation must be deprived of three

terms by a simple change of the origin ; the result, after both transforma-

tions, is

L <2/
2 4- M y* + N & -f P on =r. 0.

483. The central equation involves three distinct cases, which depend

on the signs of the quantities L, M, and N.

(1) They may be all positive.

(2) Two may be positive, and the third negative.

(3) One may be positive, and the other two negative.

They cannot be all negative.

1 I 1

Substituting for L, M and N, the constants — -~~ — respectively,
a* o c2

where a is > b and b > c, the three cases are

a2 ^ 6
2 ^ c

2

~tf
+

b* c
2 ~ ~

fl _ £. _ £. -

1

a?" 6
2

c
2 ~~

The readiest way of obtaining the form of these surfaces is by sections

either in planes parallel to the co-ordinate planes, or on the co-ordinate

planes. We remark again, that in the latter case they are called the prin-

cipal sections or traces.
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THE ELLIPSOID,

484.
OB" if Z

a? b
2

c
2

x if
For the trace on x ?/. s r= 0, .*. — -|- ^— — ]

<r 2, ?/ ~ 0,

?r z
# *, a?

Therefore the principal sections are ellipses.

00" 1^ T)l}

Let z = m .". the section parallel to # ?/ is —- + ^- ™ 1 -- —

y — n

X. rr: p

<3f n"
0? 2 is

"«? +
c
2
^~ I.

•

~?

2/ ^ is
6
2 +

z* _
: 1 ~

c
2

'

The first of these equations is an ellipse from m, or z zz. to

s^c; when z ==: c the curve becomes a point, and when 2 is greater than c

the ellipse is imaginary, therefore the surface is limited in the direction of z.

Similarly it may be proved, that the other sections are ellipses, and the

surface is limited in the directions of J? and y. From the circumstance of

this surface being thus limited in every direction, and also from the above

sections being" all ellipses, this surface is called the ellipsoid.

The diameters 2 a, 2 b, 2 c of the principal sections are called the dia-

meters of the ellipsoid, and their extremities are the vertices of the surface.

If b =r &, the equation becomes—--f- —

:

2
~1 \

= 1> which is the equa-

tion to a spheroid by revolution round the axis of z.

If any other two co-efficients are equal, we have spheroids round the

other axes ; and if a = b ~ c, the surface becomes a sphere.

485. To render the conception of this surface clear we subjoin a figure

representing the eighth part of an ellipsoid.

/wjnSsmssaBSsssEffiSSiss-^

.

* This equation belongs to the projection on oc y, but since the plane of x j> is parallel

to that of * =; m,the projection is exactly the same in form as the curve of section itself*
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A B is part of the ellipse on x y

AD x z

BD... yz
9

and the section QPR parallel to x y is also an ellipse.

The surface may be conceived to be generated by a variable ellipse

C A B moving- upwards parallel to itself with its centre in C Z. Let
N Q R be one position of this variable ellipse; and let

C N = z, CA=fl, N R = xx ;

NM^j, CB = J, NQisy,
.

MP = y, C D = c,

Then from the ellipse QPR we have

2, + t-i
Also from the ellipses D XL A and D Q B we have

% + ^_. == l, and ^L. + _L-l

x 3
ij

2
a;

2

Therefore ™ = —- ; and multiplying the first equation by— or its

equal — , we have — -f ~r — —- = 1 —
&-* «a 6

2 a2 c*

X
: 2/ )

2

THE HYPERBOLOJD.

436. Case 2. — ~f 4- — —

The principal sections are

on x ii, — 4J
cir ' b2

x1 -2

1 (1)

on x z, ~ — 4" = 1 (JO
a

on y z,
'— — ^ I (3U

e

(1) is the equation to an ellipse whose axes are 2 a and 2 6
; (2) and

(3) are hyperbolas with the same imaginary conjugate axis 2c J~ZZ~J •

if c,r is less than «, or ^/ less than b
9

2 is imaginary.

Giving to 2, 3/, and a? the values 772, ??, and p 9
respectively, we have the

section parallel to xy an ellipse, to y z and x z hyperbolas.

487. The accompanying figure represents a portion of the eighth part

of this surface. A B is the ellipse on x y, A R the hyperbola on on z. and
B Q is the other hyperbola on y ?;. This surface may also be conceived
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to be generated by a variable ellipse CAB moving parallel to itself with it

centre in C Z. Let N Q R be one position of this variable ellipse ; and le

7' ' ^

Then from the ellipse P Q R, we have

Also from the hyperbolas A R and B Q we have

Vi-j- -5= l
5
and — - — = ],

therefore ~4- :

•~~~, we have

1 & 1-
; and multiplying the first equation by— or its equal

6
a

— 1 -f
—

This surface is called the hyperboloid of one sheet because it forms one

continuous surface or sheet.

If a = b the surface becomes the common hyperboloid of revolution

round the conjugate axis.

488. Through the origin draw a line, whose equations &vex=zaz
9 y=;(3z 9

and substituting in the equation— —- — -"-- zz 1, we have

a2 b*
— ]*« = 1

<?
2
y

J=±"
'

// ¥ c2 « fl + a2 c
8
/3

2 — a ft
9 '

hence this line meets the surface as long as the denominator of the frac-

tion is real and finite j let 62 c2 a2 + a2 c2 j?S
2 s= a2 63

, then the line only
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meets the surface <at an infinite distance, or is an asymptote to the surface.

The last equation gives the relation between a and /3, when the corre-

sponding line is an asymptote ; and if for ot and /3 we substitute their gene-

ral values -— and—
5
we obtain an equation between a\ y, z, whose locus

z z

will consist of all the asymptotes to the surface, because the co-ordinates of

any point in it have the required relation above.

The equation to this surface is

W c
2 x2 + a2

c
2

2/
2 = a2

6
2

.

«
9

& f _ z2

m

a*
r If ~ V '

We shall hereafter show (art. 514.) that this is the equation to a cone

whose vertex is the origin, and whose base, or section parallel to the axis,

is an ellipse.

or,

489. Case 3.

The principal sections are

on osy.—

= i.

on y z,
b*
+

y

IF
z2

c2

= 1

=2-1

(1)

(2)

(3).

