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PREFACE.

This Treatise is intended ultimately to form part of one

on Trigonometry. The place in which most students con-

sider number and magnitude together for the first time, is

in the elements of the latter science, unless they have un-

derstood the Fifth Book of Euclid better than is usually the

case. Previously, therefore, to commencing Trigonometry,

I consider it advisable to enter upon the consideration of

proportion in its strict form ; that is, upon the Fifth Book

of Euclid. There is no other method with which I am

acquainted which gives any thing like demonstration of the

general properties of ratios, though there is a dotix oreiller

pour reposer une tete Men faite, which many of the con-

tinental mathematicians have agreed shall be called demon-

stration, and which is beginning to make its way in this

country.

Hitherto, however, it has been customary for mathe-

matical students among us to read the Fifth Book of Euclid;

frequently without understanding it. The form in which it

appears in Simson's edition is certainly unnecessarily long,

and the tedious repetition of " A B is the same multiple of

CD which EF is of G H," in all the length of words,

renders the reasoning not easy to follow. The use of

general symbols ofconcrete magnitude, instead of the straight

line of Euclid, and of a general algebraical symbol for whole
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IV PREFACE.

number, seems to me to remove a great part of the difficulty.

Throughout this work it must be understood, that a capital

letter denotes a magnitude ; not a numerical representation,

but the magnitude itself: while a small letter denotes a

number, and mostly a whole number. And by the term

arithmetical proportion^ when it occurs, is signified, not the

common and now useless meaning of the words, but the

proportion of two magnitudes which are arithmetically re-

lated, or which are coinmensurable.

The subject is one of some real difficulty, arising from

the limited character of the symbols of arithmetic, con-

sidered as representatives of ratios, and the consequent

introduction of incommensurable ratios, that is, of ratios

which have no arithmetical representation. The whole

number of students is divided into two classes : those who

do not feel satisfied without rigorous definition and de-

duction ; and those who would rather miss both that take a

long road, while a shorter one can be cut at no greater ex-

pense, than that of declaring that there shall be propositions

which arithmetical demonstration declares there are not.

This work is intended for the former class.

AUGUSTUS DE MORGAN.

Londonf May 1, 1836.
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the applications of algebra to geometry, it will be right to inquire on

what sort of demonstration we are to pass from an arithmetical to a

geometrical proposition, or vice versa.

Geometry cannot proceed very far without arithmetic, and the

connexion was first made by Euclid in his Fifth Book, which is so

difficult a speculation, that it is either omitted, or not understood by

those who read it for the first time. And yet this same book, and the

logic of Aristotle, are the two most unobjectionable and unassailable

treatises which ever were written.

The reason of the difficulty which is found in the Fiflh Book is

twofold. Firstly;— It is all reasoning, unhelped by the senses: most

of the propositions have no portion of that intrinsic evidence which is

seen in " two sides of a triangle are greater than the third ; " but, at

the same time, the propositions of arithmetic which correspond to
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OF

NUMBER AND MAGNITUDE.

When a student has acquired a moderate knowledge of the operations

and principles of algebra, with as many theorems of geometry as are

contained in the first four books of Euclid's Elements, it becomes

most desirable that he should gain some more exact knowledge of the

connexion between the ideas which are the foundation of one and

the other science, than would present itself either to an inattentive

reader, or to one whose whole attention is engrossed by the difficulty

of comprehending terms which cannot yet have become familiar to

him. Before proceeding, therefore, to explain Trigonometry (the

measurement of triangles), which, in the widest sense, includes all

the applications of algebra to geometry, it will be right to inquire on

what sort of demonstration we are to pass from an arithmetical to a

geometrical proposition, or vice versa.

Geometry cannot proceed very far without arithmetic, and the

connexion was first made by Euclid in his Fifth Book, which is so

difficult a speculation, that it is either omitted, or not understood by

those who read it for the first time. And yet this same book, and the

logic of Aristotle, are the two most unobjectionable and unassailable

treatises which ever were written.

The reason of the difficulty which is found in the Fifth Book is

twofold. Firstly;— It is all reasoning, unhelped by the senses: most

of the propositions have no portion of that intrinsic evidence which is

seen in " two sides of a triangle are greater than the third ; " but, at

the same time, the propositions of arithmetic which correspond to



2 CONNEXION OF

tliose of the Fifth Book are very evident, and the student is therefore

led to escape from the notion of magnitude, and fly to that of number.

Secondly;—The non-existence of any very easy notation and system of

arithmetic in the time of Euclid, made geometrical considerations re-

latively so much more simple, that the form of his book is (to us)

unnecessarily remote from all likeness to a treatise connected with

numbers. The difference between our day and his lies in tiiis : that

in the former the exactness of geometry was gained with some degree

of prolixity and (to a beginner) obscurity ; in the latter, the facility

of arithmetic is preferred, and perfect demonstration is more or less

sacrificed to it. 1 shall now endeavour to present the Fifth Book of

Euclid in a form which will be more easy than tlie original, to those

who have some acquaintance with algebra.

By number is here meant what is called abstract number, which

merely conveys the notion of limes or repetitions, considered inde-

pendently of the things counted or repeated. By magnitudey or

quantity, is meant a thing presented to us, not as to its form, if it

have form, or as to colour, weight, or any other circumstance, but

simply as that which is made up of parts, not differing from the whole

in any thing but in being less ; so that, if we consider separately a

part and the whole, we have only two inferences :

The part is less than the whole.

The whole is greater than the part.

Every thing we can see or feel presents to us the notion of mag-

nitude or quantity. And here we must observe, that we have to pick

our words from among those in common use, which never have very

precise meanings. For instance, we have magnitude, the nearest

English word to which is greatness ; and quantity, for which the

word, if it existed, should be so-much-ness. These words are of the

same meaning, and the more indefinite we now leave them (except

only in assigning that they are to be considered as applied to any

thing which can be made more or less), the better for our purpose

;

since it is the object of this treatise to deduce from that indefinite

notion a method of making mathematical comparisons of quantities,

by aid of the notion of number.

Upon two magnitudes, our senses will enable us to draw one or

other of the following conclusions :

1. The first is sensibly greater than the second.

2. The first is sensibly less than the second.
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3. The first is sensibly equal to the second ; meaning that the dif-

ference, if any, is so small that our senses cannot perceive it. This is

what is meant by equality of magnitudes in common life. The English

foot and the Florence foot are equal for common purposes : they

differ by about the twentieth part of an inch, which in a foot is called

nothing.

Perfect equality is a mathematical conception, which never can be

absolutely verified in practice ; for so long as the senses cannot per-

ceive a certain quantity, be it ever so small, so long it must always be

possible that two quantities, which appear equal, may differ by as

much as the imperceptible quantity. But we are not reasoning upon

what we can carry into effect, but upon the conceptions of our own

minds, which are the exact limits we are led to imagine by the rough

processes of our hands. The following, then, is the postulate upon

which we construct our results :

Ani/ one magnitude being given, let it be granted that any number

of others may befound, each of which is {positively and mathematically)

equal to the first.

Let A represent a magnitude— not as in algebra, the number of

units which it contains, but the magnitude itself— so that if it be, for

instance, weight of which we are speaking, A is not a number of

pounds, but the weight itself. Let B represent another magnitude of

the same kind ; we can then make a third magnitude, either by putting

the two magnitudes together, or by taking away from the greater a

magnitude equal to the less. Let these be represented by A -j- B and

A— B, A being supposed the greater. We can also construct other

magnitudes, by taking a number of magnitudes each equal to A, and

putting any number of them together. Thus we have

A + A which abbreviate into 2 A
A-l-A + A 3A
A + A-j-A + A 4A

and so on. We have thus a set of magnitudes, depending upon A,

and all known when A is known ; namely,

A 2A 3A 4A 5A &c.

which we can carry as far as we please. These (except the first) are

distinguished from all other magnitudes by the name oi multiples ofA

;

and it is evident that they increase continually. Let the preceding be
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called the scale ofmultiples ofA. It is clear that the multiples ofmul-

tiples are multiples ; thus, 7 times 3A is 21 A, in times nA is (w?n)A,

where mn is the arithmetical product of the whole numbers m and n.

The following propositions may then be proved.

Prop. I. If A be made up of B and C, then any multiple of A
is made up of the same multiples of B and C ; for 2 A must be made

up of

B C B C

of which B and B make 2 B, C and C make 2 C ; so that 2A is made

lip of 2B and 2C. Similarly, 3A is made up of

B C B C B C
or of 3B and 3C.

Corollary. Hence it follows, that if A be less than B by C, any

multiple of A is less than the same multiple of B by the same mul-

tiple of C. For, since A is less than B by C, A and C together make

up B ; therefore, 2A and 2 C make up 2 B, or 2A is less than 2B by

2 C. The algebraical representations of these theorems are as follows :

If A = B-|-C mA = mB + ?wC

If A = B-C 7wA= mB-?wC
m being any of the numbers 2, 3, 4, &c

Prop. II. However small A may be, or however great B may

be, the multiples in the scale

A, 2 A, 3 A, 4 A, 5 A, &c.

will come in time to exceed B, by continuing the scale sufficiently

far : B and A being magnitudes of the same kind. This is a pro-

position which must be considered as self-evident : it must be re-

membered that B remains the same, while we pass from one multiple

of A to the next. Put feet together and we shall come in time to

exceed any number of miles, say a thousand. But the best illustration

of the reason why we formally put forward so self-evident a pro-

position, will be to remark, that it is not every way of adding mag-

nitude to magnitude without end, which will enable us to surpass

any given magnitude. To a magnitude add its half; to that sum add

half of the half; to which add the half of the last: and so on. No

continuation of this process, were it performed a hundred million of

times, could ever double the first magnitude.
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Prop. III. If A be greater than B, any multiple of A is greater

than the same multiple of B. This follows from Prop. I. And if A
be less than B, any multiple of A is less than the same multiple of B.

This follows from the corollary, Prop. I. And if A be equal to B,

any multiple of A is equal to the same multiple of B. This is self-

evident.

Prop. IV. If any multiple of A be greater than (equal to, or less

than) the same multiple of B, then A is greater than (equal to, or

less than) B. For example, let 4 A be greater than 4 B ; then A
must be greater than B; for, if not, 4A would be equal to, or less

than, 4 B (Prop. lit.).

Prop. V. If from a magnitude the greater part be taken away;

and if from the remainder the greater part of itself be taken away, and

so on : the given magnitude may thus be made as small as we please,

meaning as small as, or smaller than, any second magnitude we

choose to name.

Let A and Z be the two magnitudes, and let A diminished by

more than its half be B, then 2 B is less than A. Let B diminished

by more than half be C ; then 2C is less than B, 4C is less than 2 B,

and still more less than A. Let C diminished by more than its half

be D, then 2 D is less than C, 8 D is less than 4 C, and still more

than A. This process must end by bringing one of the quantities

A, B, C, D, &c. below Z in magnitude. For, if not, let A, B, C, &c.

always remain greater than Z. Then, since 2B, 4C, 8 D, 16E, &c.

are all less than A (just proved) still more must 2Z, 4Z, 8Z, 16Z,

&c. be less than A. But this cannot be ; therefore, one of the set A,

B, C, &c. must be less than Z.

[The reductio ad absurdum, as this sort of argument is usually

called, is a difficult form of a simple inference. Suppose it proved

that whenever P is Q, then X is Y. It follows that whenever X is

not y, P is not Q. It is usually held enough to say, for if P were Q
X would be Y. But the form in which Euclid argues, supposes an

opponent ; and the whole argument then stands as follows. " When
X is Y, you grant that P is Q ; but you grant that P is not Q. I say

that X is not Y. If you deny this you must affirm that X is Y, of

which you admit it to be a consequence that P is Q. But you grant

that P is not Q ; therefore, you say at one time that P is Q and that

P is not Q. Consequently, one or other of your assertions is wrong,

B 2
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either ' P is not Q' or ' X is Y/ If the first be right, the second

is wrong : lliat is, ' X is not Y ' is right."

The preceding argument runs as follows ;—when A, B, C, &c. are

all greater than Z, then 2Z, 4Z, &c. are all less than A: but 2Z,

4 Z, &c. are not all less than A ; therefore, A, B, C, &c. are not all

greater than Z].

Corollary, The preceding proposition is equally true when,

iistead of taking more than the half at each step, we take the half

itself in some or all of the steps.

Prop. VI. If there be two magnitudes of the same kind, A and

B, and if the scales of multiples be formed

A, 2 A, 3 A, &c. B, 2B, 3B, &c.

then one of these two things must be true; either, there are mul-

tiples in the first scale which are equal to multiples in the second

scale ; or, there are multiples in the first scale which are as nearly-

equal as we please to multiples (not the same perhaps) in the second

set: that is, we can find one of the first set, say m A, which shall

either be equal to another in the second set, say nB, or shall exceed

or fall short of it by a quantity less than a given quantity Z, which we

may name as small as we please.

Let us take a multiple out of each set, any we please, say pA. and

gB. IfjsAandjBbe equal, the first part of the alternative exists;

if not, one must exceed the other. Let pA exceed q B, say by E ;

then we have

;?A = ^B + E (1)

Now E is either less than B, or equal to B, or greater than B. If

tlie first, let it remain for the present; if the second, we have

pA = (9- + 1) B, or the first alternative exists : if the third, then B

can be so multiplied as to exceed E. Let (^ + 1) B be the first

multiple of B which exceeds E ; that is, let the next below, or t B,

be less than E, say by G, then we have

E=^B + G pA = ^B + ^B + G
or j?A = (^ + OB + G

Now G must be less than B ; for E or ^B + G is less than (^ + 1) B,

or ^B + B. We have then made this first step (observe that q }- t'ls



NUMBER AND MAGNITUDE. 7

only so7ne multiple of B; call itrB). Either the first alternative

exists, or we can find pA and r B, so that

pA = rB + G where G is less than B (2)

Now G can be so multiplied as to exceed B ; let uG and (v + 1) G
be the multiples of G, between which B lies, so that

?;G is less than B, say 2J G = B — K
(v + \)Q is greater than B, say ?;G +G = B + L

and it follows that K4-L= G;for since (v+l)G and vG differ

by G, if a magnitude lie between them, their difference must be made

up of the excess of that magnitude over the lesser, together with its

defect from the greater. Consequently, either K and L are both

halves of G, or one of them falls short of the half. Suppose K is less

than the half of G : then take both sides of (2), v times, and we have

t;^A = v/'B+vG
or zjpA = z?rB + B —

K

or vpA. = (y r -f I) B — K (K less than half G)

But if L be less than the half of G, take both sides of (2) t; + 1 times

which gives

(y + l)pA = (v-hl)rB+(v+\)G

or {v+l)pA= zTTi-rB + B + L

or V+l pA = (v+1 7* + 1)B + L (L less than half G)

If K and L are both halves of G, we may take either. And if (a case

not yet included) a multiple of G, uG, be exactly equal to B, we

have then

vpA = vrB + vG = (vr + 1) B
which gives the first alternative. Consequently, we either prove the

first alternative, or we reduce the equation

pA = rB + G (G less than B)

to an equation of the form

p'A = r'B ± G' ^G' not greater than the half of G.

We may now proceed as before ; but, to exemplify all the cases that

may arise, let us take
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p"A = /A±G"|
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p'A =:/B~G'
If y'G' be exactly B, we prove the first alternative, as before ; but if

B lie between v'G' and (v'+l) G', let us suppose

and K'+L'= G'

as before,

in which one of the two, K' or L', will not be greater than the half of

G', so that we obtain by the same process, an equation of the form

G" not greater than

the half of G'.

By proceeding in this way, we prove either, 1. The first alternative

of the proposition; or, 2. the possibility of forming a continued set

of equations

pA=qB±G, pA = q'B±G', p"A = q"B±G'\ &c.

where, in the scale of quantities G, G', G", &c., no one exceeds the

half of the preceding. Consequently, we may (unless interrupted by

the first alternative) carry on this process until one of the quantities

G, G', G" &c. is smaller than Z (Prop. V.) that is, we have either

the first or second alternative of the problem. And exactly the same

demonstration may be applied to the case, where at the outset

j!>A = ^B— E.