(2) is an hyper-(1) is an hyperbola whose axes are 2 a and 2 b *J— \ ;

bola whose axes are 2 a and 2 c V"^1T; (3) is imaginary, therefore the

plane of y z never meets the surface.

Of the sections parallel to the co-ordinate planes, those parallel to xy
and x z are hyperbolas, and that parallel to y z is an ellipse, whose equa-

tion is

y* jl il — ^L _ 1 o

¥ +
c2 ~ o«

hence this ellipse is imaginary, if p or x is less than ± a; therefore, if two

planes are drawn parallel to y z, and at distances ± a from the centre, no

part of the surface can be between these planes.
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In the figure EAF represents the hyperbolic section on x y, and
QAR that on x z ; E Q F R is an elliptic section parallel to y z. There

is an equal and opposite sheet with its vertex at A' ; hence the surface is

called the hyperboloid of two sheets.

490. The equation to the surface is deduced from the figure ; letAMz
x, M N = y, N P = z ; QM = z l9 M F = y, ;

Then from the elliptic section Q P F 11 we have

Also from the hyperbolas EAF and QAR we have

r

y± _ ?1— _ n

j i f
* _ ?

2

— _ i

62 a2
*

c2 a2
~~

?y
2

s^2 z^ . y^'

therefore ~~ zz --> an(l multiplying the first equation by— or its equal —

,

we have

+
6s '

ill
c3
=

a2
- 1

•
X2

2/

2 z
2

1
a2 63 c2

^2

.

/^ /2 «,g

491. — —~ 55 0, is the equation to the conical asymptote;
a* b*

hence both in case (2) and (3) we have the conical asymptote by omitting

the constant term in the equations.

ON SURFACES WHICH HAVE NO CENTRE.

492. In this case the general equation can be deprived of the products

of the variables, as in (479) ; it will then be of the form

ax1
-\- by* + cz s + 2gx + 2hy + 2'iz + k^zO.

In order to deprive this equation of three more terms, let

# = m + x', y = n + y\ z = p ~f zf
9

.\axf2+ bij
f2+ cz ,i+ 2 (am + g)x'+ 2(b?i + h)y f+ 2(cp+ i) z'+ VzzO :

Let the co-efficients of x\ y
f and z' = ;

g", h ^

a b
9

c

But since this class has no centre, the values of some, or all the quan-

tities m, w, 2>> must be infinite ; therefore, either one, two, or three of the

co-efficients a, b, c, must —: 0. Thus the original transformation which

deprived the equation of the terms xy, x z, and yz, has of itself destroyed

one or two of the co-efficients of a?
9

, y
2
, or z" ; this corresponds to the ease

in art. 92. Now, all three co-efficients cannot = 0, for then we fall upon
the equation to a plane : hence we have only two cases left, when a
vanishes, or when a and b both vanish.

493. Let a =^ 0, then, as we have three quantities, m, n and p to deter-

mine, we may let k' == as well as the co-efficients of y
r and z' ; hence

the equation is reduced to the form
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or —

by f* + cz h2 + 2gxf ^=.0.

b \ ... . /_ _c
2/

/2 + /a-.^.

2g7 \ ^g-.

This equation has two varieties depending upon the signs of the quan-*

tities
6

A
C— and — —-.

2g 2g
494. Case 1. Let the signs of y

f2 and *'2 be both alike and positive, (if

they were negative we should change the sign of x' to reduce the equation

y for ~ Z~ '
and SUP~to the same form) substituting -r for — ;r~» and-

Z 2g 2*'

pressing the accents on a?, 2/ and # as no longer necessary, the equation is

of the form

V* jl
z* - „

For the principal sections we have
on xy, y

2 ^ I x * (1)
on x z, z a zn /#' . (2)

on 2/2, l'y* + /*a = (3)

(1) and (2) are parabolas extending on
the side of a? positive

; (3) is a point,

which is the origin itself.

For the sections parallel to

xy, put*=jv

x z, put y = ft,

2/ £, put (2? = m,

a2

'

I W'

v

n*

T
in

(1)

(2)

(3)

(1) and (2) are parabolas, equal to those of the principal sections respec-

tively, (the equation differing by a constant term, implies that the origin

is differently situated with regard to the curve) : (3) is an ellipse.

495. In the figure AQ and AR are parts of the parabolas on x z

and xy, and the surface is described by the motion of the parabola AQ,
parallel to itself, its vertex moving along the parabola AR. Let PRN
be one position of the generating parabola, and let A M ^ x, MN=y,
NP = ^, and draw R O parallel to A Y or M N ; then from the parabola

R P we have

** = V RN = /' (AM - A O) = l'(x ~-|
2

\

- +
This surface is called the elliptic paraboloid, and is composed of one

entire sheet, like the paraboloid of revolution.

496. Case 2. Let the signs of y'
2 and z f" be different,

R
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= x.

For the principal sections we have

on xy, y
1 — Ix (1)

on xz, z* = — Z'o? (2)

on yz,iy~ I z*~ (3)

(1) and (2) are parabolas, the first cor-

responding to x positive, and the second

to x negative
; (3) belongs to two straight

lines through the origin.

The sections in planes parallel to xy and x% are parabolas, and those

parallel to y z are hyperbolas,

497. AQ is the parabola on x z, and AR Is that on xy; and the sur-

face is described by the motion of the parabola A Q parallel to itself, its

vertex moving along the parabola AR. Let RPNbe one position of

the generating parabola, and let A M ~ x> MN = y, and NP=^, and

draw R parallel to M N ; then from the parabola R Q we have

4« = ?RNt=/' (AO 'AM) = /'(i-.^

•L.

I
" = *'

This surface is called the hyperbolic paraboloid.

498. The equations to the elliptic and hyperbolic paraboloids may be

deduced from those of the ellipsoid and hyperboloid of one sheet, as the

equation to the parabola was deduced from that to the ellipse (228) by-

supposing the centre to be infinitely distant.

Let the origin be transferred to a vertex of the surface, by putting x— a

for x9
then the equation to the ellipsoid and hyperboloid is

(fl-a)', y* , * .,

Let m and m! be the distances of the vertex from the foci or the sections

on x y and x z ;

.% 62
s=s &2 — (a — mf e= 2 am — ma

and cs =2 2 #m' — m's ;

therefore, by substitution, the equation

a? 2 a?

becomes —- —

a

2x

+ 1 + £±4 = 1
62 c

+ y
*

2 am • m* 2am

or — ** 2 a? + ~-
a 2m-

a a

/« = 0,

or JL -J-_ _ 2 a? = 0, when a is infinite.

2 m 2 m'

And hence results obtained for the ellipsoid and hyperboloid will he

rue for the paraboloids, after making the above substitutions.
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499. We stated in article 492, that both a and b might vanish ; in this

case the equation will be

And by the transformation in art. 492, we cannot destroy the co-efficients

of x and y 9
but we may destroy that of z, and also the constant term k ;

hence the transformed equation is reduced to the form

c£2
-f 2gos+ 2hyz=>-0\

2g
or 22 = I x 4- V y if —— s= I, and — 2h

\l\

500. There are two cases depending on the signs of I and V9
which

may be both positive, or one positive and the other negative.

Case 1. I and V both positive.

The section on %y is Ix + I' y =?- o (1)
on a? £ is z2

1=^ Ix (2)

on y % is z2 = % (3)

(1) is a straight line A B ; (2) is a para-

bola A Q ; (3) is also a parabola, not in

the figure ; the sections on the planes

parallel to the above are similar in each

case. The surface is formed by the motion

of the parabola A Q parallel to itself, its

vertex describing the straight line A R ; -

;',

letRPNbe one position ofthe generating

parabola ; let A M=«», M N=y, NP = z,

then «* c= I R N r= l(y y + x l'y + loo.

Since this surface is a cylinder with a parabolic base, it is not usually

classed among the surfaces of the second order,

Case 2, If the signs of I and l
f be different, the surface will be the

same
9
but situated in a different manner.

CHAPTER VIII.

CYLINDRICAL AND CONICAL SURFACES;

501. Our notion of surfaces will be very much enlarged, if we take
into consideration the general character of classes of surfaces, defining

them by their peculiar method of generation, and then expressing that

definition in a general algebraical form. For example, we have been
accustomed, in common geometry, to consider a cylinder as a surface

generated by a straight line, which is carried round the circumference of a
given circle, and always parallel to a given straight line* (Geomu b* v

,

R 2
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def. 1.) But it is evident that if the base be not a circle, but any other

curve, as a parabola, for instance, we shall have a surface partaking of

the essential cylindrical character, and which, with others of the same
kind, come under a more extended definition; and similarly for conical and

many other surfaces.

Having seized upon this general character, method of generation, or law

by which the lines are compelled to move, the next step is to express

this fact in algebraical language; that is, to obtain an -equation between

co-ordinates x, y, and z, of any point on the surface, which equation shall

belong to the class of surfaces in the first instance, and then can be adapted

to any particular surface in that class.

THE PLANE.

502. In order to prepare the reader for this subject, we shall take a

simple case : to find the surface generated by the motion of a straight

line, parallel to itself, and constrained to pass through a given straight

line.

Let AXS AY, A Z be rectangular axes, and let the equations to the

given straight line B C (supposed for the sake of simplicity to be in the

plane of y %) be

« Y + pZ = 1

X =

Also, let the equations to the generating line P Q, in any one of its posi-
tionsj be

co e= a z + a\

hiy'= P* +
Now, a and (d are the tangents of the angles which the projections of P Q
make with the axes A X and A Y respectively ; and in the motion of P Q 9 .

parallel to itself, the projections also remain parallel to themselves respec-
tively

;
and hence a and /3 are always constant, and therefore are known

or given quantities. But a and b being the .co-ordinates of the point
where the line P Q meets the plane of jc y, they change with every change
of position of/P Q; and therefore, being variable, must not appear in the
final equation to the surface. Now, these variable quantities, a and 6, can
be expressed in terms of the other variable qualities x,y, z; and hence
w.e can thus estimate them from the two a-ive.n systems above.
At the point P, where P Q meets B C, we have, by comparison of (1)

and (2),
> j .

i
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Y = y ss —— 4. b
a

But the system (1) is true for any values of X, Y, Z; therefore, by sub-

stitution in (1), we have

and this is the equation connecting* a and b together, or expressing the

relation which the variable quantities a and b have to each other, or the

relation which any quantities equal- to a and b have to each other ; that is,

substituting for a and b the quantities x — « 2, and y ~~
fi siVorn (2), we

shall have the relation between the quantities #,#? and 2, which is called

the equation to a surface.

/„ —n - (x — z
J

4- ?i (?/ — /3 «) '— — ( x — « £
J
= 1

;

w /3 + p t
.

'

oy9
_ _ i. # + rc3/4-ps — 1,

which is. the equation to a plane ; and this is the most general method of

determining the equation to a plane ; for it can be thus found for any
system of co-ordinate axes, and it is determined from the most obvious

character of the plane.

We now proceed to the discussion of surfaces formed by the motion of a
straight line constrained to move after some given law or condition.

ON CYLINDRICAL SURFACES.

503. Definition. A cylindrical surface is generated by a straight line,

which moves parallel to itself in space, and describes, with its extremity, a,

given curve.

The straight line which moves is called the Generatrix; and the givey*

curve is called the Directrix.