This proposition proves nothing of a single magnitude, but it

establishes two apparently very distinct relations between magnitudes

considered in pairs. Tliere may be cases in which the first alternative

is established at last : and there may be cases in which it is never

established. We shall first take the case in which the first alternative

is established.

Suppose it ascertained by the preceding process that

8A = 5B

Here is an arithmetical equation between the magnitudes : and there-

fore any processes of concrete arithmetic will apply. Take the

40th part (8x5 = 40) of both sides,

,. , . 8A 5B A B
which gives

40 ="4^ °^ 5=8-
consequently the fifth part of A is the same as the eighth part of B,

or that which is contained 5 times in A is also that which is contained
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8 times in B. Let this fifth ofA or eighth of B be called M; then

A= 5M, B = 8M, and A and Bare both multiples ofM. Con-

sequently, when the first alternative of Prop. VI. exists, both A and

B are multiples of some third magnitude M. The converse is readily

proved, namely, that when A and B are both multiples of any third

magnitude, the first alternative of Prop. VI. is true. For if A=j:M,

B=3/M, we have yA= yjrM, xB=zxi/Mt or i/A= xB. The

term measure is used conversely to multiple, thus : if A be a multiple

of M, M is said to be a measure of B. Hence in the case we are

now considering, A and B have a common measure^ and are said to

be commensurable. We have therefore shewn that all commensur-

able magnitudes, and commensurable magnitudes only, satisfy this

first alternative.

There remains, then, only the second case to consider, which it is

now evident contains those magnitudes (if any such there be) which

have no common measure whatsoever. The question therefore is,

Are there such things as incommensurable magnitudes? On this

point the second alternative shews that our senses cannot judge, for

let Z be the least magnitude of the kind in question, which they are

capable of perceiving (of course with the best telescopes, or other

means of magnifying small quantities which can be obtained) then

we know that;)A may be made to differ from ^B by less than Z,

that is, we may say that all magnitudes are sensibli/ commensurable.

But it evidently does not follow that all magnitudes are mathema-

tically commensurable; and it has been shewn, by process of de-

monstration, that there are * incommensurable quantities in such

abundance, that take almost any process of geometry we please, the

odds are immense against any two results being commensurable.

The suspicion that all magnitudes must be commensurable led to

the attempt, which lasted for centuries, to find the exact ratio of the

circumference of a circle to its diameter. And even now, though the

adventure is never tried by those who have knowledge enough to

read demonstration of its impossibility, no small number of persons

• Legendre, and others before him, have shewn that the diameter

and circumference of a circle are incommensurable ; and the student will

find in my Algebra, p. 98, or in the Lib. Useful Know., treatise on the

Study of Mathematics, p. 81, proof that the side and diagonal of a square

are incommensurables. Also in Legendre 's Geometry, or Sir D. Brew-

ster's Translation.
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exercise themselves by endeavouring to make an elementary ac-

quaintance with geometry (and sometimes none at all) overcome this

difficulty. It is our business here to shew how strict deductions

may be made upon quantities which are incommensurable, with the

same facility, and in the same manner, as upon commensurables. If

we call any length (say that known by the name of a foot), the unit

of its kind, and denote it in calculation by 1, we must call twice such

a magnitude 2, and so on ; half such a magnitude i, and so on. We
may then apply arithmetic, every possible subject of which is con-

tained in the following infinitely extended table.

1 2 &c.

1

2
1

3

2
2 &c.

1

3

2

3
1

4

3

5

3
2 &c.

1

4

&c.

2

4

3

4

&c.

1
5

4

&C.

6

4

7

4

&c.

2 &c.

And every length which is commensurable with the foot is in-

cluded, in many different forms, in this table. Let F represent the

foot, L any other length, let M be their common measure : let

F=/M, L = ZM, then ZF=/M, or L

L = 7; F =
J.

when F is called 1.

But it is plain that we cannot, by any arithmetic of length founded

upon the foot as a unit, draw conclusions as to lengths which are in-

commensurable with the foot, though we can perhaps do so for any

practical purpose. Let L be a length which is such, and let Z be a

length so small as to be immaterial for the purpose in question. Then,

we can determine I andy, so that

/L=ZF±G (G less than Z)

L = iF±J:

so that, by assuming L= -7.F, we commit an error, in excess or defect,

less than G, and therefore immaterial. With such a process many

minds would rest contented : but there is a consideration which will
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1

Stand in the way of perfect satisfaction, or at least ought to do so.

Granting that in the preceding case the error at the outset is imma-

terial, let us suppose the student disposed to substitute for all incom-

mensurables, magnitudes very near to them which are commensurables,

and thus to continue his career till he comes to the highest branches

of applied mathematics. Let us suppose a set of processes, beginning

in arithmetic, continued through algebra, the differential calculus, &c.,

up to a point in optics or astronomy, in a series of results, embracing,

we may suppose, ten thousand inferences. If he set out with an

erroneous method, what security has he that the error will not be mul-

tiplied ten thousand fold at the end, and thus become of perceptible

magnitude. If somebody acquainted with the subject have told him

that it will not so happen, he might as well skip the intermediate

sciences and receive the result he wants to obtain on the authority of

that person, as study them in a manner, the correctness or incorrectness

of which depends on that person's authority. If he answer that the

result, namely, such multiplication of errors, appears extremely im-

probable, it may be replied, firstly., that that is more than he can

undertake to decide ; secondly, that by pursuing his mathematical

studies on such a presumption, he makes all the pure sciences present

probable results only, not demonstrated results ; more probable, per-

haps, than many parts of history, but resting on an impression which

must, in his mind, be the result of testimony.

It appears, however, that we may expect series of collateral results,

the one for commensurables, the other for incommensurables, and

presenting great resemblances to each other ; for we may, by any

alteration, however minute, convert the latter kind of magnitude into

the former. But this we may prevent, by extending our notions of

arithmetical operations, or rather by applying to magnitude processes

which are usually applied to number only, as follows :

If we examine the processes of arithmetic, we find, 1st, Addition

and substraction, to which abstract number is not necessary, since the

concrete magnitudes themselves can be added or subtracted. 2d, Mul-

tiplication, the raising of powers and the extraction of roots, in all of

which abstract number is essentially supposed to be the subject of

operation. 3d, Division, in which it is not necessary to suppose

abstract number in finding the whole part of the quotient, but in

which we cannot, without reference to numbers, compare the remain-

der and divisor, in order to form the finishing fraction of the quotient.



12 CONNEXION OF

4th, The process of finding the greatest common measure of two quan-

tities, in which the remainder is not compared with the divisor, except

in a manner which is as applicable to the case of concrete magnitudes

as of abstract numbers. To shew this, we shall demonstrate the me-

thod of finding the greatest common measure of two magnitudes.

Let A and B be two magnitudes, which have a common measure

M ; let A= a M, B= iM . Then, it is clear that

a;A + ?/B or ixa+yh)M, a:A— ?/B or (j;a--yZ>)M

have the same measure, unless it should happen that in the latter case

aro= i/6, in which case xA=3/B. Let A be the greater of the two,

and let A contain B more than /5 and less than /3 -f- 1 times, so that

A=/3B + B', when B' is less than B. Then B' being A— /3B, is

measured by M. Let B contain B' more than p>' and less than )3' + 1

times ; or let B=/5'B'+ B'' where B" is less than B'. Let B' contain

B" more than /S" times, &c., or let B'=/3"B" -f B'", and so on. And

B" or B— /i'B'is measured by M, &c. We have then the following

conditions

:

A is a multiple of M
B M

A =
i8 B + B' B' < B, but is a multiple of M

B =/3'B + B" B" <B'

B'=/3"B'+B"' B' <B''

Now, since B B' B" are decreasing quantities, and all multiples

of M, they are all to be found in the series,

M, 2M, 3M, 4M, &c.

in which continual decrease must bring us at last to nothing, or we

must end with an equation of the form.*

that is, one remainder is a multiple of the next. To take a case, let

the fifth equation finish the process ; so that, in addition to the pre-

ceding, we have

B" = /3"'B"' H- B^^

B'" = /3'^B'^

* When a letter denotes an indefinite number of accents, it is dis-

tinguished from an exponent by being placed iu brackets, and higher

numbers of accents than three are usually denoted by Roman numerals.
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In the fourth, substitute B'" from the fifth, giving

In the third, substitute B" and B'" as found, giving

B' = (/3" /3"; /3'^ + (3" + (3^') B^^

In the second, substitute B' and B" as found, giving

B = ((3' ^'^'"(3^'' + /3'/3" + /3'/3^^ + ^'"/3^^ + 1) B^^

In the first, substitute B and B' as found, giving

Consequently, Bi^ is a common measure of A and B; but, since M at

the outset is any common measure we please, let it be the greatest

common measure. Then B^^ must be M, for it is in the series M,
2 M, &c. ; and were it any other than M, there would be B*'' a com-

mon measure, greater than the greatest. Hence this process deter-

mines the greatest common measure, and also the number of times

which each of the two, A and B, contains the greatest common

measure.

It is here most essential to observe, that this whole process is in-

dependent of any arithmetic, except pure addition and subtraction,

which can be performed on the magnitudes themselves, without any

numerical relation whatsoever; the only thing required being the

axiom in page 3. We shall actually exemplify this on two right

lines.

X y
A h -^ '-\

B h 1

z k

A = B + (xij) B = {xi/) + (zk) {xy) = 2{zk)

Therefore B = ^{zk) A = 6{zk)

In this case, by actual measurement (supposed geometrically exact)

B and A are found to be respectively 3 and 5 times zk.

When the preceding process has an end, we therefore detect the

greatest common measure ; and we have shewn, that where there is a

common measure, the process must give it, with the converse. Con-

sequently, in the case where there is no common measure, this process

must go on for ever, and we have an interminable series of equations,

A=:/3BH-B', B=/3'B'-i-B", B'=^"B"+B'", &c., the conditions of

c
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which are, tliat B, B', B", B'", &c., are a continually decreasing

series, though it does not follow that each one was less than the half

of the preceding. We shall now examine the effect of successive sub-

stitutions from the beginning, first making the following remark : If

there be any two incommensurable quantities A and B, of which A is

the greater, then there follows an interminable set of whole numbers,

/S, iS', /3", .... which are not subject to any particular law, but can

be found when A and B are given ; and an interminable set of quan-

tities, A, B, B', B", .... connected with the former by this law, that

A contains B between /3 and /3 -[- 1 times ; B contains B' between /S'

and /S'+l times, and so on.

We have B' = A— jSB

B" = B-/3'B' = B-^ (A-^B)
or . B" = (/3/3'+l)B-/3'A

B"'= B'-/3"B" = A-^B-(/3/3'+ l)/3"B + /5'/r'A

= (/3'/3"-hl)A-(/3/3'/3" + /3-F/3")B

and thus we go on representing the remainders alternately, in the form

pA— qB and qB—pA. We may easily find the law of the co-

efficients, as follows :

Suppose we come to

B("> = qB-pA
B(n+i) = p'A-r/B

Then we have B^") = /3("+i) B<"+i)
-f- B<"+2)

or B('»+2> = B<"> — /3("+^) B(»+i)

= ^B-pA-|8("+i) (p'A-q'B)

= {l3("+^)q' + q)B-{l3<''+'^p'+p)A

or if, continuing the preceding notation, we suppose

we have f = /3("+i) p -h p q" = /3("+'> q' + q

so that, if we write the values of B', B", .... with the following no-

tation, putting opposite to each the /3(**) which occursfor thefirst time

in the B(") of the equation ; namely,

B' =;?iA-^iB ^

B" = q^B-^p^A ^
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B'" ^p,A-^q,B ^'

B'^ =q^B^p^A ^"'

&c. &c. &c.

we have the following uniform method of forming pn and qn for dif-

ferent values of n in succession.

i?i = 1 ^1 = /3

po = /3' ^2 = /3'/3 + 1

Ps = /3>2 -\-pi 93 = {^'92 + 5'l

&c. &c. &c. See.

in which it is plain, from the method of formation, that p^ p^ &c.

y, ^2 &c. are increasing whole numbers, so that we may continue,

supposing B' B" .... never fail, till pn and qn are greater than any

number named. And since B' B'' .... are all less than B, and

therefore less than A, we have the following succession of results,

ad infinitum.

piA is greater than ^'iB but less than (§'i -f 1)B

p^A is less than q^B but greater than (q^— 1)B

p^A is greater than ^'sB but less than {q^+l)^
&c. &c. &c.

Hence, it appears that

A is greater than

less than

greater than

less than — B &c. ad inf.

Now, from this table of relations, we can determine whether any

given multiple of A, ^A, is greater or less than any given multiple of

B, 1/ B. To do this we must inquire between what two consecutive

multiples of B does xA lie.

We now proceed as follows :

1. We must shew that any fraction, such as

-7—— lies between r and —
b+n n

1l
Pi
B

1± B

Pz
B
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unless where the two latter are equal, in which case the first also is

the same. The preceding must be true if

a + m lies between ^ (J -f w) and - (b + n)

or a -h -r- and — -4- m
b n

, ,
on hm

or a + 7w + __wiand a+m+ a
nam -, m I a

or a + m+n-r — n- and a + m + b b-r
n n b

which is evidently true : for if - be greater than -, the first is greater

than a + in, and the second less ; if =- be less than — , vice versa.
n

2. We now see that

- -^ £^ li^« between ^ and ^ -

Pa I^Pi+Pi A"i?2 Pi

^^ and -^
Pa Pi

1± or
^'"^^-^^^

Si Si
Pa /3">3+/>2 Pz Pi

and so on. Consequently, to arrange all the fractions thus con-

sidered, in order of magnitude, we must write them thus,

ll Si 2± Si Si Si
Pi Pi Ps Pe P4 P2

3

.

We can thus bring two fractions as near together as we please

:

to prove this, take three consecutive fractions

gm gm+i /gm+2 ^^ (^^"^ gm+1 +gm
or

~tgm \

-{PmjPm Pm+1 \pm+2 /3^'"+^>J9m+l + fn

which reduced to a common denominator, the first and second, and

the second and third, give

gm Pm+l gm+l Pm

Pm pm+1 Pm+1 fm

A (^^""^^^gm+l Pm+1 + Pm gm+l ^^^ ^^"^"^^^gm+l Pm+l + Pm+1 gm

Pm+1 Pm+2 Pm+l pm+2

in which it is clear that the difference of the numerators is the same

in each couple, but that if the first numerator be the greater of the
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first couple, the second numerator is that of the second ; a result we

might have foreseen, having proved that

£^i±i lies between ^-^^ and ^.

Hence it follows that the numerator of the difference of any two

successive fractions of the set

9i_ go: 93

Pi P2 P3

is the same as that of the difference immediately preceding, that is,

the difference of — and ^^^^ has the same numerator as
Pn pn-l

the difference of ^^^ and
^"~^

which has the same
Pn-l Pn-2

numerator as the difference of — and — ; but
P2 Pi

9i ^2 _ 1 /3' _ 1

therefore this numerator of the differences is always 1, or

?!L and ^-^^ differ by
Pn Pn+1 Pn Pn+1

Hence the difference may be made as small as we please, or smaller

than any fraction — named by us, since pn itself can be made greater

than m, much more pn pn+i-

4. These fractions cannot for ever lie alternately on one side and

V
the other of any given fraction -.

For if this were possible, then, since A lies between

^JLB and ^^^B
Pn Pn+1

V
and since by the supposition -B does the same, and since the couple

just mentioned can be made to differ, by as small a fraction of B as

we please, then we should have

A = -B ± K
c 2
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where K may be made as small as we please. Now this is saying

V
that A= - B ; for A must either be

X

-B or -B ih some definite magnitude;

but the latter it is not ; for the supposition we are trying leads to

A = -B + a magnitude as small as we please.