To find the equation to the surface,

Let the equation to the generatrix, in any one of its positions, be

x: =r a z + a
y~(3z + b

Now, the generatrix, in its movement, always moving parallel to itself;

the quantities a and /3 remain the same for every position of the genera-

trix ; but the quantities a and b, which are, the co-ordinates of the point

where the generatrix meets the plane of x 7/, are constant for the same
position of the generatrix, but vary when the generatrix passes from one
position to another. Thus, when any point on the surface changes its

position without quitting the generatrix, a and b are both constant ; and
when the point moves from one position of the generatrix to another?

a and b are both variable; hence these two quantities, being constant

together, and variable together, must be dependent on each other in some
way or another; which general dependence is expressed by saying that one
of them is a function of the other
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.'. 6 = f (a)
;

or, putting for h and a their values as above, we have

y — /3 # = <£ (x — oc #),

which is the general equation to cylindrical surfaces.

504. The form of the function <j) will depend upon the nature of the

directrix in any particular ease*

JLet the equations to the directrix be

F (X, Y, Z,) = 01

/(X,Y,Z,) = 0J

Then as the generatrix must in all its positions meet the directrix, the

equations to this curve and to the generatrix must exist simultaneously

for the points of intersection ; thus having four equations we may elimi-

nate #, y, z and arrive at an equation between «, 6, and constant quanti«

ties, which will determine the form of the function f
Substituting in this equation for a and h their values oo— a 3, y— /3<s, we

liave the actual equation to the particular cylinder required.

505. Ex. L Let the directrix be the circle
:B Q C, in the plane of oc y,

and let cc x and y x
be the co-ordinates

of its centre ; then the equations to

the directrix are

(X - a?',)* + (T -

Z =0
*)•

""}<1)

Let BD 5 QR,CE } be various

positions of the generatrix whose
general equation is

x £= a z ' + a I rQv

to express that the generatrix meets Y/

the circle as at Q 5
the equations (1) and (2) must exist together

.\ Z = « =
X = x = a
Y = y = 6

substituting these values in (1), we have

(« - x
xy + (b - yo* = '-a (»)

hence the form of the function (j> is determined.

Substituting in (3) the values of a and b from (3), we have

(a? - « * - a?!)
2 + (y — /3 « — gh)

8 = r2

This is the equation to an oblique cyiinder3
with circular base? situated in

the plane of x y.

506. Let the centre of the circle be at the origin?

,\ xx
^ and yY

es

.•. (a? — a z)2 + (y - j6 z)
2 = r*

And if the origin be at the extremity of a diameter parallel to the axis of a?,

(a? — a s)
a + (y *—

fi z) 2 zz 2 r (cc «™ a z)

507. Let the axis of the cylinder be parallel to the axis of #j then « and /5
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each = 0, since they are the tangents of the angles which the projection

of the generatrix on x z and y z make with A Z ;

... (^-^) 2 + (2/^2/i)
2 -^;

and if the axis coincide with A Z, x2 + y
1 == r\ z =s ;

in these cases the cylinder is called a right cylinder and its equation is the

same as that of the directrix.

If the directrix be a circle on x z, the equation to the right cylinder will be

a?
a + ** == r\

508. Let the directrix be a parabola on x y, vertex at the origin, and
Bjis coincident with the axis of x.

Then the equations to the directrix and generatrix are

Z
therefore at the points of junction we have

Z = * =
X s: a? t=2 a

then by substituting in (1) we have

•'• (y ^ fi #)
2 ^ p (# — # #)

which is the equation to an oblique parabolic cylinder, whose base is on xy*
509. Let the directrix be a parabola on x %, axis A X, and vertex at A;

and let the generatrix be parallel to the plane x y.

The equations are

%* =: p XI , # + «> = «\ oY^Oj 1 «=6'
J

*

Then the equation to the surface is
;

^L y + p #. See article (499)*,

ON CONICAL SURFACES,

510. Definition. A conical surface is generated by the movement of a
straight line, which passes constantly through a given point, and also

describes a given curve.

The given point is called the centre of the surface, the straight line which
moves is called the generatrix, and the given curve is called the directrix.

Let a, b, c
y
be the co-ordinates of the centre ; then the equations to the

generatrix are

x — a = a (z — c)

y - h = (* - c).

Now when a point on the surface changes its position without quitting

the generatrix, the quantities a, /3 are constant, but when the point passes

from one generatrix to another, they are both variable; hence being con-

stant together, and variable together, they are functions of one another

;

.*. /3 =: <j> (a), or substituting their equals,

y.

— b ( x — a \ ,. . , . ,-^——- s= <j> I
-7——

J
which is the general equation

to conical surfaces.
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511. The form of the function <£ will depend upon the nature of the

directrix in any particular case.

By combining the equations to the generatrix and directrix we may, as

for cylindrical surfaces, eliminate a?, y, z, in a particular case, and thus

arrive at an equation between a and /3, which will determine the form of

the function <j>.

Substituting in this equation for a and 3 their values ——— and -—

—

z — c z — c

we obtain the actual equation to the particular conical surface.

512. Ex. Let the directrix be a circle B Q C in the plane of a? y.

The equations to this directrix are

(X - a^ + (Y - yOV= ^l m
And the equations to the generatrix B E, or Q E passing through the

point E (&, &, c), are

gs ~~ a = a {z — cl

y - b == (* — c]

To express that the generatrix meets the

circle, the equations (1) and (2) must
coexist.

henee by substitution in (1) we have

{a - a c - a?i)» + (6 — c — ytf == r8 (3)

Putting for a and /3 their values from (2) and reducing

(2)

93 z =s z z=z

X == OS is # — « c

¥ =s y =; 6 --/3 c

«^; - ca;
+

cy
- 2/i

£ — c / V * — °

This is the equation to an oblique cone with a circular base situated in the

plane of x y.

Let the centre of the circle be at the origin /• wl ^. o and yl
zz o;

,\ (a z — cxY + (b z — C2/)
2 s= r 2 - c) 2

513. Let the axis of the cone be parallel to the axis of z .*. a = #, and

5 =r 7/ 1? and the general equation becomes

\z~cj~\z-~cj c2

In this case the cone is called a right cone.

Also, if in this case the origin beat the centre of the circle, we have

®~o and b = o,

- *2 + t.= J (* - c) 2

514. Directrix an ellipse on x y, whose centre is the origin, and the centre

of the cone in the axis of z ; then the equation to the cone is

a? , il
2 f z — c

.
2T _
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or putting z
%

for z~c that is, measuring from the centre of the cone

a2
b*

""
c
2

#

In this simple case, the equation to the surface is easily found by the

method in article (468). Taking the figure in that article, and supposing

every section, like P Q, to be an ellipse, whose axes x
l
and yl are always

proportional to the axes a and h of an ellipse whose centre is in A Z, and
at a distance c from A, we have the equation to P Q

£- + -^1=1
r 2 ' n, 2 5

"I til

but yl
es •— xly and xl ss -

—

z
a c

515. Let the directrix be a parabola parallel to oc y, and vertex in the

axis of z. The equations to the directrix and generatrix are

Y2 = p .XI , a? - a = a O - c)l

Z ^cZ J
A

y.- & = j8(«- <0J

at the points of junction we have

Z == z = df

X = a7=sfl5 + a(d — c)

Y~2/=6 + £(tf~c)

hence the final equation is

{»+£^->N»{.+^-:«-'>}
516. Let the vertex or centre ofthe cone be at the origin .\ a ~ b ^z c 2=: o,

and the equation to a cone whose directrix is { y
2 = jp #, z = d } and

whose vertex is at the origin, is

d y
2 ~ <p x z.

517. The following method of finding the equation to a right cone whose

vertex is at the origin, is sometimes useful.

Let the length of the axis of the cone be k t
and suppose this axis to

pass through the origin, and be perpendicular to a given plane or base

whose equation therefore will be of the form

ax-\-Py-\-yz~k
where », /$, y are the co-sines of the angles which k makes with the axis

of j?, y, ands (410).

Also suppose a;, y, and z to be the co-ordinates of a point on the circum-

ference of this base, and let 6 be the angle which the generatrix of the

cone makes with its axis, then by the property of the right-angle triangle

we have the equation

k = J (^ + f 4- *2
) cos.

Hence by equating the values of k we have the equation,

(« 9 -f fi y -f y zf =: {& .+' f -j- z>) (cos. 0)
2
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And this is the equation to any point in the surface, since &, /3, y remain
the same for a plane parallel to the base and passing through any point

(x y z) of the surface.

If the axis of the cone coincides with the axis of z
9
we have a zz

ft zzi o

and y = 1
;

z2 ~ (a* + y* + z*) (cos. Of
518. To find the curve of intersection of a plane and an oblique cone,

we may suppose the catting plane to pass through the origin of co-ordi-

nates without detracting from the generality of the result. Substituting

for x, y, z, in the equation, their values in 455, we readily find that the

sections are lines of the second order and their varieties.

ON CONOIDAL SURFACES.

519. Definition. A conoidal surface is generated by the movement of a

straight line constantly parallel to a plane, one extremity of the line

moving along a given straight line, the other describing a given curve.

We shall commence with a simple case, Let the axis
t
of z be one

directrix, and let the generatrix be parallel to the plane of x y : then the

equations to the generatrix in any one position are

y == a x X=6 |

Now it is evident that when a point moves on the surface without quitting

the generatrix, « and b are both constant, but when it passes from one

position of the generatrix to another a and b are both variable ; hence these

quantities, being constant together and variable together, are functions. of

one another,

.% b ss
(J)

(a) or substituting their values.

•=($
which is the general equation to all conoidal surfaces,

520. The form of the function (j) will depend upon the nature of the

second directrix.

By combining the equations to the generatrix and this directrix, we
may, as before, eliminate #

9 y? z^ and arrive at an equation between b and a9

we'must then substitute the values of b and a, their general values z and

— , and we shall obtain the equation to the particular conoidal surface.

521. Let the second directrix be a circle parallel to y z y
and the centre

in the axis of #, therefore the equations to this directrix are

z' +
.

l=:\v
Then where this directrix meets the

generatrix we have

Z = % - b

X
Y;



ON CONOXDAL SURFACES, 251

Hence the required equation is

z* 4- a? V = r\

This surface partaking of the form and generation of both the cone and
the wedge, was called the cono-cuneus by Wallis, who investigated many
of its properties,

If the axis of a? be one directrix, and the other be a circle parallel to oo z3

and the generatrix be parallel to y #, the equation is

a% z*

522. Let the axis of z be one directrix, any straight line the other, and
let the generatrix move parallel to oc y.

Then the equations to the second directrix are

X s ft Z + m
Y zz vZ + n

Also the equations to the generatrix being y ss a a?, z ^ 6, we have at

the points of junction

Y = y es v b 4- n

v — v & + n

v b 4- n
lib + m

2/

or v%x*™iJL%y'-\-noc-"my~o<,

523. Let the axis of s be one directrix, and let the second directrix

be the thread of a screw whose axis is coincident with the axis of z.

The thread of a screw, or the curve called the helix, is formed by a

thread wrapped round the surface of a right cylinder, so as always to make
the same angle with the axis; or if the base of a right-angled triangle

coincide with the base of the cylinder, and the triangle be wrapped round
the cylinder, the hypothenuse will form the helix A P,

To find the equations to the helix,

Let the centre of the cylindrical base be the origin of rectangular axes,

CM = ir, MQsy,PQ = z and the radius of the cylinder = a.

Then P Q bears a constant ratio

to A Q ; namely, that of the altitude

to the base of the describing triangle

hPQ=cAQ
and A Q is a circular arc whose sine

is y and radius a :

.

~l

V
„% z =2 e a sm. —

,

or z £= e a cos.

also oo
% + y^ zs a%
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And these are the equations to the projections of the helix.

To return to the problem, which is to find the surface described by a

line subject to the conditions that it be parallel to the base of the cylinder,

that it passes through the axis, and that it follows the course of the helix.

The equations to the directrix (if c be the interval between two threads)

are

. -iV .

z =2 e a sin. —
- + c

a
x* + if — a2

And the equations to the generatrix being y s^ v. x> z = b ; we have

V iir r « a
z = 6 ; x t=s — z= V<& — V •*• 2/ =

.