Consequently, our supposition that the series of fractions lie alter-

V
nately on one side and the .other of a definite fraction -, leads to the

X

conclusion that A and B are commensurable, or the process of finding

B' B" .... finishes, as we have shewn. But it does not finish, by

hypothesis; therefore the series of fractions cannot lie alternately

V
on one side and the other of -.

X

We can now shew between what multiples of B j^A must lie. It

is clear that

a:A lies between -^^B and ^Jlt±l^

:

Pn Pn+]

now it is not possible that any whole number v should always lie

between —~ and
^""^^

; for if so, then would
pn pn+i

- always lie between — and
""-

•I" Pn pn+l

which has been proved to be impossible. Consequently,

^^"R A '^9"+i"R (which approach each other

Pn Pn+i without limit)

must come at last always to lie between two multiples of B; and

still more must x A, which lies between the7n. Hence, by proceeding

far enough, we can always find between what multiples of B lies x A;
and thence whether xA is greater or less than 3^ B.

We have thus divided all pairs of magnitudes into two classes,

1. Commensurahles, in which we can always say that A = -B,

(J
and p being whole numbers, and can always tell exactly by what

fraction of A or B, a-A exceeds or falls short ofj/B. For we have
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xA^yB= (a;-2/^)A= (a;^-?/)B if xA>yB

(yB-a;A)= (|y-^)A= (y-^|)B if a;A<yB

2. Incommensurables, in which we can never say A = - B, but
P

in which we can assign a series of fractions alternately increasing and

decreasing, but making less and less change at every step,

ll is ^
Pi P2 Pa

and such that A is greater than— B, less than—B, &c. ad infinitum

:

Pi P2
so that we can always assign

A = ^B + K
Pn

where K is less than any magnitude we name ; and such that we can

always tell by them whether ^A exceeds or falls short of z/B, but not

exactly how much.

Let us suppose, as an example, that we have two magnitudes A
and B, which tried by the process in page 13, give

A = B + B', B = B' + B ', B' = B" + B", &c. ad inf.

or suppose /3 = 1, /3' = 1, /3" = 1, &c. ad inf.

Hence the several values ofp and q are Pi= l, ^3= 1, ^3= 2, &c.

as in this table,

12 3 4 5 6 7 8 9 10 11 12 ^—

—

occ.

p 1 1 2 3 5 8 13 21 34 55 89 144

5- 1 2 3 5 8 13 21 34 55 89 144 233 &c.

a>b<2B>^b<|b>|b<Hb &c.

Hence A lies between B and 2B
2A 3B .. 4B
3A 4B .. 5B
4A 6B .. 7B
5A 8B .. 9B&C.

If we wish to know between what multiples of B 100A lies,

we find
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A> W^ < liB; lOOA > 16lgB < 161 li|B

or 100 A lies between 161 B and 162 B.

We can thus form what we may call a relative multiple scale made

by writing down the multiples of A, and inserting the multiples of

B in their proper places; or vice versa. In the instance just given

the commencement of this scale is

B, A, 2B, 3B, 2A, 4B, 3A, 5B, 6B, 4A, 7B, 8B, 5A, 9B, &c.

which we may continue as far as we please by simple arithmetic. If

the magnitudes in question be lines, we may represent this multiple

scale as follows

:

01 1—)fH B< 1 )H \-^
1 ^ 1

Measuring from O, the crosses mark off multiples of A, and the bars

multiples of B. Thus

01i = B Ol2=2B Ol3=3B&c.
Oxi = A 0x2= 2A Ox3 = 3A&c.

We shall now proceed to some considerations connected with

a multiple scale, for the purpose of accustoming the mind of the

student to its consideration. We may imagine a scale like the pre-

ceding to be equivalent to an infinite number of assertions or nega-

tions, each one connected with the interval of magnitude lying between

two multiples of B. Thus, the preceding scale contains the following

list ad infinitum.

^ 1. Between and B lies no multiple of A
2. Between B and 2B lies A
3. Between 2B and 3B lies no multiple of A
4. Between 3B and 4B lies 2A
&c. &c. &c. &c.

Now, on this we remark, 1st, That the negatives of the above

series, though they appear at first to prove nothing, yet in reality

have each an infinite number of negative consequences. From the

third assertion of the preceding list, namely, neither A, nor 2 A, nor

3 A, &c. lies between 2B and 3B, we immediately deduce all the

2
following : A does not lie between 2 B and 3 B, nor between - B and
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q 2 3 2 3
-B, nor between -B and - B, nor between -B and -B, &c. &c.
2 ' 3 3 ' 4 4'
2d, Observe that every affirmative assertion in the above includes a

certain number of the affirmative ones which precede, and an infinite

number of parts of the negative ones preceding and following. For

instance, we find that 100A lies between 161 B and 162 B, or A lies

between —B and B, that is between B and 2B. Again, 2A
100 100 '

322 324
lies between — B and B, or between 3B and 4B. Similarly,

100 100 '
^

3A lies between -—B and -— B, or between 4B and 5B; and it

100 100 '

might thus seem at first as if every affirmation made all the affirm-

ations preceding its necessary consequences. But if we try 90A by

the preceding, we shall find that it lies between

^^^^^B and il^B or between 144 B and 146 B
100 100

so that we can only affirm 90A to lie either between 144 B and

145 B, or between 145 B and 146 B, but we do not (from this) know

which. But we can say that 90A does not lie between 146 B and

147 B, or between 147 B and 148 B, &c. The points at which any

affirmation does not determine those preceding may be thus found.

Let /cA lie between ^B and (Z+1)B; or

A lies between -B and —r—

B

mk -T-B and ^ ^
If -7^ and —-— lie between t and ^+1, then mX lies between

^B and {t +1)B: but if, in going from the first to the second, we pass

through a whole number, or iiml, divided by /c, gives a quotient t

and remainder r, and m(J,-\-\\ divided by /c, gives a quotient t-{-l

and remainder r', then we have

T "- ^'^l ~r~ ~ ^"^^ "^ k

or m = k — r -i-r' or r + 171 = k-\-r

and in all cases where r-{-m is greater than k, this condition can be

fulfilled. The process may be shortened, by using instead of / the
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remainder arising from dividing / by k. Suppose, for instance, it is

required to determine what preceding affirmatives are ascertained by

the proposition 10A lies between 33 B and 34 B. We have then

/=33, kzszlO, remainder of /-r-/cr= 3.

7W = 2 t= 6 r= 6 2A lies between 6B and 7B
m=S #= 9 r= 9

m= 4 t= l3 7'= 2 4A 13B and 14B
m = 5 t=l6 r= 5 5A 16B and 17B
m = 6 t= l9 r= S

w= 7 jJ=:23 r=l 7A 23B and 24B
m=zS t=z26 rr=4

?w=9 ^= 29 r-7
By proceeding thus, it will appear that there is no perceptible law

regulating the places of A, 2 A, among B, 2B, &c., derivable

from the sole condition of /cA lying between IB and (/+1) B. Never-

tlieless, it is easy to prove, that if all the rest of the relative scale be

given from and after any given point, that the whole of the preceding

part can then be determined. For, suppose /cB to be the commence-

ment of the part of the scale given, and let the place ofmA be asked

for, which precedes A A, the first multiple of A appearing in the

scale. Multiply m byg, so that wg shall be greater than A. Then

mgA appears in the portion of the scale given, say between w;B and

(w; + l)B. Therefore

mA lies between -B and B
S g

and if — and lie between t and ^ + 1 , the question is settled

;

o o
W

but this must always be the case, if we include the case where - or

is itself a whole number.
g
From all that precedes, we draw the following conclusions :

1 . Having given A and B, two incommensurable magnitudes of

the same species (both lengths, both weights, &c.), we can assign, by

a processes embling that of finding the greatest common measure in

arithmetic, the relative scale of multiples of A and B, which points

out between what two multiples of B any given multiple of A lies, or

vice versa.
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2. Any part of the beginning of this scale being deficient, we can

construct it by means of the rest.

3. We can find a magnitude which shall be commensurable with

A, differing from B by less than any magnitude we name; and can

assign the fraction which it is of A

.

Given the two magnitudes, their relative multiple scale is given ;

but when the scale is given, the two magnitudes are not given. For

it is easily proved that there is an infinite number of couples of mag-

nitudes which have the same scale with any given one. Let the scale

of A and B be given : then will the scale of- A and - B be the same,^
9 9

where p and g are any whole numbers whatsoever.

For if ^A lie between IB and (I -\- l)B

then ;fe ^A lies between Z^B and (Z + 1)^B
9 9

^ ^ ' q

or making ^A = A' ^ B = B'
9 9

kA' lies between ZB' and (Z+1)B'

whence the scale of A and B is the same as that of A' and B' for any

value of k.

What is it, then, which is given when the scale is given ? Not the

magnitudes themselves ; for if the scale belong to A and B, it also

P P
belongs to every one of the infinite cases of -A and -B. The scale,

therefore, only defines such a relation between the magnitudes as be-

longs to 2 A and 2B, 3A and SB, &c., as well as to A and B. It is

usual to call this relation the proportion between the two quantities in

common life, and in mathematics their ratio ; in Euclid the terra is

X'oyo?.

Two magnitudes, A and B, are said to have the same ratio as

two other magnitudes, P and Q, when the relative scales of the two

are the same ; that is, when the multiples of Q are distributed as to

magnitude among those of P, in the same way precisely as those of B
are distributed among those of A. And P and Q may be two mag-

nitudes of one kind, two areas, for instance, while A and B may be of

another, two lines, for instance.

It is easy to shew that this accordance of scales is equivalent to

the common idea of proportion, such as it would become if we took
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all means of companson away, except that of multiples. Let us

imagine A and B to be two lines in a picture, and P and Q the two

corresponding lines in what is meant for an exact copy on a larger

scale. Set an artist to determine whether P and Q are in the proper

proportion to each other, without any assistance except the means of

repeating A, B, P, Q, as many times as he pleases. He will reason

as follows :
" If Q be ever so little out of proportion to P, though it

may not be visible to the eye, yet every multiplication of the two will

increase the error, so that at last it will become perceptible. If there

be a line 100A laid down in the first picture, and if it be found to lie

between 51 B and 52 B, then should 100 P lie between 51 Q and

52 Q. But if Q be a little wrong, then 100 P may not lie between

51 Q and 52 Q."

It only remains to see whether this definition of proportion will

include the case of commensurable quantities. These satisfy such an

equation as /cA = /B, k and / being two whole numbers, and it is

easy to shew that the whole relative scale is divided into an infinite

succession of similar portions. Firstly, this one equation determines

the whole scale ; for we have

k k

or if — lie between ^and^+ 1, mA lies between t B and (^ + 1)B

if ^^ = t mA = tB

7
Let us suppose, for instance, A = - B. Then we have

A lies between B and 2B
2A 3B and 4B
3A 5B and 6B
4A is equal to 7B : or the scale is

B A 2B 3B 2A 4B 5B 3A 6B ^^4A
From this point the scale begins again in the same order. Thus,

the second portion is

^^ 8B 6A 9B lOB 6A IIB 12B 7A 13B ^j^
4A 8A

and so on ad infinitum. The arithmetical definition of A having the
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same ratio to B whicli P has to Q, is simply that of A being the

same fraction of B which P is of Q : or if

A =/b P =/q
k k

Now, since the scale depends entirely on r, it is the same for

both ; conversely, if the scale of A and B be the same as that of

P and Q, then if /i;A= /B, /cP must = /Q. Hence the two defi-

nitions are synonymous : if one applies, the other does also.

When the multiple scale ofA and B is the same as that of P and

Q, we have recognised the proportionality of A and B to P and Q.

But these scales may differ. The question now is, may they differ in

all possible ways, or how far will their manner of differing in one

part of the scale affect their manner of differing in others ? Am I, to

take an instance, at liberty to say, that there may be four magnitudes

such that 20A exceeds 18B, while 20 P falls short of 18Q; but that,

for the same magnitudes, 13A falls short of 17B, while 13 P exceeds

17 Q ? Such questions as this we proceed to try.

When only two things are possible, which cannot co-exist, each

is the complete and only contradiction of the other : the assertion of

one is a denial of the other, and vice versa. But when three different

things are possible, one only of which can be true, the assertion of

one contradicts both of the other two ; the denial of one does not

establish either of the other two.

The want of a common term, which may simply mean not less,

that is, either equal or greater, without specifying which, and so on,

causes some confusion in mathematical language. To remind the

student that not less does not mean greater, but either equal or

greater, we shall put such words in italics. Thus, not less and less,

not greater and greater, are complete contradictions : the denial of

one is the assertion of the other.

If A and B be two magnitudes of one kind, and P and Q two

others, of the same or another kind, such that

mA is less than 71 B, ?wP is not less than nQ

then it is impossible that there should be any multiples such that

wl'A is greater than n B, Tw'P is not greater than ^'Q

For we find, from the first of each pair.



26 CONNEXION OF

A is less than — B, A is greater than B •

still more is — B greater than — B or — greater than —
B, A is greater than —

;

772 '
°

w'

n

m - m m

But P is not less than — Q, P is not greater than —r Qm ° m
Now, all the four combinations of this latter assertion contradict

— is greater than —• ; as follows :

= — Q, F = — O, gives — = —

;

P greater than — Q, P = —
^, Q, gives — less than —-.

m '
m' m m

P = — Q, P less than — Q, gives — less than —

;

P greater than — Q, P less than —
•, Q, gives — less than —,

Hence the two suppositions above cannot be true together : the

happening of any one case of either proves every case of the other to

be impossible.

If we range all the possible assertions which can be made, we

have as follows :

Wl P is greater than nQ
mV \^ equal to wQ
mV is less than wQ

W«'P is greater than w'Q

rdV is equal to ?i'Q

rdV is less than w'Q

Four of these must be true, one out of each triad ; and there are

81 ways of taking one of each, so as to put four together. But we

shall take the sets A and a together, and find what inference we can

draw by taking one out of each.

As mA is greater than ?^B P3

A. 7WA is equal to nB p.

Ai mk is less than w B Pi

«3 mPi. is greater than ?^'B pt

^2 m'A. is equal to w'B Vi

H niK is less than w'B Ih

A3 ^3 proves nothing as to — and —7. It merely says that

— B and —; B are both exceeded by A, which may be whether
m m

— is greater than, equal to, or less than —,. The same for P3 p^
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A3 a^ proves —
,

greater than — ; as does P3 p^

A3 tti proves —7 greater than — ; as does P3 p^

A2 ^3 proves —7 less than — ; as does Pg p^

A2 «2 proves —
-,

equal to — ; as does Pg pg

A2 «! proves —7 greater than — ; as does Pg p^

Ai a^ proves —7 less than — ; as does P^ p

; as does P^ p^

neither does Pi Pi

Ai «2 proves —, less than

Ai tti proves nothing

;

Now, if we put these pairs together, or make pairs of assertions,

in the manner already done, we have 81 distinct sets of four asser-

tions, divisible into those which mat/ be true together, and those which

cannot be true together. An inconsequential supposition, such as

Agflg, may co-exist with any of the rest from the other set Vpi but

those which give —7- necessarily greater, equal to, or less than— in

the set A a, can only co-exist either with the similar ones from the

set P/), or with those which are inconsequential. Thus we have

VpA3 053 may be true with any marked

A3 Cf2 requires either P3J53,

A3fli

A2G3

•"2 ^2

Agfli

Ai«3

A^a 2

P3P3,

Ps/^s,

PsPs,

Psi^s.

P3P3,

Vzpl, Psi'i,

p^p.. Pai'i,

P2P3, P.?3,

Pai'j.

PsPa. Psi'i.

P2P3. P.i's,

'PiPz, Pli>3,

P2P1, or Pi;?!

P2;>i, •• Pii?i

Pii?2, •• Pii^i

•• Pi/^i

P2P1, •• Pi^i

Pi;?2, •• PlJOl

^lP2> " Pli^l

Ai «! may be true with any marked Pp

The remaining thirty cannot be true ; but it is unnecessary to specify
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them, as a simple induction from the preceding will shew how to

classify those which may and cannot be true. Attach an idea of

magnitude to the phrases greater^ equal, and less; say that " A is

greater than Bj" is higher than " A is equal to B," and this again

higher than " A is less than B" We have marked the highest

phrases by the highest numbers. Say that in AgOj, A3 «,, &c. (calling

A and a the antecedent clauses of any four marked A, a, P, p), the

antecedents are descending; in AgWg, Aga^, and A, a,, stationary

;

and in Aj Oj* Aj a^, &c. ascending. Then all the propositions which

imply the co-existence of any two antecedents, and any two conse-

quents of the form A a Pp,-may be divided into those which may be

true, and those which cannot be true, by the two following rules :

Ascending antecedents cannot have descending consequents.

Descending antecedents cannot have ascending consequents.

Precisely the same rules will apply if we take two propositions

A P for antecedents, and two others ap for consequents; as we may

either deduce in the same manner, or by simple inversion. For if

A« Pp, with any numerals subscribed, do not contradict either of the

preceding rules, neither will the corresponding case of A P aj5 do so,

and the contrary. Instances, Aj a^ P^pg and A, P3 a^p^ ; k^a^ ^zVi

and A2P3 a^p^y &c.

Let us then take a case of A, B, P, Q, in which we find one

ascending assertion relative to mA, wB, twP, nQ, for some particular

values of m and n ; for instance

* p rSA is less than 4B
^ ^ tsP is greater than 4Q

which, as we have seen, is never contradicted in form by any assertion

that can be true of any other multiples. These four quantities are

not proportionals: for 3 A being less than 4B, and 3P greater than

4Q, P cannot lie in the scale of P and Q in the same place as A in the

scale ofA and B. But to what more common notion can we assi-

milate this sort of relation between A, B, P, and Q, namely, that

all true assertions of the form (AP) are either ascending or stationary,

and never descending ? Have we any thing corresponding to this in

the arithmetic of commensurable quantities? Let us suppose A and

B commensurable, and also P and Q : say that
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t t'
Then 3-B is less than 4 B ; 3-Q is greater than 4Q;

- IS less than - ; -, is greater than - : -, is greater than -
V 3 V ^ 3 u V

or A is a less fraction of B than P is ofQ; which in arithmetic is

also said thus, A bears a less proportion to B than P does to Q, or

P bears to Q a greater proportion than A bears to B. Hence we get

the following definitions, in which we insert the previous definition of

proportion, and the accordance of the whole will be seen.

When all true assertions on (mA, wB) (mP, rzQ) are either

ascending or stationary, and never descending, A is said to have to B
a less ratio than P to Q; when always stationary, the same ratio;

when always descending or stationary, and never ascending, a greater

ratio.

This amounts in fact to the definition given by Euclid, the

opening part of whose Fifth Book we shall now make some extracts

from, with a few remarks.

Definition III. Ratio is a certain mutual habitude (jr^icis,

method of holding or having, mode or kind of existence) of two

magnitudes of the same kind, depending upon their quantuplicity

(^^tikixorvt, for which there is no English word ; it means relative

greatness, and is the substantive which refers to the number of times

or parts of times one is in the other).

In this definition, Euclid gives that sort of inexact notion of ratio

which defines it in commensurable quantities, and gives some light

as to its general meaning. It stands here like the definition of a

straight line, "that which lies evenly between its extreme points"

prior to the common notion, " two straight lines cannot enclose

space," which is the actual subsequent test of straightness. In most

of the editions of Euclid we see " Ratio is a mutual habitude of two

magnitudes with respect to quantityy^ which makes the definition

unmeaning. For quantity and magnitude in our language are very

nearly, if not quite, synonymous; or if any distinction can be drawn,

it is this : magnitude is the quantity of space in any part of space.

But as Euclid is here speaking of magnitude generally (not of space

magnitudes only) the words magnitude and quantity are the same.*

* Euclid again uses the word -rvXixorr,; (Book VI. def. 5) in a

manner which settles its meaning conclusively. The more advanced

reader may consult Wallis, Opera Mathematica, v. 11. p. 665.

D 2
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Definition IV. Magnitudes are said to have a ratio to each

other which can, being multiplied, exceed " one the other." This

means that quantities have a ratio when, any multiples of both being

taken, the relation of greater or less exists. It is usually rendered

" Two magnitudes are said to have a ratio when the lesser can be

multiplied so as to exceed the greater." But the above is literally

translated, and the sense here given to ratio makes the next definition

consistent. It is a way of expressing that the two magnitudes must

be of the same kind, which requires that the notion of greater and less

should be applicable to them. That this notion should be applicable

to the quantities themselves as well as their multiples, being the

necessary and sufficient condition of the possibility of the comparison

implied in the next definition, is here assumed * as the distinction of

quantities which have a ratio.

Definition V. Magnitudes are said to be in the same ratio

the first to the second, and the third to the fourth : when the same

multiples of the first and third being taken, and also of the second

and fourth, with any multiplication, the first and third (multiples) are

greater than the second and fourth together, or equal to them together,

or less than them together.

This amounts to our definition of proportion, namely, that the

relative multiple scale of A and B is the same as that of P and Q.

For, take the same multiples ofA and P, namely, mA and mP, and

the same multiples of B and Q, namely, wB and wQ. Then, if the

relative multiple scales be the same, let wA lie between vB and

(u-|-l)B, it follows that 7nF lies between vQ and (t;-{-l)Q. If, then,

w be less than v,nB is less than vB, and nQ less than vQ. And

772A being greater than vB must be greater than nB, while, for the

same reason, mP is simultaneously greater than nQ. In the same

way the other parts of the definition V. may be shewn to be included

in that of identity of multiple scales. Now, reverse the supposition

* The common version is several times referred to afterwards, and the

definition 4 expressly alluded to, in the editions of Euclid. But it must

be remembered that the Greek of Euclid contains no references to pre-

ceding propositions, these having been supplied hy commentators. The

reader may, if he can, make Aoyov s^^stv -r^os Sckktikcc /xiyi^tj kiysrai,

a ^vvarai ToXXx'vXaffta.^ofAiva. aXXrikcov ifri^ix,iiv mean, " Magnitudes are

said to have a ratio, when the less can be multiplied so as to exceed

the greater."
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and assume Euclid's definition. If, then, mA lie between vB and

(v+l)B, it follows that mA is greater than vB, whence, by the

assumption mP is greater than vQ. Similarly, because wA is less

than (v+l)B, TwP is (by that definition) less than (y+l)Q. There-

fore, mV lies between vQ and (vH-l)Q, or in this instance, or for

any one value of w, the scales are accordant, and the same may be

proved in any other case. It follows, then, that the two definitions

are mutually inclusive of each other.

The manner in which Euclid arrived at this definition has been

matter of inquiry. But any one who will examine the first nine

propositions of the tenth * book, will see that he had precisely the

same means of arriving at it as we have used. But, besides this, he

might have come by the definition from a common notion of practical

mensuration, as follows. Suppose two rods given, one of which is

the English yard, the other the French metre, but neither of them

subdivided. The only indication which looking at them will offer, is

that the metre exceeds the yard apparently by about ten per cent.

To get a more exact notion, the obvious plan will be to measure some

great distance with both. Suppose 100 yards to be taken off with

the yard measure, it will be found that that 100 yards contains about

91 metres and a half, the half being taken by estimation, and we will

suppose the eye could not thus err by a quarter of a metre. Then

the yard must be -915 nearly of a metre, and the error upon one yard

cannot exceed the hundredth part of the quarter of a metre, or '0025

of the metre. But the mathematician, to make this process perfectly

correct, will suppose distance ad infinitum, measured from a point

both in yards and metres, or in fact will form what we call the relative

multiple scale. He then looks along this scale for a point at which

a multiple of a yard, and a multiple of a metre end together. If

this happen, and it thus appear that m yards is exactly equal to

n
n metres, the question is settled, for a yard must be— of a metre.

But it will immediately suggest itself to a mind which is accustomed

not to receive assumptions without inquiry, that it may be no two

• There are two English editions of the lohote of Euclid, and there

may be more : that of John Dee (now old and very scarce) and that of

J. Williamson, London, 1788, in two thin quarto volumes. The disser-

tations in the latter are a strange mixture of good and bad, but the text

is very literally Euclid, in general.



32 CONNEXION OF

points ever coincide on the multiple scale. But in this case it is

very soon proved tliat mA may be made as nearly equal to nB as

we please, by properly finding m and n; so that a fraction — may

be found such that A shall be as nearly —B as we please. Evenm ^

admitting that this would do to assign A in terms of B, it leaves us

no method of establishing any definite connexion between A con-

sidered as a part of B, and P considered as a part of Q.

The word part usually means arithmetical part, namely, the

3
result of division into equal parts. Thus - is a part of 1 made by

dividing 1 inio 7 equal parts, and taking 3 of them. The phrase of

Euclid in the books on number (VII. to X. both inclusive) is that - is

3
part of 1, - h parts of 1. And it is easily shewn that, in this use of

the word, every quantity is e.\\hQx part ox parts of every other quantity

which is commensurable with it. And of two incommensurable quan-

tities, neither is part or parts of the other. But in the original sense

of the word part, any less is always part of the greater. This notion

of incommensurability, the non-existence of the equation mA= wB,

for any values of m or n, obliges us to have recourse to a negative

definition of proportionality, a term which we proceed to explain.

Examine the definition of a square, namely, " a plane foursided figure,

with four equal sides and one right angle." It is clear that the ex-

amination of a finite number of questions will settle whether or no a

figure is a square. Has it four sides ? are they in the same plane?

are the sides equal ? is one angle a right angle? Froofof the affirm-

ative of these four propositions proves the figure to be a square. Now,

examine the number of ways in which a figure can be shewn to be

not a square. All propositions are either affirmative or negative
;

A is B or A is not B. The affirmative can be proved or the negative

disproved, with one result only, for both give A is B. But the

affirmative can be disproved, or the negative proved, with an infinite

number of results ; it is done by proving that A is C, or D, or E, &c.

&c. ad infinitum. Thus there may be an infinite number of ways of

shewing that a figure is not a square, but there is only one way of

shewing that it is a square. This we call di positive definition.

Now examine the definition of parallel lines, " those which are in
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the same plane, but being produced ever so far do not meet." We
are not considering where the lines meet, if they do meet, or dis-

tinguishing between lines which meet in one point and in another, but

simply dividing all possible pairs of lines into two classes, parallels

and intersectors. Now here it is impossible to prove * the affirmative

of the proposition, " A and B are parallels," by means of the de-

finition only, without proving an infinite number of cases. To see

this more clearly, remember that every proposition relative to the

intersection or non-intersection of straight lines, is an assertion which

either includes or excludes every possible couple of points which can

be taken, one on each straight line. " Lines intersect" means there

is a couple of such points which coincide. " Lines are parallel

"

means that tliere is no such couple whatsoever, of all the infinite

number which can be taken.

The first proposition in which Euclid proves the existence of

parallels (the 27th) does not shew that the lines are parallels, but

that the proposition, " the lines are intersectors," is inconsistent with

preceding results. The proposition, " A and B are parallels," though

it appears affirmative, yet is in Euclid a negative, for his express

definition of parallels does not define what they are, but what they are

not, " not intersectors." This we call a negative definition.

Now, to examine further Euclid's definition of equal ratios, we

must consider his definition of greater and less ratios. They amount

to the following. A is said to have to B a greater ratio than P has

to Q where there is, among all possible whole numbers m and w,

ani/ one pair which give niA greater than nB, but mP equal to or

less than wQ; or which give mA equal to nB, but mF less than nQ :

which give in fact, in any one case, what we have called a descending

assertion. And A is said to have to B a less ratio than P has to Q,

when any one pair of whole numbers m and n gives mA less than

TwB, but mP equal to or greater than wQ, or mA equal to nB, but

otP greater than wQ : which give in fact, in any one case, what we

have called an ascending assertion. Here, to a mind the least inqui-

sitive, appears at once a decided objection. Our notions of the terms

* The celebrated axiom of Euclid evades this, and in point of fact

amounts to another and a positive definition of parallels, the assumption

being that the old definition agrees with it. Or rather we should say,

that the first twenty-five propositions of the first book establish a part of

the connexion of the definitions, and the axiom assumes the rest.
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greater and less will never allow us to suppose that any thing, quan-

tity, ratio, or any thing else, can be both greater and less than another

quantity, or ratio ; and yet, on looking at the definition of Euclid,

we see that for any thing which appears to the contrary, one pair of

values of m and n may shew that A has a greater ratio to B than P
to Q, while another pair may shew that it has a less. The objection

is perfectly valid ; the only fault to be found is, that it should not

have arisen before, when the definitions of the first book were pro-

posed. How is it then known that there can be such a thing as a

foursided figure with equal sides and one right angle, or as lines

which never meet ? The confusion arises from placing the definitions

in the form of assertions, before the possibility of the assertions which

they imply are proved. The defect may be remedied (we take the

square as an instance) in two ways.

1. Write all definitions in the following manner. To define a

square, for example, " if it be possible to construct a plane figure

having four equal sides and one right angle, let that figure be called

a square."

2. Omit the definition of a square, head the 46th proposition of

the first book as follows.

" Theorem. On a given straight line, a four-sided figure can be

constructed which shall have all its sides equal to the given straight

line, and all its angles right angles." Having demonstrated this, add

the following definition : Let the figure so constructed be called

a square.

We have shewn that all sets of four magnitudes, A and B of

one kind, P and Q both of the same kind with the first, or both of

one other kind, can be divided into three classes.

1. Those in which simultaneous assertions on mA and n B, and

on mP and nQ, are all (for all values of m and n) either ascending

or stationary.

2. Those in which they are all stationary.

3. Those in which they are all either descending or stationary.

For we have shewn that the only remaining possible case a priori,

namely, that in which there are both ascending and descending

assertions for different values of m and w, is a contradiction amounting

in iact to supposing one fraction to be both greater and less than

another. And it has been shewn that all the three cases are possible,

for commensurable quantities at least. We are now, therefore, in a
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condition to say, let A and B in the first case be said to have a

less ratio to B than P has to Q; in the second, the same ratio; in

the third, a less ratio. The only question now is, are tliese definitions

properly negative or positive. It will immediately appear that, out

of the three, the first and third can be directly and affirmatively

shewn to be true of particular magnitudes, and that the second cannot.

By which is meant, that the comparison of individual multiples may,

by a single instance, establish the first or third, but that no com-

parison of individual multiples, however extensive, can establish the

second. For the second consists in stationary assertions ad irifinitumj

and the first and third are proved by a single ascending or descending

assertion.

As an instance, suppose

A = 951 feet B = 497 feet

1902 994

2853 1491

3804 1988

4755 2485

P = 1300 lbs. Q= 679 lbs.

2600 1358

3900 2037

5200 2716

6500 3395

In these first five multiples, there are none but stationary assertions,

of twenty five which might be made. Thus

4755 > 994 1 2853 > 2485 1 951< 994
j ^^

6500 >1 358 j 3900 > 3395
J

1300 < 1358]

but neither of the three definitions is thereby shewn to belong to these

four magnitudes. Now, take the first and third 498 times, and the

second and fourth 952 times, and we have, going on with the series

of multiples,

473598 473144 647400 646408

474549 473641 648700 647087

and here the process may close, for we have 473598 less than 473641,

while 647400 is greater than 647087. Consequently, we have

proved, by comparison, that 951 feet has to 497 feet a less ratio than

1300 lbs. to 679 lbs.