J 1 + «
8

/,, bzz e a sin.
'-"

* —- _ + c

V 1 + a2

hence the equation to the surface is

•
y

.

« =s e a sin.
l

•
. . =. + c
V

2/

2
-f #*

This surface is the under side of many spiral staircases*

524. A straight line passes through two straight lines whose equations

are x ^ a, y = b; and oc = al9 z
.

=: /^ ; and also through a given

curve z e= /(;*/) in the plane of z y ; to find the equation to the surface

traced out by the straight line.

The three directrices are

Y ^ b )
l Z-b,] 2 X = o |

ld]

And let the equations to the generatrix be

2/ = /3 z + n

and consequently y = — a? + £>> if p — w w;

Then since this line meets the three given lines, we have the following

equations

/3 , .
m or m O . \

We must now eliminate a, &, w, 71 from these equations, and that to the

generatrix.

By subtraction we have

ft , x
oc ~ tti

y — 6 2=— '(#—«); <# — «i = a (z — oj /. a = t- ,

in ^ qo
., _ - flr g —

;_

]h ® j

na—mft _ <x (y— fiz)— fi (x — ccz) _.ay— poo _ ^ /3 a?_ &£~J^#V
a

~~
of .

'

' « « a; —

«

Hence the final equation is

<M ~ % g. _ y / 6 a: — gy\
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525. The following problem is easily solved in the same manner.
To find the equation to a surface "formed by a straight line moving
parallel to the plane of x z, and having its extremities in two given curves

z as f (2/) on z y, and x = <j> (y) on x y.

The equation is ttt-t + —r-r = 1..

f(y) 0(y)
526. In questions of this kind some care is requisite in selecting the

position of the axes and co-ordinate planes, so that the equations, both

those given and those to be found, may present themselves in the sim-

plest form. For example, —to find the surface formed by the motion of

a straight line constantly passing through three other given straight lines;

Take three lines parallel to the given lines for the axes of co-ordinates ;

then the equations to the three directrices are

Xisflj X-a2\ Y^b3 \
Y-bJ Z- cj Z ^c 3 j

and the equations to the generating line in any position are

x t=: clz -f «, y = fi z -\~ b,

and consequently y — — x -j* c, where c = b — — a ;

Then since this line meets each of three given lines, we have the following

equations :

bi= •—
• a x + c ; #2 = a c

a -f a ; b3 = /3 cs -J- b.

a
We must now eliminate #, 6, a, /3 from these three equations and that to

the generatrix ; by subtraction we have

y ~ bx = — 0* — ai) 5 cc - a2
' = a (z - ca) ; y~~b3 = fi (z— c3)

hence, eliminating a and /3, we have the required equation

(a? - a,) (y — 63) (2 - c2) = (# — a2) (y - '6) (z - c8)

which is of the second order, since the term x y z disappears. See

Hymers's Anal. Geom. p. 23, Cambridge, 1830.

CHAPTER IX.

ON CURVES OP DOUBLE CURVATURE.

527. Definition. A curve of double curvature is one whose generating

point is perpetually changing not only the direction of its motion, as hi

plane curves, but also the plane in which it moves.

If a circle be described on a flat sheet of paper, it is a plane curve ;

lei the sheet of paper be rolled into a cylindrical form, then the circle has

two curvatures, that which it originally had, and that which it has acquired

by the flexion of the paper, hence in this situation it is called a curve of

double curvature.

528. Curves of double curvature arise from the intersection of two

surfaces; for example, place one foot of a pair of compasses on a -cylin-

drical surface, let the other in revolving constantly touch the surface, it will

'•describe a curve of double curvature, which, though not a circle, has yet all
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its points at equal distances from the fixed foot of the compasses. The
curve is then part of a spherical surface, whose radius is equal to the distance

between the feet of the compasses, and consequently is the intersection of

this sphere with the cylinder.

529, The equations to the two surfaces taken together are the equations

to their intersection, and consequently are the equations to the curve of

double curvature.

By the separate elimination of the variables in the two equations, we
obtain the respective projections of the curve upon the co-ordinate planes.

Two of these are sufficient to define the curve of double curvature ; for we
may pass two cylinders through two projections of the curve, at right

angles to each other, and to the co-ordinate planes, the intersection of these

cylinders is the required curve B This is analogous to the consideration of

a straight line, being the intersection of two planes.

We proceed to examine curves of double curvature arising from the

intersections of surfaces.

530. Let the curve arise from the intersection of a sphere and right

cylinder; the origin of co-ordinates being at the centre of the sphere
3
the

axis of the cylinder in the plane os z and parallel to the axis of %,

•C X

Let the distance between the centres of the sphere and cylinder sr e,

then the equation to the sphere is u?
2
-f y

2 + %* ss «2
, and the equation

to the cylinder is (ps — c)2 + y
2 — b\ (507.)
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eliminating y9 z* _r- a2
-f- c

2 — b2 — 2 c x (1),

eliminating oc, z2 = a2 — 62 -~ c2 q:2c^2 -^ (2).

Fiom (1) the projection of the curve on # 5! is a portion of a parabola B C
q2 _l c2 &2

_____

whose vertex is C, where AC^ . andABs Va®"+c*^6*.
& c

From (2) the projection on y z consists of two ovals, whose positions are

determined by the two extreme values of z,

A D = ± ^a2 ~~ (6 ^~c)*

AE = ± ^a2 - (6 + c)
2
.

As c increases, that is, as the cylinder r\

moves further from A, A E decreases, and ^ Q Q
the ovals approach nearer to each other, as X J

) ( ^(J
in fig*. (1) ; when c = tf — 6, that is, when A\ U U
the sphere but just encloses the cylinder vy

AEsO, and the ovals meet, fig. (2). As c increases, we obtain fig. (3),

which gradually approaches fig. (4) ; and lastly, when c s= a vanishes

entirely.

[Different values, as c, —, &c, may be given to b> and we may then

trace the projections : they offer no difficulty, but we recommend their

investigation, as the complete examination of one example greatly facili-

tates the comprehension of all others.