But the case in which neither greater nor less ratio exists can never

be established by actual comparison of multiples, except only in the

case where the pairs of magnitudes are commensurable. For, remark

that the mere circumstance of the relative multiple scale of A and B
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agreeing with that of P and Q up to any point, is neither proof nor

presumption that the two magnitudes given are actually proportional,

though, as we shall see, it is certain evidence that they are nearly

proportional, if the multiple scales agree for a great number of

multiples. Proportion is not established until the similarity of the

multiple scales is shewn to continue for ever. Now, though it would

not be remarked at first, this insertion of an infinite number of con-

ditions to be fulfilled, is tantamount to a negative definition, if we

wish to make the definition specifically speak of one absolute cri-

terion of disproportion or proportion. Disproportion is where there

is an ascending or descending assertion somewhere in the comparison

of the multiple scales. Proportion is where there is no descending

or ascending assertion.

In the case of commensurable quantities the definition is positive,

because there is then a single stationary assertion, which, being proved,

all the rest are shewn to follow. If A and B be commensurable, let

w A = w B ; then if w P= n Q, there is proportion ; if not, there is

disproportion. See page 24 for the proof as to the rest of the mul-

tiple scales.

We have said, that, when the multiple scales agree for a long

period, there is proportion nearly ; and it is proved thus : Suppose

that the scale of A and B agrees with that of P and Q, up to 10,000

P and 10,000 Q, but that we have disagreement as follows: 9326 A
lies between 10,000 B and 10,001 B, whereas 9326 P lies between

10,001 Q and 10,002 Q. Or the scales run thus :

10,000 B 9326 A 10,001 B 10,002 B

10,000 Q 10,001 Q 9326 B 10,002 Q
How much must we alter A to produce absolute proportion ? Not

more than would be necessary to make 9326 A greater than 10,002 B,

or less than would still keep it less than 10,001 B. That is, we must

so alter A as to add somewhere between and 2B to 9326 A, or

somewhere between

and r-^B to A
9^26

Consequently, the addition of a small part of B to A would make an

accurate proportion.

We might now proceed to the propositions of the Fifth Book of
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Euclid ; but there are three difficulties in the way of the student's

perfect satisfaction with the definition. 1st, He may have a mys-

terious idea of incoramensurables. 2d, He may not be satisfied of

the necessity of departing from arithmetic. 3d, He may find it diffi-

cult to imagine how the existence of proportionals can ever be esta-

blished, with, apparently, an infinite number of conditions of definition

to satisfy. We suppose that the gravity of tone which elementary

writers adopt, is inconsistent with the statement of a beginner's diffi-

culties, in the words in which he would express them. We shall

remove all necessity for preserving such dignity in a case where it

may be inconvenient, by a simple supposition. Let -4 be a beginner

in the stricter parts of mathematics ; that is, a person apt to mix pre-

viously acquired notions with the meaning he attaches to definitions

which are intended to exclude all but the ideas literally conveyed in

the words which are used; much better pleased with the apparent

simplicity of an incorrect definition, gained either by omitting what

should not be omitted, or by supposing what cannot be supposed,

than with the comparatively cumbrous forms which provide for all

cases, and distinguish differences which really exist; and, finally,

when a doubt exists, rather predisposed against, than in favour of, the

necessity of demonstration. Let B be another person, who has sub-

jected his mind to that sort of discipline which has a tendency to

remove the propensities abovementioned. We can imagine them

talking together in this manner :

A.— I have been trying to understand the meaning of incommen-

surable quantities, and cannot at all make out how it can be that one

given line may be no fraction whatsoever of another given line, though

both remain fixed, and certain lines ever so little greater or less than

the first are fractions of the second.

B.—A little consideration will teach you, that neither in arithmetic

nor geometry are we at all concerned with how things can be, but only

with whether they are or not. Do you admit it to be demonstrated

that the side and diagonal of a square, for instance, are incom-

mensurable ? {Algebra, page 98).

A.—I cannot deny the demonstration, but the result is incompre-

hensible. Does it really prove, that if I were to cut the diagonal of a

square into ten equal parts, each of these again into ten equal parts,

and so on for ever, I should never, by any number of subdivisions,

£
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succeed in placing a point of subdivision exactly upon the point

which cuts oflf a length equal to the side.

JB.—I take it for granted you have sufficiently comprehended the

definitions of geometry, to be aware that a thin rod of black lead, or

a canal of ink, are not geometrical lines ; and that the excavations

which you perforate by the compasses are not points.

A.—Certainly ; I now have no difficulty in imagining mere length

intersected by partition marks, which are not themselves lengths.

B.— Then, in the case you proposed, you need not go so far for

a difficulty ; for your method of subdivision will never succeed in

cutting off so simple a fraction as the third part of the diagonal.

J.—Why not?

B.—You see that 9, 99, 999, &c., are all divisible by 3, so that

10, 100, 1000, &c., cannot in any case be divisible by 3, but must

leave a remainder. Your method of subdivision can never put to-

gether any thing but tenths, hundredths, &cc. If possible, suppose

one-third to be made up of tenths, a in number, added to hundredths,

b in number, added to thousandths, c in number. Then we must have

-=- + -^ +-^
3 10 ^ 100 ^ 1000

Clear the second side of fractions, and we have

i^ = «x 100 + Z»x 10 + c

or is a whole number, which is not true. And the same rea-
3

'

soning might be applied to any other case.

A.—This is conclusive enough ; but it seems to follow that the

third part of a line is incommensurable with the whole.

B.— So it is, as far as the one method of subdividing which you

propose is concerned. Let tenths, hundredths, &c., be the measurers,

and one-third and unity are incommensurable. But the word with

which we set out implies all the possible subdivisions of halves, thirds,

fourths, fifths, &c. &c., to be tried, and all to fail.

A.— But here is an infinite number of ways of subdividing. Can

it be possible that no one of them will give a side of a square, when

the di igonal is a unit ?

B.— In the first place, it would be a sufficient answer to this sort

of difficulty to say, that, for any thing you know to the contrary, the
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number of ways in which you may fail is as infinite as the number of

ways in which you may try to succeed. In the second place, there

is also an infinite number of ways of subdividing, which will not give

one-third* Let your first subdivision be into any number of equal

parts, except only 3, 6, 9, 12, &c.; and your second subdivision the

same, or any other, with the same exceptions, &c. The same rea-

soning will prove that you can never get one-third.

A.— But look at the matter in this way. Suppose the halves, the

thirds, the fourths,' the fifths, 8cc. &c. of a diagonal laid down upon it

nd infinitum, so that there is no method of subdividing into aliquot

parts, how many soever, but what is done and finished. Would not

the whole line be then absolutely filled with subdivision points, and

would not one of them cut off a line equal to the side of the square.

B.— You have now changed your use of the word infinite, and

applied it in the sense of infinity attained, not infinity unattainable.

As long as you used the word to signify succession, which might be

carried as far as you pleased, and of which you were not obliged to

make an end, the word was rational enough, though likely to be mis-

understood ; but as it is, you may as well suppose you have got be-

yond infinite space, at the rate of four miles an hour, and are looking

back upon the infinite time which it took you to do it, as imagine

that you have subdivided a line ad infinitum. But if the idea of in-

finity attained be a definite conception of your mind, you meet the

difficulty of incommensurable quantities in another form. The defi-

nition of the term incommensurable was shaped in accordance with

the exact notion, that, subdivide a line as far as you may, you must

stop at some finite subdivision ; and incommensurable parts of a

whole are those which you never exactly separate arithmetically, stop

at what finite subdivision you please. But, if you will contend for

infinite subdivision attained, and imagine the line thus filled up by

points, then it will be necessary to divide all parts of a whole into two

classes, those which are cut off by finite subdivision, and those which

are not attainable, except by infinite subdivision ; the former answering

to commensurable, the latter to incommensurable, parts. The diffi-

culty remains then just as before ', in other words, why should the

side of a square be not attainable from its diagonal except by infinite

subdivision, when the sides of a rectangle, which are as 3 to 4 (instead

of 3 to 3), are attainable by a finite number of subdivisions ?

In the next place, you have spoken of a line filled up by points,
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the infinitude of the number of points being the compensation for each

of the points having no length whatsoever ; at least, it is not easy to

see what else you can mean.

A.— Certainly that is what I mean ; and the common expressions

of algebra are in accordance with what I say. For, if I cut aline

into n equal parts, it is plain that the sum of the n parts makes up

the whole, be the number n great or small. But by making n suflS-

ciently great, each of the parts may be made as small as I please

;

and, therefore, allowing it to be rational to say that P takes place

when n is infinite, in all cases in which we may come as near to P as

we please, by making n. sufficiently great (which is the expressed

meaning of infinite in algebra), it follows that we may say, that the

line is made up of the infinite number of points into which it is cut

when divided into an infinite number of equal parts.

JB.— I see every thing but the last consequence.

A.—Why, surely, the smaller a line grows, the more nearly does

it approximate to a point.

B.—How is that proved ?

A.— Suppose two points to approach each other, they continually

inclose a length which is less and less, and finally vanishes altogether

when the two points come to coincide in one point. So that the

smaller the straight line is, the more near is it to its final state—

a

point.

JB.— You have not kept strictly to your own idea (which is a

correct one) of the way in which the words nothing and infinite may

be legitimately used. You have supposed a line to be entirely made

up of points, each of which has no length whatsoever, because you

may compose a line of a very large number of very small lines, each

of which, you say, is nearly a point. Let us now consider whether

your final supposition is one to which we can approach as near as we

please by diminution of a length. Any line, however small, can be

divided into other lines by an infinite number of different points ; for

any line, however small, admits of its halves, its thirds, &c. &c. So

that there is a theorem which is not lessened in the numbers it speaks

of, or altered in force or meaning, in any the smallest degree, by

diminishing the line supposed in it ; namely, any line whatsoever

admits of as many different points as we please being laid down in it.

"Nowf of yomfinal length, or limit of length— the point— this is not

true : consequently, you throw away a result at the end, which you
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cannot throw away as nearly as you please during the process by

which you attain that end ; nor will the denial of it, near the end, be

less in the consequence or amount of the error, than if the rejection

were made further from the end. Therefore, in asserting that a dimi-

nishing straight line approximates to a point, you have abandoned

the condition under which you are allowed to speak of nothing or

infinite.

Again, the wth part of a line taken twice is certainly greater than

the simple nth part, however great n may be. Now, what do you

suppose two points to be, which are laid side by side without any in-

terval of length between them ?

A.—They are, of course, one and the same point.

JB.—But in your infinite subdivision, two nth parts must be greater

than one nth part, or two of your points must be greater than one

;

but these two points are the same point, which is therefore twice as

great as itself. Such are the consequences to which the supposition

of a line made up of points will lead.

A.—I have frequently heard of lines being divided into an infinite

number of equal parts.

B.— But you never heard those equal parts called points. I

can soon shew you that, in the mode of allowing infinity to be

spoken of, this fundamental condition is preserved, namely, that no

theorem, limitation, number, nor other idea whatsoever, which forms

a part of any question, is allowed to be rejected or modified when n is

infinite, unless it can be shewn that such rejection or modification

may be made with little error when n is great, with less error when n

is greater, and so on ; finally, with as small an error as we please, by

making n sufficiently great. Now, remark the following truths, and

the form of speech which accompanies them, when n is supposed

infinite.

General Theorem.

The greater the number of

equal parts into which a line is

divided, the less line is each of

the parts : so that an aliquot

part of any line, however great,

may be made less than any

given line, however small.

Terminal Theorem.

If a straight line be divided

into an infinite number of equal

parts, each part is an infinitely

small line.

E 2
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General Theorem.

Any line, however small,

may be cut by as many points

as we please.

No straight line, however

small, ceases to be a length ter-

minated by points.

Terminal Theorem.

An infinitely small line may

be cut by as many points as we

please.

An infinitely small straight

line is a length terminated by

points.

Now, taking your notion of infinite subdivision attained, it may

be shewn that incommensurable parts necessarily follow. For, how-

ever far you carry the subdivision, you do not, by means of the sub-

division points, lessen the number of points which may be laid down.

For each interval defined by the subdivisions contains an infinite

number of points. Consequently, if you will suppose the infinite

subdivision attained, you cannot do it without supposing an infinite

number of points left in the intervals, or an infinite number of in-

commensurable quantities. This I intend only to shew that the

proof of the existence of incommensurable quantities is, upon your

own supposition, somewhat better than that of their non-existence.

But it would be better to use nothing and infinity as convenient

phrases of abbreviation, not as containing definite conceptions which

may be employed in demonstration.

A.— I do not see how your objection applies against nothing;

if we cannot attain infinity by continual augmentation, we can cer-

tainly attain nothing by continual diminution.

B.— So it may seem at first, and in truth you are right as to one

sort of diminution, that which is implied in the word subtraction.

From the place in which there is something take away all there is,

and you get nothing by a legitimate process. But subtraction is the

only process which leaves nothing ; division, for example, never leaves

it. Halve a quantity, take the half of the half, and so on, ad infinitum:

you will never reduce the result to nothing.

A.— But however clearly you may shew that incommensurable

quantities actually exist, as a necessary consequence of our de-

finitions of length, number, &c., I should feel better satisfied if

you could give something like an account of the way in which

they arise.

B.— If you will consider the way in which number and length

are conceived, perhaps the difficulty may be somewhat lessened. Let
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a point set out from another point, and move uniformly along a

straight line until the two are a foot distant from each other. It is

clear that every possible length between and one foot will have

been in existence at some part or other of the motion. Now, suppose

a number of points as great as you please, to set off from the first

point together ; but, instead of moving in the straight line let them

move off in curves, the first coming to the straight line at - and 1

12 12 3
of a foot : the second at - - and 1 ; the third at - - - and 1 of a

'
3 3 4 4 4

foot ; and so on, as in this diagram.

Can you feel sure that these contacts of curves with the line,

separated as they must always be from each other by finite intervals,

will ever fill up the whole line described by a continuous motion.

If not, this figure will always supply presumption in favour of in-

commensurable parts, which will of course be increased to certainty

by the actual proof of their existence. And this should be sufficient

to overturn a doubt which after all is derived from confounding the

mathematical point with the excavation made by the points of a pair

of compasses. The practical commensurability of all parts with the

whole is a consequence of there being magnitudes of all sorts below

the limits of perception of the senses (see page 3).

A,—Granting, then, that there are such things as incommensurable

quantities, it is admitted, that though A and B are incommensurable,

yet A and B -|- K may be made commensurable, though it be insisted

on that K shall be less than any given quantity, say less than the

liundred thousand million millionth of the smallest quantity which

the senses could perceive, if they were a hundred thousand million

of million of times keener than they are at present. Would it not be

sufficient, when incommensurable quantities, A and B, occur, to

suppose so slight an alteration made in B as is implied in the above,

and reason upon A and B + K so obtained, instead of upon A and B.

Surely such a change could never produce any error which would be

of any consequence ?

B.— Of consequence to what?

k
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A.—To any purpose of life for which mathematics can be made

useful.

B.— I am still at a loss.

A.— What process in astronomy, optics, mechanics, engineering,

manufactures, or any other part either of physics or the arts of life,

would be vitiated by such an alteration, or its consequences, to any

extent which could be perceived, were the error multiplied a million

fold?

JB.—None whatever, that I know of.

A.— What, then, would be the harm of introducing a supposition

which would save much trouble, and do no mischief?

B.— I am not aware that I admitted such a supposition would do

no mischief, when I said that it would not sensibly vitiate the appli-

cation of mathematics to what are commonly called the arts of life.

I see that your idea of mathematics is very much like that which a

shoemaker has of his tools. If they make shoes v<rhich keep the

weather out, and bring customers, he need not wish them to do more,

or inquire further into any use, actual or possible, which they may or

might have. The end he proposes to himself is answered, when he

has sewed the upper leather firmly to the sole. But whether his art

serves any higher purpose— whether the possibility of obtaining con-

veniencies, and avoiding hardships (which it creates in one respect),

excites industry and ingenuity, creates property to equalise the

fluctuations of harvests and commerce, and prevent the community

from undergoing periodical pests and famines— makes men so de-

pendent on each other that internal war is next to impossible, and

external war a grave and serious consideration, &c. &c., are not

matters for the thoughts of a working shoemaker ; nor will similar

considerations ever enter the mind of a working mathematician. You

have spoken of the purposes of life ; I do not know what the purposes

of your life may be, but if among them you count such a discipline

of the mind as may always render your perception of the force of an

argument properly dependent upon the probability of the premises,

and the method by which the inferences are drawn, it will be one of

your first wishes to propose to yourself, as a standard and a model,

some branch of study in which the first are self-evident, or as evident

as any thing can be, and the second indisputable and undisputed.

For though you may find no other science which will compete with

this in accuracy, yet you will be more likely to infer correctly, when
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you have seen what you know to be correct inference, than you would

have been if you had never, in any case, distinguished between de-

monstration of certainties and presumptions from probabilities. And

still more, will you be qualified to refute, and refuse admission to,

that which takes the form of accuracy without the reality. If the

mathematical sciences be good as a weapon, they are a hundred fold

better as a shield. I have seen many who were visibly little the

better for their mathematical studies in what they advanced ; but very

few indeed who were not made sensibly more cautious in what they

received.

A.— But is not my notion adopted in practice by a great part of

the mathematical world, particularly on the continent.

B.— It is certainly true, and it is particularly the case with the

French, who, though they have done more than any other nation, since

the time of Newton, to advance the mathematical sciences, have been

by no means anxious to consider them as resting on other evidence

than that— not of the senses— but of the limits of the senses. One

of their most celebrated elementary writers considers none but arith-

metical proportion, and begins his work by shewing either that two

straight lines have a common measure, as in page 12, or that the

remainder " echappe aux sens par sa petitesse." All his propositions,

therefore, in geometry., are either true, or so nearly true, that the

difference is imperceptible. The phrase we have quoted is an honest

and a valuable admission ; it shews you, that in the opinion of one

of the most useful and extensive elementary writers that ever lived,

arithmetical proportion makes geometry a science of approximate,

not absolute, truth.

A.— I see as much; but cannot the slight shifting of one of the

quantities which I proposed be somehow or other corrected, so as to

make a strict and useful theory of the proportions of incommensurable

quantities ?

B.— Yes, and in a very simple way; by adopting the definition

of Euclid. This may surprise you, but I will soon shew that the

most natural correction of your notion leads direct to the definition of

Euclid. Let it be granted that A and B being commensurable, and

mA=nB, proportion between A, B, P, and Q means that mP=nQ.
Now you want, when A and B are incommensurable, to be allowed to

substitute B + K instead of B, where K is excessively small. I

suppose you would be perfectly content if it could not be made
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visible by any microscope. Now I am of a somewhat more abstract

turn, and should not like my geometry to be put in peril by the

abolition of the excise on glass ; which it might be by the allowance

of experiments for the improvement of that article, which are now

effectually prevented. I cannot admit B-fK, where the magnitude

I w^ant to reason upon is B. But as the definition of proportion of

incommensurables is not yet settled, let us examine this case : A and

B being incommensurable, let P and Q be quantities of such a kind

that A and B -f K are commensurable, and also P and Q + Z, and

that the four just named are arithmetically proportionals. Let it be

possible, these conditions subsisting, to make K and Z as small as

we please : not as small as this, that, or the other small quantity, but

smaller than any whatsoever which may be named, being still some

quantities. You wish to substitute B + K and Q + Z for B and Q

:

I prefer to use the conditions laid down to ascertain how B and Q
themselves stand related to A and P. Let us suppose we name two

small magnitudes, K' and Z', of the same kind as A and P, or B and

Q, or K and Z, which we are at liberty to make as small as we

please. We can then find K and Z less than K' and Z', and such

that A, B + K, P, Q 4- Z are proportional. Suppose A and B + K
commensurable, and let

mA. = w(B + K) whence m? = w(Q + Z)

whence it is easily proved, as in page 24, that the relative scale of

multiples of A and B + K is the same as that of P and Q + Z. I

say it follows, that the relative scale of A and B is the same as that

of P and Q ; for, if not, the two latter scales must differ somewhere.

Let it be that vA is greater than tuB, but v P less than toQ. Then,

since vA is greater than t(;B, let K be taken so small (it may be as

small as we please) that vA shall also exceed w;(B +K), whence, by

the proportion assumed in the hypothesis, vP exceeds w(Q + Z),

while, by the hypothesis we are trying, vP is less than wQ. This is

a contradiction, for uP cannot exceed wQ-f-tuZ and fall short oiwQ,

at the same time. In the same way, any other case may be treated

;

and it follows that our suppositions, if K may be as small as we

please, amount to an hypothesis from which Euclid's definition fol-

lows. If, in the above, we suppose vA less than w;B, while uP is

greater than lyQ, we see that vA also falls short ofv(B -fK), whence,



NUMBER AND MAGNITUDE. 47

by the proportion, vP falls short of v(Q + Z), which cannot be if it

exceed v Q.

A.— But is not this deduction, namely, Euclid's definition, more

cumbrous than the form from which it has just been deduced?

JB.-—Howso?

A.— Does it not involve an infinite number of considerations, ex-

tending the whole length of the multiple scales ?

B.—And does not your definition do the same thing, unless you

stop somewhere with the values of K and Z ? Is it not necessary, if

we would not be merely microscopically correct, but absolutely cor-

rect, to suppose that K and Z may be diminished and diminished ad

infinitum ? And what difference is there, as to the number of con-

siderations in question, between two magnitudes which are to diminish

without limit, and a set of increasing multiples of two given mag-

nitudes ?

A.—But Euclid's definition seems to wander such a way from the

quantities in question, while the other remains close to them, and we

never seem to quit them, except for something very near to them.

The actual application of the definition I prefer will require nothing

but the division of all magnitudes into aliquot parts.

J5.— Your objection amounts to this ; that you feel the fractions

of a quantity to be more closely connected in your mind with the

quantity itself than its multiples. This may be the case ; and, if so, it

is some reason for preferring the form to which you seem most inclined.

But there may be a stronger reason for preferring the other ; and,

undoubtedly, as long as difficulties exist, every system of science must

be a balance of inconveniences. But Euclid is, of all men who ever

wrote, the one who has a reason for the course which he takes, where

there are two or more. I suppose you cannot but admit that it is

better to found a definition in geometry upon the result of something

which can actually be done, bi/ the means of geometry, than upon

something wliich can only be conceived or imagined to be done, with

what certainty soever ; for instance, you would not wish to be obliged

to use other means than the straight line and circle, or to suppose an

object gained without using any means at all ?

A.— Certainly not. That there shall be no assumption of me-

chanical power beyond that of drawing a straight line or circle, is the

foundation of pure geometry.

B.—Tlien the question is settled in favour of Euclid's definition
j
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for, without either assuming more mechanical means, or making a

gratuitous assumption, no angle, nor arc, nor sector of a circle, can be

divided into 3, or 6, or 9, &c. parts, unless it be a right angle, or a

given half, fourth, eighth, &c. of a right angle. There are some other

exceptions ; but, generally, to cut any angle into three equal parts is

a geometrical impossibility, and certain algebraical considerations

fuiTiish the highest presumption that it will always remain so.

A.— But this difficulty is still left: how are we ever to shew

that there are such things as proportional quantities ?

B.—We can do this so easily, that the greatest stumbling-block

of the process lies in its being so easy and perceptible, that a beginner

does not very well see where lies the knowledge he has gained, unless

he has paid profitable attention to the definition of proportion. From

the first book of Euclid it is evident that a rectangle is doubled by

doubling tl»e base, trebled by trebling it, and so on ; and also, that of

two rectangles between the same parallels, the greater base belongs to

the greater, and the lesser base to the lesser. Now, let B and B'

represent two bases, and R and R' the rectangles upon them, the

altitudes, or distances of the parallels, being the same. If then we

take the first base m times, giving m B, the rectangle upon that base

is mR : if we take the second base n times, giving n B', the rectangle

upon that base is wR', the parallels always remaining the same.

Hence it follows, that twB and wB' are bases to the rectangles wR
and nR' between the same parallels; accordingly, therefore, as w/B

is greater than, equal to, or less than n B', so is mR greater than,

equal to, or less than n R' : and this being true for all values of m
and n, it follows that B has to B' the ratio of R to R', or the bases

of rectangles between the same parallels, and the rectangles them-

selves are proportionals.

A.—Am I to understand then that there are difficulties in the

way of considering magnitude in general, which are not found in

arithmetic, or the science of abstract number ?

B.— Quite the reverse : the difficulty arises from the deficiences

of arithmetic itself, and from their being ratios which the ratio of

number to number cannot represent.

A.— But how is that? arithmetic always seemed clear of such

difficulties as we have been considering.

B.—And so would this subject, if the disposition to be satisfied

with what is in the book, which is part and parcel of almost every
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beginner had been permitted to rest quietly upon a theory of com-

mensurable ratios. But did you never, in arithmetic, hear of the

creation of a nonexistent number or fraction, in spite of there being

no such thing, by agreeing that there should be such a thing, and

drawing a picture to represent it?

A.— I do not understand the jest; but I suppose you allude to

algebra, and to quantities less than nothing ?

B.—Not at all ; lam speaking of pure arithmetic- To me, —

2

is a much easier symbol, or picture, than 's/2; and even the difficulties

of \/— 2 lie as much in the \/ as in the —

.

A.— But I do not understand what you mean by saying that \/2

does not exist; it is the square root of 2, and multiplied by itself it

gives 2. You may find it as nearly as you please.

B.— If it be the object of arithmetic, commonly so called, it is

either a whole number or a fraction. Which of these is it ?

A.—It is a fraction; 1-4142136, very nearly.

JB.— I did not ask you what it is veri/ nearly/, but what it is ?

A.— It cannot be given exactly, but we all know there is suclva

thing as the square root of 2.

JB.— If the objects of arithmetic were numbers, fractions, and

things, and the latter term had a definition, I might admit what you

say. And in concrete arithmetic, where 1 is a thing, a foot, a

pound, or an acre, I admit that there is such a thing as s/2. But

that thing is not attainable arithmetically by taking any aliquot part

of the thing 1, and repeating it any number of times. In abstract

arithmetic the square root of 2 is an impossibility ; and having no

existence, I do not see how one fraction can be said to be nearer to

it than another, except in this sense, that 2 + z may be made to have

a square root where z may be less than any fraction we name. The

independent existence of v 2 is an algebraical consideration of some

difficulty; that is, belongs to the science which has relations of

symbols, under prescribed definitions, for its object, without reference

to their numerical interpretation. The difficulties of \/2 are precisely

those of incommensurable magnitudes; in fact \/2 is the diagonal

of a square whose side is 1. But it is to algebra that difficulties of

this kind should be referred. The student, if he use s/o, in pure

arithmetic, must expressly understand it as a fraction whose square is

nearly 2, and must consider this part of arithmetic (without algebra

F
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as a science of approximation, unless geometry, or some other science

of concrete quantity, be supposed to lend its aid.

A.— But I cannot divest myself of the idea that n/2, n/s? and

V 6 are really fractions, and that the product of the two first gives

the last. I suppose, in some sense or other, you admit this pro-

position ?

B.— Certainly. If n/2+ j' and n/3-|-j/ and n/6+2 be made

to exist, by giving proper values to x, y, and z, which may all be as

small as I please, and if, moreover, x, 3/, and z be so related that

2 = 3 T + 2 j/ + xi/j which condition does not interfere with the last

;

I can then admit that

But I do not allow myself to suppose that (understanding by multi-

plication the taking of one number or fraction as many times or parts

of times as there are units or fractions of a unit in another), there can

be such a truth as that

^2 (neither number nor fraction) 7WMZ^/p/ifd by VS (do. do.) = n/6 (do. do

But this is beyond our subject, except so far as it shews that the

difficulty lies more in arithmetical than in geometrical considerations.

A.— Might we not then dispense with arithmetic altogether, and

make a definition corresponding to proportion for geometry?

B.— Yes; but the difficulty would appear in another shape, of

the very same substance. Let four lines be called proportional when,

being straightened without alteration of length, if necessary, the

rectangle made by the first and fourth is equal to that made by the

second and third. Let areas be proportional when, being converted

into rectangles with a common altitude, their bases are proportional.

Let angles be proportional, when they are angles at the centre of

proportional arcs of the same circle. But here would immediately

arise this difficulty,— to make a straight line equal to a given arc of

a circle ; which is out of the power of the geometry of straight lines

and circles.

A.— Is not the reductio ad ahurdum (which is very much used

in the establishment of the theory of proportion) rather a suspected

method. I have heard it called indirect demonstration ; and it is

frequently stated as a defective method, not to be used if it can

possibly be avoided.
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jB.—The complaints against this method of demonstration have

become much more frequent, if not entirely made their appearance,

since the time when logic was a necessary part of a liberal education,

as it once was, and as I hope it will be again. I have sometimes

wondered whether this argument would have been considered objec-

tionable if it had been reduced to the form " A is B, B is C, therefore

A is C ;" as follows : " Every contradiction of P is a contradiction

of the proposition that the whole is greater than its part ; but every

contradiction of this proposition is false : therefore every contradiction

of P is false ; or P is true." The reductio ad ahsurdum is as conclu-

sive, and may be made as intelligible, as any x)ther argument. And

if any argument be good in proportion to the effect upon the mind,

where is the affirmative proposition, in geometry or not, which the

mind seizes as readily as it recoils from an absolute contradiction in

terms ? Where is the likeness or resemblance between things which

are alike, that is so forcible as the unlikeness or want of resemblance

of two ideas which palpably contradict, such as black is white ?

A.— Is there then no advantage in the direct over the indirect

demonstrations ?

B.— D'Alembert has said that the former are to be preferred

" parce qu'elles ^clairent en mIme-temps qu'elles convainquent," which

is a good description of the difference. But even this must be taken

with some allowance, for there are many indirect demonstrations

which are highly instructive.

'Recapitulation. By the ratio of A to B, we mean (without any

further specification at present) a relation between the magnitudes of

A and B, determined by the manner in which the multiples ofA are

distributed, if each be written between the nearest multiples of B in

magnitude. That is, if B, 2 B, 3B, &c., be formed, and A, 2 A,

3 A, &c., and if A lie between B and 2B, 2A between SB and 4B,

and so on, the relative scale

B, A, 2B, 3B, 2 A, 4B, &c.

is to be the sole determining element of the ratio, so that there is to

be nothing but the order of this scale on which the ratio depends.

And if P and Q be two other magnitudes with the same order in

their scale, P compared with A, and Q with B, then A and B are to

be said to have the same ratio as P and Q. But if any multiile of A
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precede among the multiples of B the place which the corresponding

multiple of P occupies among the multiples of Q, then A is to be

said to have to B a less ratio than P has to Q. But if a multiple of

A come later in the series of multiples of B than its corresponding

multiple of P in the series of multiples of Q, then A is said to have to

B a greater ratio than P has to Q. It is plain that the ratio of A to

B must be greater than, equal to, or less than that of P to Q, and

also, that in saying A is to B as P to Q, we also say that B is to A
as Q to P.

[We must remind the student that we have now nothing to do

with the reasons of this definition, or the accordance of its parts with

each other, or with any notion of ratio more than is contained in it.

We are merely now concerned to know what follows from this

defintion. The numbering of the following propositions is that in

Euclid.]

When A has to B the same ratio as P to Q, the four are said to

be proportionals, and are written thus :

A : B:: P : Q
which is read A is to B as P is to Q.

IV. If A : B : : P : Q | m and w being any

Then mA : wiB::wP : nQ) whole numbers.

This we know when we see that any quantities being arranged in

order of magnitude, so will be their multiples. If the scales bQ

B A 2B 3B .....^

Q P 2Q 3Q

the following scales

mB mA 2mB 3mB ......

kQ wP 2nQ, 3wQ
will also be arranged according to magnitude. Whence the pro-

position.