531. Ex. 2. A right cone and a paraboloid of revolution have their

vertices coincident, the axis of the cone being perpendicular to the axis of

the paraboloid*

The equation to the cone is 55
s + y*^ c2 z% (468) and that to the para-

boloid, y
% + z2 === p oo (469) ; hence the projection on oc % is ^ + V x ~~

V
(I + e2) %% which is an hyperbola, whose axes? are p and —--__——.

(157).
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Again, x* + ?/ = e2 (p x —
2/

2
) .*. (1 4- e

2
) if = e

2 p a? — a?
5

;

hence the projection on x y is an ellipse, whose vertex is A and axes

p and • (103).

Vi +
The equation to the projection on y z is (y* + «*)

2
-f-p

2
2/
2 — e2 ^

2 ^
2

5

this is the ecpiation to a Lemniscata, and becomes the Lemniscata of Ber-

iiouilli, when e ~ 1, that is, when the cone is right-angled (314).

532. To find the curve of intersection of two surfaces, we have elimi-

nated the variables separately, and thus obtained the equations to the

projections on the co-ordinate planes; conversely, by combining these last

equations either by addition or multiplication, &c, so as to have an equa-

tion between the three variables, we may obtain the surface on which the

curve of double curvature may be described. This surface does not at all

define the curve of double curvature ; since an infinite number of curves

may be traced on this individual surface, to all of which the general equa-

tion to the surface belongs.

The results of the above combination are often interesting. For ex»

ample : Let the curve be the intersection of a parabolic cylinder on .x y^

with a circular cylinder on x z\ the origin being the vertex of the parabola,

and the centre of the circle being in the axis of the parabola, which is also

the axis of x.

Let y
2 = 2 p x be the equation to the

parabola A P on x y,

(x — a) 2 + 22 =r r2 . . . . circle on xz9

Combining these equations by addition,

(x — a) * - 2 p x + y
2

-f z2 zz r2,

or (x — a — p)
2

-f- y* + z
2 = r

2 +
/•f2 ap.

Which is the equation to a sphere whose centre is at a distanceAGr« +p,
measured from A along A X. Now, p is the subnormal C G to the point
P of the parabola, P C being the ordinate at C (242) ; hence all the points
of the curve of double curvature are on the surface of a sphere whose
centre is at the extremity of the subnormal of a point in the parabola,
the ordinate of which point passes through the centre of the given circle.

533. The intersections of surfaces are not always curves of double cur-
vature, but often they are plane curves. We proceed, then, to show how
plane curves may be detected, and their equations determined.

Whenever we obtain a straight line for a projection, the curve cannot be
one of double curvature.

Ex. Let the curve be the intersection of two parabolic cylinders, whose
equations are '

x* s= a z

by = x\

Eliminating $, we have by = a z, hence the projection on y z is a straight

line ; and as no projection of a curve of double curvature can be a straight

line, it follows that the curve of intersection is a plane curve.

534. Again, If we can so combine the equations to the projections as to

produce the general equation to a plane, the curve, which is necessarily

traced on that plane, is itself a plane curve. For example : let the curve
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arise from the intersection of two parabolic cylinders^ whose equations are

b y sr x2
-f* c #.

In the second equation, substituting a z for x~, we obtain

b y ~ a z -{- c x;

which equation belonging to a plane, the curve is a plane curve.

535. There is another and more general method of detecting plane curves.

From the two equations to the surfaces eliminate one of the variables,

as z, for example, we obtain an equation F {x, ?/) =: 0.

Now, if the curve be plane, it may arise from the intersection of either

of the surfaces with a plane whose equation is z =: m x -J-' n y -f- p ;

eliminate z between this equation to the plane and that to one of the sur-

faces, the result is/ (j?, i/) = 0, which must be identical with F (x, y) = ;

therefore, comparing F (x, y) = 0, with /(#, y) — 0, we may obtain

various equations to determine??!, ?z,, and _p; which values of m, n s and p
must satisfy all the equations in which these quantities appear ; if not, the

curve is one of double curvature.

For example ; take the intersection of a sphere and cylinder, art. 530.

The equation to the Sphere is x* -j- y
2 + z2 = a 2

(1)

Cylinder (x -c) 2 + y
2 = b

2
. (2)

Plane z = ?n x -j- n y -\- p (3)

"Eliminating « between (1) and (3), we have /(a?, y) =
(ra

2
-fl) a?

2 + (nA
-\-\) if

;+2 mnxy +2 mp x -\- 2 npy + p
2-a2 = (4)

Comparing (2) and (4), we have m = 0, w = from the co-efficients of

a;
2 and y

2
; but the condition of m t=i destroys the coefficient of x in (4) ;

and thereby shows that (4) cannot be made identical with (2). The curve

is therefore a curve of double curvature.

But let the equation to the cylinder be x2

-f- y~ = 62 , then m =n

and n =n render (4) and (2) identical; therefore the curve is a plane

curve, situated in a plane, whose equation is z == ^ a2 — b2
; this is clear,

also, from geometrical considerations.

536. ^o find the curve represented by the equations

-+ -

b c
=1, — +— = 1.

y *

These equations, taken separately, belong to two right hyperbolic cy-

linders ; one with the base in x z, and the other in y z. (209, Ex. 3.)

R S is the hyperbola on x z, its

centre being at A ; T U is the hyper-

bola on y z, its centre being at R.

a b b
Also, —=— , or y = — x.

x y a

Hence the projection of the intersec-

tion of the above cylinders on x y is a

straight line O Q, and therefore the

curve is a plane curve, situated in

the plane ZOQ, perpendicular to x y.
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537. As we cannot have a very clear notion of the curve itself, merely from

the idea of the two hyperbolic cylinders, we shall find the equation to the

curve in the plane ZOQ; that is, in its own plane.

Let P be any point in the curve ; O M =: #, M Q =r y, P Q ™ z.