VIT. IfA, B, C, be three homogeneous magnitudes (all lines, or

all weights, &c.)and if A= B ; then

A : C :: B : C

and C : A :: C : Bj

for the scales must evidently be identical,
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VIII. A-fM has a greater ratio to B than A has to B, and B has

a less ratio to A+M than B has to A. Let M be multiplied so many

times that it exceeds B ; say wM= B + K : then

7W(A + M) = TwA + B + K
Let wA lie between vB and (u+ l) B ; then 7w(A + M) lies between

uB + B + Kand (v + 1)B + B + K, and certainly beyond (u-|-l)B.

Consequently, in the scales ofA-fM and B, and A and B, a multiple

of A + M is found to be in a higher place among the multiples of B

than the same multiple of A among the multiples of B. Whence, by

definition, A4- M has to B a greater ratio than A to B. The second

part of the proposition is but another way of stating the first, as

appears from definition. Thus we may also say that A has to B a

less ratio than A + M has to B.

IX. If A : C::B : C then A = B
or if C : A::C : B then A = B

For (viii.), if A be greater than B, A has to C a greater ratio than

B to C, which is not true. If A be less than C, A has to C a less

ratio than B to C, which is not true : therefore A=B. The same

reasoning proves the second case.

X. If A have to C a greater ratio than B has to C, then A is

greater than B. For if A were equal to B, then these ratios would be

the same: if A were less than B (viir.), then would A have to C a

less ratio than B has to C. Therefore, A is greater than B. Similarly,

if A have to C a less ratio than B has to C, A is less than B. And

if C have a greater ratio to A than to B, A is less than B ; if C have

a less ratio to A than to B, A is greater than B.

XI. If the ratios of C to D and of E to F, be severally the same

as that of A to B, then C has to D the same ratio as E to F. This

answers to a case of the general axiom, that two things which are

perfectly like to a third in any respect, are perfectly like each other

in that respect. The multiples of C are distributed among those of

D in the same manner as those of A among those of B, as are ihose

of E among those of F. Therefore, the multiples of C are distributed

among those of D as are those of E among those of F. Whence tlie

proposition.

XII. If A be to B as C to D, and as E to F, then as A is to B

so is A+C+E to B+C+F.
I 2
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For mK lying between nB and (n-f-l)B, then mC lies between

nD and (n4-l)D» and mE between wF and (n + l)F, and, con-

sequently, /nA -f- w C + w E, or w (A+C -f E) between n (B+D+F)
and (n+ 1) (B-fD+F). Whence the proposition.

XIII. If A have to B the same ratio as C has to D, but C to D
a greater ratio than E to F, then A has to B a greater ratio than

E to F.

This is one of a class of propositions which come under this

general theorem : for any ratio, an equal ratio may be substituted,

and all consequences of the first ratio are consequences of the second.

This, which seems very evident, may appear so upon mistaken evi-

dence. Ratios, as far as we have yet gone, are not quantities, but

expressions of that relation between quantities upon which the order

of magnitude of their multiples depends. For quantity, we may

substitute other quantity equal to the first in magnitude wherever the

relation is one which depends only on quantity; we may not sub-

stitute a triangle of the same area instead of a square, except there be

question of nothing but superficial magnitude, or area. Ratio, again,

is to us at present the order of the multiples, so that if A and B have

their multiples arranged among each other in a given order, if P and

Q have the same, we may say that whatever is true of the order of

multiples of A and B, is also true of the order of P and Q ; whatever

connexion the order of multiples of A and B establishes between A
and B and other magnitudes, the same connexion exists between P
and Q and those other magnitudes, because the accident of A and B,

which is the sole connexion between them and the consequence inferred,

is also an accident of P and Q. The necessity for going over such

considerations, arises from its never being allowed to be taken for

granted that a mathematician has studied logic. Hence Euclid* is

frequently obliged to reiterate the same assertions in different forms.

To take the proof of the present proposition ; to say that C has to D a

greater ratio than E to F, is to say that mC can be found greater than

• Euclid was a contemporary of Aristotle, as is generally supposed,

and may, therefore, never have seen the science of the latter. It is free

to us to suppose that if he had, he would have distinguished between a

purely logical and a geometrical consequence : that is, would not have

reiterated the same proposition iu different forms ; or, if you please,

different cases of the same verbal truth as if they were distinct truths :

and we will suppose so accordingly.
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nD, while w E is equal to or less than nF. But to say that A has to

B the ratio ofC to D, is to say that whenever mCis greater than nD,

mA is greater than wB. Therefore, to say that the ratios ofA and B
and C and D are the same, but the latter greater than that of E to F,

is to say that wA may be greater than nB, while /nE is equal to or

less than wF ; or that A has to B a greater ratio than E has to F.

Now, let the student compare this with the following proposition.

A and B are greens of exactly the same shade : but B is a darker

green than C, therefore, A is a darker green than C. Would it be

unnecessary to prove this ? then it is equally unnecessary to prove the

preceding. But we will prove this in the same manner as we prove

the preceding. Let there be a test of greenness, which decides between

two greens (there is a test of comparison of ratios in Euclid), and

apply the test to B and C. The result is, of course, that B is the

darker. But A being by hypothesis exactly the same as B, the testing

operation would be self contradictory if it did not exhibit, when

applied to A and C, the very same intermediate process by which

we were able to compare B and C, with the same result. If the

above-be unnecessary, then the demonstration of Euclid's proposition

is unnecessary.

The fact is, that there are in geometry two distinct sorts of de-

monstration, the first ofwhich is only a portion of the second. The first

is the verbal treatment of the terms of an hypothesis, and the deve-

lopement of all assertions which are necessarily included in the terms

of the proposition, without drawing upon any other axioms or

theorems for evidence. It is the purely logical process, by which we

make two assertions put together shew their joint meaning, and

express what, without deduction, they only imply. Thus, from

" Every A is B," and " no B is C," we make it evident that in these

assertions is necessarily contained a third, that " no A is C." Thus

it has been shewn that we cannot allow simultaneous existence to the

two propositions, " A is to B as C is to D," and " C is to D more

than E is to F," without almost expressing, and certainly implying,

by the mere meaning of our terms, this third proposition, that " A
is to B more than E is to F."

The second process is that in which the demonstration, besides

the purely logical process of extracting implied meanings out of the

expressions of the hypothesis, appeals to propositions which are not

in the hypothesis, and which, for any thing the hypotheses tell us to
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the contrary, may or may not be true. Of course— not logic, but

—

reason requires that these propositions should have been previously

proved, or assumed on their own evidence expressly. Let us take the

following proposition, " The sum of the circles described upon the

two sides of a right-angled triangle is equal to the circle described

upon the hypothenuse." Now, take every notion implied in this

hypothesis, " Let there be a right-angled triangle, and let circles be

described on its three sides." The united faculties of man never

proved that the sum of the circles on the sides was equal to the

circle on the hypothenuse, without assuming with Euclid, to the effect

that only one parallel can be drawn through a point to a given right

line ; with Archimedes, to the effect that the chord ofa curve is shorter

than its arc, &c. &c.; and various consequences. But are any of these

propositions necessary to our complete definition of a right angle, a

triangle, or a circle? If not, we have a broad and easily recognised

distinction between the first and second method of demonstration ;

the first, an operation of logic, or deduction from the premises of the

hypothesis ; the second, introducing premises from without.

There are two classes of reasoners whose ideas we recommend

the student closely to examine, before he finally decides: 1. Geome-

trical writers in general, who pay no attention to the methods which

they are using, but let the first book and the fifth book of Euclid

contain no difference by which it may be remarked that the processes

contained in the two are different acts of mind. Did they ever

think that geometry could be made the engine by which the student

could examine certain operations of his own faculties, or did they only

imagine that it was a method of making very sure that squares,

circles, &c. had such and such properties? 2. The class of metaphy-

sical writers, who express themselves to the effect that all mathema-

tical propositions are contained in the definitions and axioms, in a

sense in which other results of reasoning are not. Put them to the

proof of this assertion as to geometry, and then as to arithmetic.

The whole of the process in the fifth book is purely logical, that

is, the whole of the results are virtually contained in the definitions,

in the manner and sense in which metaphysicians (certain of them)

imagine all the results of mathematics to be contained in their

definitions and hypotheses. No assumption is made to determine the

truth of any consequence of this definition, which takes for granted

inore about number or magnitude than is necessary to understand the
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definition itself. The latter being once understood, its results are

deduced by inspection— of itself only, without the necessity of looking

at any thing else. Hence, a great distinction between the fifth and

the preceding books presents itself. The first four are a series of

propositions, resting on different fundamental assumptions ; that is,

about different kinds of magnitudes. The fifth is a definition and its

developement; and if the analogy by which names have been given

in the preceding books had been attended to, the propositions of that

book would have been called corollaries of the definition.

XIV. If A be to B as C is to D, all four being of the same kind,

then ifA be greater than C, B is greater than D ; if equal, equal, and

if less, less.

A must either be > =: or < C. Let A be greater than C ; then

mA is greater than mC. Let wA lie between wB and (n-|-l)B;

then will mC lie between nD and {n-\-\)T). But because A exceeds

C, 2A exceeds 2C by twice as much, &c., and mA exceeds mQ by

m times as much ; or rnA may be made to exceed mC by a quantity

greater than any one named, say greater than B and D together.

Then the order of magnitude of the four multiples mC (n+OD, wB,

wA must be as written: for (n-|-l)D does not exceed rnC by so

much as D, and wB does not fall short of ;n A by as much as B,

while mK exceeds wC by more than B and D put together. There-

fore, nB is greater than (n+l)D, and still more than nD. That is,

B is greater than D.

Let A be equal to C. If B exceed D at all, twB may be made to

exceed mVi by more than D, or twB may be made, from and after

some value oim, greater than (m -j- 1)D. That is, the order of mag'

nitude may be made

ml> (m + l)D . mB (m+l)B

Having gone so far on the scales that this order becomes per^

manent, go on till a multiple of C (/cC) falls between the two first.

Then, by the definition, kK falls between the two last, which is ab-

surd ; for, because A= C, /cA= /cC ; therefore, B does not exceed D.

In the same way it may be shewn that B does not fall short of D.

Therefore, B=:D.

The remaining case (A less than C) may be proved like the first.

XV, A is to B as mk is to mB
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The scale of multiples of A and B is nowhere altered in the order ot

magnitude by multiplying every terra by w. If pA lie between qB
and (^-t-l)B, (pin) A which is p{mA) lies between ^(mB) and

(y + l)(mB).

XVI. If A be to B as C is to D
and if all four be of the same kind,

Then A is to C as B is to D.

(iv.) mA isto mB as nC isto wD

(xiv.) If wA be greater than nC, wB is greater than nD, if

equal, equal ; if less, less. Therefore, A is to C as B to D.

XVII. If A + B be to B as C + D to D, then A is to B as C is

to D. If ;«A lie between n B and (n + 1) B, it follows that mA+m B,

orm(A-f B) lies between (m + n)B and (m-\-n-\-l)B. Then, by

the proportion, m(C + D) lies between {m + n)D and (w + n + 1)D,

ormC + wD lies between mD + wD and wD + (n + l)D, or wC
lies between nD and (n + l)D. Therefore, the scales of A and B,

and of C and D, are the same ; whence the proposition.

XVIII. If A be to B as C is to D, then A -f B is to B as C + D
is to D. A proof of exactly the same kind as the last should be given

by the student.

XIX. If A : B : : C : D, C and D being less than A and B, then

A : B : : A — C : B — D. For the hypothesis gives A to C as B to

D, and A is C + (A— C), and B is D + (B— D), whence,

C + (A— C) isto C as D + (B— D) isto D
(xvir.) A—C isto C as B— D isto D

(xvi.) A— C isto B—D as C to D, or as A to B

XX. If A be to B as D to E
and B to C as E to F

S

greater than
f

fgreater than 1

equal to > C, when B is
-J

equal to > V
less than J U^ss than J

Let A be greater than C ; then A is to B more than C is to B

;

but A is to B as D to E, and C to B as F to E ; therefore, D is to E

more than F is to E, or D is greater than F. In a similar way the

other cases may be proved.
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Hence it follows, that A is to C as D to F. For,

(vi.) 7»A is to wB as mD to twE

wB is to wC as nE to nF

therefore, wA is >= or <nC when mD is >= or <nF
whence, A is to C as D to F.

XXI. If of the magnitudes

ABC ^ A:B::E:F
we haveD E F B:C::D:E

Then A > = or < C when D > = or < F

Let A be greater than C ; then A is to B more than C is to B : as

before E is to F more than E is to D, or D is greater than F. Simi-

larly for the other cases.

XXII. If there be any number of magnitudes,

A B C D
P Q R S

and if any two adjoining be proportional to the two under or above

them, then any two whatsoever are proportional to the two under or

above them. For, since (xx.)

A:B::P :Q'

B :C::Q : RJ
Hnt- I ', ? n ! : K. ! S »

&C.

J|Therefore,A:C::P:Rl_. . a r» o c
IJ ^ ' _ _ „ > Therefore, A : D : : P : S,
^ But, C :D::R: Sj

XXIII. In the hypothesis of (xxi.), by proof as before in (xx.),

A is to C as D to F.

XXIV. If A be to B as C to D '^^ then A + E is to B
Dand E be to B as F to D J as C + F lo

For, ^

and b;1;;d:f} ">--' ^^-'''

(xviji.) A-}-E:E::C4-F:F

But, E : B : : F : D
Therefore, A + E:B;:C-fF:D

XXV. If A : B : : C : D, all being of the same kind, the sum

of the greatest and least is greater than that of the other two. First,

which are the greatest and least ? If A be the great^t, then C is

greater than D ; and because A : C ; *. B : D, B is greater than D

;
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therefore, D is the least. Now, prove that if B be the greatest, C is

the least; and that, by inverting the proportion, if necessary, it may

always be written with the greatest term first, and the least last.

When A is the greatest, since A— B : A : : C — D : D, A— B
is greater than C— D ; therefore, (A— B) + B + D is greater than

(C— D) 4- B + D, or A 4- D is greater than C + B.

If there be a given ratio, that of A to B, and another magnitude

P, there must be a fourth magnitude Q, of the same kind as P, such

that A is to B as P to Q, or Q to P as B to A.

Firstly; Q may certainly be taken so small that (mB being

greater than nk) mQ shall be less than wP. Find m and n to

satisfy the first conditions, and let K satisfy the second. Then K is

to P less than B is to A. Now (mB being less than 7iA), Q may be

taken so that mQ shall be greater than nP. Find m and n to satisfy

the first, and let L satisfy the second. Then, L is to P in a greater

ratio than A to B. And it is immediately shewn that every magni-

tude less than K is to P less than B to A, and every magnitude

greater than L is to P more than B to A. Whence, it is between

K and L that the fourth proportional Q is found, if any where.

There cannot be more than one such value of Q ; for, if there be two

different magnitudes V and W, since, then, by taking m sufficiently

great, we may make mV and mW differ by more than P, it is impos-

sible that both wV and mW can lie between the same consecutive

multiples of P, as those of B which contain between them mA. And

the above also evidently shews, that if we suppose a magnitude Q,

changing its value from K to L, it cannot during its increase become

of the same kind as L, namely, more to P than B is to A, and then

again become of the same kind as K. For, whatever magnitude has

this property of L, every greater one has the same. There is then

only one point between K and L at which this change takes place,

and we have, therefore, this alternative: Either G (between K
and L) is less to P than B is to A, and every magnitude greater than

G is more ; or, some magnitude G between K and L is the same to

P as B to A, and is the intermediate limit lying above all those

which are less to P, and below all those which are more. By dis-

proving the first alternative, we prove our proposition. If possible,

let G be less to P than A to B, G+V more, however small V may be.
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Then maymG be made less than nP (;w A being greater than nB),

while m{G-\-V) is greater than wP. For the ascending assertion

must be converted at least into a stationary one. Let m G fall

short of wP by Z ; then V may be taken so small that mV shall

not be so great as Z, or mG+mV not so great as wG+Z, that is,

not so great as mP. But the first clause of the alternative supposes

that w(G+V) must be greater than wP, how small soever V may be;

therefore this clause cannot be true, or the second must be true.