Then, in order to find the relation between O Q (= ?/,) and Q P (= z),

we shall express O M and N in terms ofO Q, and substitute in the given

equations.

The equation toOQis y zz — x = x tan. 6 (if— = tan. 0),

O M
tT t

a c
Hence the equation —- + —

-

os %

and the equation

O Q cos. 0, and O N =

1 becomes

h

y *
1 becomes

a

: O Q sin. 0.

a c

-J
zz. l

f

u cos. z

u sili.

Since b = a tan. 0, or b cos. =: & sin.
3
these two equations are the

same, and either of them belongs to the required curve ; hence the

curve is an hyperbola, whose equation referred to its centre is

a c be ,^^ xuz=z ~ -—-. (209)
cos. B sm.

535. To describe a curve of double curvature by points

Let /(#, y) =-0, and$ (x z) = 0,

be two of its projections.

Upon x y trace the curve APQR,
whose equation is / (x, y) = 0.

For any value of <r, as A M, we obtain a corresponding value M Pof y ;

from (p (x, z) = 0, we can also obtain a corresponding value of %. From P
draw P S perpendicular to x y, and equal to this value of z\ then S is a

point in the curve. By repeating this process we may obtain any number

of points S T U, &c, in the curve.

It is evident, that if any value given to x or y renders z imaginary, no

part of the curve can be constructed corresponding to such values of a? oxy>

Also, that if .* be negative, P S must be drawn below the plane x y.

539. Ex. 1. Let the curve arise from the intersection of a parabolic

cylinder on x y, and a circular cylinder on y z, the axes perpendicular to

each other ; and the vertex of the parabola together with the centre of the

circle at the origin of co-ordinates
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Let y
2 = a x be the equation to the parabola D A D',

y* + z* = a* circle E B,

.*. z
2 + a * =r a2 is a parabola on x x.

Let AB^c, A C = a, and let the ordinate C D r= a.

To trace the curve, we have the three equations on the co-ordinate planes,

* = ± V a (a - oc)

y = dt V # #•

If j? ~ 0, 2/ — 0, and s = a, .*. the curve passes through B ; as x in-

creases, y increases, and z diminishes
;

When a; r= a, ?/ =r a, and z ==: 0, therefore the curve decreases in altitude

from B down to meet the parabola in D. This gives the dotted branch BD.

If x is greater than a, z is imaginary ; therefore the curve does not extend

beyond D.

But since z = ± \/ a (a~x) there is another ordinate corresponding

to every value of x between o and a ; hence there is another branch, equal

and opposite to B D 9 but below the plane x y. This is represented by

DB'.

Again, since when y is negative, the values of z do not change, there is

another arc, B D' B', represented by the double dotted line, which is

exactly similar to B D B'.

Therefore, the curve is composed of four parts, B D, D B', B D', and

D' B', equal to one another, and described upon the surface of the para-

bolic cylinder, whose base is D A D'. These branches form altogether a

figure something like that of an ellipse, of which the plane is bent to coin-

cide with the cylinder.

540. Ex. 2. Let the circle, whose equation is x2
-J- y

2 ^= a2
, be the

projection of the curve of double curvature on x y ; and the curve, ofwhich

the equation is a2 y% ss a2 z2 — y
2 z\ be the projection on y 3, to trace

the curve.

S 2
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Let B C B' C be the circle on x y whose equation is x* + y
2 =: a2

;
then

the equation on y 2 being a2
2/
2 = ct\z

2 — #
2
£
2
, the equation on x z is

cc
1 z

2 rr a4 — ft
2 #*.

— a?

ay
or £ sr i

V fl r.
and y = i \/^2 ~~ #2

-

If# r= 0, y — «, 2 = infinity, therefore the vertical line C L through C
is an asymptote to the curve. As x increases, y decreases, and z decreases,

therefore the curve approaches the plane of a? y. Ifx = a, y = o, z = o,

therefore the curve passes through B. If a? is greater than #, y and z are

each impossible, therefore no part of the curve is beyond B : for any value

of y there are two of z, therefore for the values of y in the quadrant A C B,

there are two equal and opposite branches, LB,B L/.

Similarly there are two other eq ual branches, RB,B K', for the quadrant

BAC; and as the same values of y and z recur for x negative, there are

four other branches equal and opposite to those already drawn, which

correspond to the semicircle C W C ;

, and which proceed from B'.

These two examples are taken from Clairaut's Treatise on Curves of

Double Curvature ; a work containing numerous examples and many
excellent remarks on this subject,
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ERRATA,

Page 7, line 1, read Let x = /V^3 =4/2 + 1. In the last figure let A B, BC, and

C D each be equal to the linear unit, then A D = Vs7

40.. . . . 2, read . • . y
f — i

40.,

40..

. . . 3, for — read -7.

V W
..17, for 24 read 25.

48.. . .12, for g/
3 read ?/

2
.

1 + *2

110.... 24, for eread c.

11 1 .... 17. for tan. 6 . tan. r= - , read tan. 6 . tan. &= -~.

„2 -.2

1 12, .. .20, for?- read £-.

114. . . .18, for conjugate read semi-conjugate.

123 30, for x> + m S = P, read ^-ffflrSP.
1.53, in the table, column 7, insert c.

190, line 5 from bottom, for 3 «, read 3 a2 .

209, line 10, read cos. I x cos. hx -\- cos. /# cos. A ^.

217, line 13, for (2) read (1).

221, line 27, read cos. =r -— — —— —
r ri

224, line 10, for 397 read 402.

247, line 3, .
•

. (a? — <n)
2 + O - yO

2 = ^2
;

and if the axis coincide with A Z, x2 -f^= ?V ^ $3

249, line 1, for r — c read «, and for c read z —
• c.



ERRATA IN THE FIGURES.

Art. 352. #= «-

Art. 353 y = #*
• See the figure in the same page just above the Art, 353 ; the

letter B should be at the point where the upper curve meets A Y.

Art. 355 y = # tan. x

I Y

j )
\

B

J
A

( (

X

Art. 363. The involute of the circle