This fourth proportional to A, B, and P, then, must exist; but

whether it can be expressed by the notation, or determined by the means

of any science, is another question. It can be expressed in arithmetic

when A and B are commensurable : it can be found in geometry

(by the straight line and circle) when A and B are lines or rectilinear

areas. But if they be angles, arcs of circles, solids, &c. it cannot be

assigned by the straight line and circle, except in particular cases.

Let us suppose the ratio of A to B given, that is, not A and B

themselves, but only the answer to this question for all values of w,

** Between what consecutive multiples of B lies mA. V Suppose also

the ratio of B to C given ; how are we to find the ratio of A to C, or

can it be found at all ? that is, is it given or determined by the two

preceding ratios. Take any magnitude P, and determine Q so that

P is to Q as A to B, and then determine R so that Q is to R as

B to C. Then the ratio of P to R (page 59) is that of A to C ; not

that P is A or R is C (for they may even be magnitudes of different

kinds), but P is to R as A is to C.

The process by which the ratio of A to C is found by means of

those of A to B and B to C, is called by Euclid composition of these

ratios; or the ratio of A to C is compounded of the ratios of A to B
and B to C. What, then, ought to be meant by the ratio compounded

of the ratios of A to B and X to Y. Our guide in the assimilation

of processes, and the extension of names, is always the following

axiom.

Let names be so given, that the substitution of one magnitude

for another equal magnitude shall not change the name of the process

;

and, generally, that the same operations (in name) performed upon

equal magnitudes, shall produce the same result.

Let X be to Y as B to N, where N is a fourth proportional to be

determined. Then the ratio of A to N is that compounded ofA to B
and B to N, and is what must be meant by that compounded of
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A to B, and X to Y. It is proved in Prop. 20, that ratios com-

pounded of equal ratios are equal ratios.

Again, to find the ratio compounded of the ratios of A to B,

C to D, and E to F ; let the process by which the ratio of A to D is

derived from those of A to B, B to C, and C to D, still be called

composition. Then take B to M as C to D, and M to N as E to F :

the ratio of A to N is that compounded of the three ratios.

In the beginning of this work, we deduced the necessity for con-

sidering incommensurables in some such manner as that of Euclid,

from the notion which, as applied to commensurables, admits of a

definite representation, derived from the idea of proportion. But the

method of the fifth book is different. It is there implied, that where-

ever two magnitudes exist, their joint existence gives rise to a third

magnitude, called their ratio, of which magnitude no conception is

given except what is contained in certain directions how to apply the

terms equal, greater, and less, to two of the kind. On this the

natural question is, what sort of magnitude is this, and how do we

know that there is any magnitude whatsoever which admits of this

apparently arbitrary exposition of definitions ? This question is very

much to the point, and the want of an answer at the outset is a main

cause of the difficulty of the Fifth Book. The answer implied in the

work of Euclid is this : Let us first consider what will follow if there

be such things as ratios, or magnitudes to which these definitions of

equal, greater, and less apply ; we shall then shew (in the Sixth Book)

that there are different pairs of magnitudes, of which it may be said

that they have ratios,- and we shall never have occasion to inquire

what ratio is.

We may take a case parallel to the preceding from the First Book.

The notion of a straight line suggests nothing but length ; that of two

straight lines which meet, suggests a relation, which we may conceive

stated in this way. If A, B, C, and D, be straight lines, of which

A and B, and C and D, meet ; let A and B be said to make the

same angle as C and D, when, if A be applied to C, and B and D
fall on the same side, B and D also coincide : but let A be said to

make a greater angle with B than C with D, when, in a similar case,

B falls outside of C and D, &c. To this it would be answered, that

the preceding definitions are a circuitous way of saying that the angle

made by two lines is their opening or inclination ; an indefinite term,

which, though it distinguishes angle from length; does not serve to
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compare one angle with another. And just in the same manner, if it

were not that the definition is more complicated, and refers to an

abstract, not a visible or tangible, conception, it would immediately

be seen that ratio is relative magnitude,— a term which is sufficient

to distinguish the thing in question from absolute magnitude, but

which does not give any means of comparing one thing of the kind

with another, Tiie immediate deduction of this idea is as follows :

If, whenever mA lies between n B and (n +1) B, it also happens that

mP lies between nQ and (n -f-1) Q, it follows that A, lying between

two certain fractions of B, — B, and —— B, then P lies between

n
the sam« two fractions of Q. Or, if wA= wB, that is, if A=— B,

then P is the same fraction of Q. Or we may state it thus : if B be

made unity, for the measurement of A, and Q for the measurement of

P, then A and P are the same numbers or fractions of their respective

units.

Euclid has commenced the subject with a rough definition, as we

have seen, p. 29, and the translators have spoiled it, by not distin-

guishing between quantity, and relative quantity; that is, by so

wording the definition as to say nothing more than that ratio is a

relation of magnitudes with respect to magnitude.

We now come to consider the application of the preceding notions

to arithmetic. Let us first separate all that part* of arithmetic which

relates to abstract and definite numbers, from the rest, and let us call

it primary arithmetic. A little observation will shew that abstract

number as distinguished from concrete, is really the same thing as

ratio of magnitude to magnitude. What is threCf for example? It is

an idea which we obtain equally from looking at

and

From putting such concretes together, we bring away a notion of there

being the same relative magnitudes existing between the individuals

• The whole of the First Book of mj Treatise on Arithmetic, with th«

exception of $ 158, 165-169.
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of each pair. In the first, it is repetition^ in the second, it is length,

in the third, it is opening, we are reminded of; but in all three, we say

the first is three times the second. Now this word times is, in fact, a

limitation, which will not do for our present purpose; it implies that

we will have no other ratios except those of line to line in the series

A h 1

B h 1

1

C
1

, n ^
D h ^ n -^

1
&c.

made hy repetitions only : but there may be ratios which are not those

of line to line in any repetition, how far soever carried.

Here is a point at which we are compelled to pause, to adjust the

well-known terms of number to the new idea we have put upon them.

Abstract numbers are certain ratios; abstract fractions are certain

other ratios : but all possible ratios are not found among numbers and

fractions ; whence it arisesj that primary arithmetic^ though it may be,

so far as it goes, a theory of ratios, is not a theory of all ratios^ nor

are its operations such as can be performed upon all ratios.

That ratios are magnitudes, we must have supposed firom the

beginning, seeing that they bear the terras equal, greater, and less.

But there was still this defect, that our test ofA being to B more than

C to D, was one which left us with no idea how much more A was to

B than C to D; which amounts but to this, that we could not define

the ratio of ratios without having first defined ratio. But, in like

manner as arithmetic was made the guide to that notion which is

properly* called the ratio of incommensurable quantities, so will the

ratio of two ratios in arithmetic lead us, after a little consideration, to

the meaning of the ratio of ratios of incommensurables.

When we say two, we refer to the repetitions of the smaller in a

ratio of magnitudes, thus visibly related :

When we say twice two, there is a change of idiom in our language.

It might be, instead of twice two is four, two twos dire four ; that is,

where there exists that idea of relative magnitude which we signify by

• Consistently; so as to couple with operations upon problems of

commensurables those operations which apply to the same problems upon

incommensurables.
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two, let the idea o( relation be coupled with the idea of a larger relation^

in exactly the same manner as our idea of magnitude, when we look

at , is increased when we look at ; and we shall then,

by considering the result as one of relative magnitude, be led to the

idea of the relation between and . This,

of course, does not give a better comprehension of twice two is four;

but what it explains is, that we are using the term ratio in a consistent

sense, when we say that the ratio of 2 to 1, increased in the ratio of

2 to 1, is the same as the ratio of 4 to 1 ; and, generally, that the

ratio of w to 1, increased in the ratio of n to 1, is the ratio of mn to 1.

And the notion of relative magnitude contained in the words, ratio of

m top, must be the same as that contained in the words, ratio o( mn
to pn ; and, conversely, the notion in the latter is that implied in the

former. I doubt if any thing that deserves the name of proof can be

given of this proposition, which seems to be worthy the name of an

axiom. What idea we form of magnitude as portion of magnitude

from A and B, the same do we form from 2A and 2B. Nor can

I imagine these propositions extended to fractions in any more funda-

mental manner than by observing, that as — taken - times is —
•^ ° n q nq

times (times mean times, or parts of times, either separately or both

jn p
together,) a unit, the ratio of— to 1, altered in the ratio of- to 1,

n 9

is the ratio of— to 1 ; or that the ratio of m to n, altered in the ratio
nq

of/> to 9, is the ratio o( mp to nq. These are propositions in which

the line between deduction and mere establishment of the synonymous

character of terms is very indefinite. I recommend the student to

examine his own idea of what he would have meant by " the pro-

portion of 3 to 2 increased in the proportion of 5 to 4, is the pro-

portion of 15 to 8." If he be a metaphysician, I refer him to his

oracle, on condition only that the response shall not contradict the

preceding proposition.

The multiplication of m and n is, then, the alteration of the ratio

of m to 1 in the proportion of n to 1 ; and the ratio of magnitudes

tn A and wA is the same as the ratio of magnitudes mB and wB, and

of m to n. Hence, to alter mA: nX (which is m : n) in the ratio of

/>B to qBf which is {p : q), is the formation of mp : nq, or mp\ to

«jA, or mpB to w^B. Now, this is precisely what Euclid has

G 2
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termed the composition of these ratios ; for, let wA : /tA : : vB : pB,

then vB : pB compounded with j^B : ^B, is vB : qB, or v : g. But

mA:nA::m:n vB : pB :: v : p

Therefore m : n is v : p or — : 1 is - : 1^ n p

V =^— V : q is ^— ' g or pm : wg' or p/wA : nqA

or ^?wB : wg'B.

Hence, composition is multiplication of terms, when the ratios are

those of number to number. Let, then, composition of ratios stand

for multiplication of terms, and be considered as the corresponding

operation in the case of incommensurable magnitudes.

Prove from this, that if U : A and U : B be compounded, giving

U : C, that when A=aU and B= bU, we have C=fl6U, and that

if U : A and B : U be thus compounded, giving U : D, we have

D= T U, D : U : : Y : 1 ; in which operations, corresponding to mul-

tiplication and division.

It may be a matter of some curiosity to know whether Euclid carried

with him the notion of multiplication of numbers in the composition

of ratios. In the Fifth Book, the notion of the numerical magni-

tude of a ratio is entirely suppressed, except only in the single word

TtiXiKOTyii (see page 29.) Composition* is defined to be the taking

an antecedent of one ratio with the consequent of another; and it is

not even specified that the intermediate terms are to be the same.

But in the Sixth Book we find composition, or collocation of ratios,

to mean the multiplication of their quantuplicities (see page 29).

• Ivvhirts koyov itrr) X'^-^'is tou fiyovf^.iyou fAirk rov i^of^ivov us ivos 9r^af

UVTO TO i^o/jctvov-—V. Def. 15.

Ao<yos iK Xoyuv evyxiltr^-a,! kiytrat ornv ai vuv koyav ^tiXixortiTts ip'

lavrks 'TeoX'ka.'x'kex.ffioi.a^iiacn Totuffi rtvei.—VI. Def. 5.

The second of these definitions has usually been omitted in modern

editions. But it is worthy of remark, that, in the first, to compound is

fvvriB^itr^ai ; in the second, ffvyxntr^at ; and the second is the word after-

wards used by Euclid, though in the sense of the first. The reason of the

omission appears to have been a disposition on the part of commentators

to consider Euclid as a perfect book, and every thing which did not

accord with their notions of perfection, as the work of unskilful editors or

interpolators.
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The addition and subtraction of ratios can only be primarily con-

ceived when the latter terms of the ratios are alike. Thus,

A
B

G D
we must imagine the idea of relative magnitude given by BC com-

pared with A, and by C D compared with A, to be put together, in

order to make up the relative magnitude of BD to A. Addition and

subtraction are, as to ratios, ideas not so simple as multiplication and

division. Shew that the preceding is the only way in which m : 1,

increased in the ratio of w : 1, will give tww : 1, consistently with

the notion of multiplication of whole numbers being successive

additions.

When ratios have not the same consequents, they must be reduced

to the same consequents. Thus, A : B and C : D are added by

taking A : B :: P : Z and C : D :: Q : Z, and P -fQ : Z is the sum

of the ratios. This answers to addition of fractions.

Let P be the mean proportional between A and B, meaning that

A : P as P : B. It may be proved, as in page 60, that there must be

such a magnitude as this mean proportional, and we may also prove

that we can find A : P as P : Q, and P : Q as Q : B, thus forming

two mean proportionals. It is readily proved, that if A=aU and

B=6U, then P=cU where ccz=ab. If, then, a 6 be a number or

fraction which has a square root, P can be found commensurable with

A and B ; but if at have no square root, number or fraction, then P
is incommensurable with A and B, but not, therefore, unassignable as

a magnitude, though unassignable as a numerical fraction of A or B.

Consequently, when we speak of >/2, it must be with reference to

magnitude, and we mean s/l M, an accurate representative (if we

choose to define it so) of the mean proportional between M and 2M.
Similarly, when there are two mean proportionals, we find P, if

A=aU and B= 6U, to be cU where ccc= aby and this is incom-

mensurable unless a 6 be a cube number or fraction. But we may
3 /—

define v2M to be the first of two mean proportionals between M
and 2M ; and so on

.

Are we, then, to use long processes and comparatively obscure

definitions, whenever the ratios of a problem are incommensurables ?

By no means ; we proceed to shew that it may always be made pos-
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sible to let the processes of arithmetic (or rather of algebra) be used

as if the ratios in question were commensurable ; and that we may

thus deduce a result which may either be interpreted strictly at the

end of the process, or made to give a result as near as we please to

the truth in arithmetical terms. Let us suppose this Problem : Two

pounds are spent in buying yards of stuff, and as many yards are

bought as shillings are given for a yard. Let x be the number of

yards, then x yards at x shillings a yard, gives xx shillings; whence

rx= 40, which is arithmetically impossible. Now, turn from num-

bers of pounds to quantities of silver, and let S be the silver in a

shilling, X that in the price given ; let L be a yard, and Y the length

bought. Then it is required that 40S should be given, and that X
should bear the same ratioto S as Y bears to L. Now, if X be given

for L, what must be given for Y ? Take P of such relative magni-

tude to X, as Y is to L ; that is, let

L: Y::X : P = 40S
But as L : Y : : S : X Therefore S : X : : X : 40S

or X must be a mean proportional between S and 40 S. Now, if we

make our symbols general, and let x stand for any ratio, numerically

possible or not, but proceed as we should do if it were arithmetical,

we proceed as in the first case, and find x=n/40, which, being in-

terpreted as a magnitude, with reference to its ratio to S, means, when

the symbols are general, n/40S, the mean proportional between S

and 40S. If we wish for an approximate numerical result, we must

suppose 40 + a to be the sum, where 40 + a has a square root, and

then we have j:= \/40+a; and since a may be made as small as

we please, we can make this problem as near the given one as we

please.

The following table should be attentively considered. In the first

column, an incommensurable ratio x, of X to U, is given, or a func-

tion of it and other ratios, under arithmetical symbols ; in the second

is the ratio which the function really gives, when the symbols on the

first side are extended in meaning.

X ox X ', 1 tlie ratio of X to U
y--y : 1 Y .. U
z.. z -.1 Z .. V
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1 : : 1 : a: or U : X as
1 1XX X

compounded of j: : 1 and x : \ or X : U and X ; U. Let

U ; X : : X : P t'nen P : X and X : U compounded give P : U
or i"'* : 1 is the ratio which a third proportional to U and X

bears to U.

xyz {x\\){y\\){z'.\) ratio compd. of X : U, Y : U, and Z : V.

Let X : U :: P : Y ; the above is then compounded of

P : U and Z : V. Let P : U : : Q : Z. The result is then

Q : V or xyz : 1 is Q : V
P a fourth prop, to U, X, and Y
Q U,P, .. Z

xy-\-yz 0-3/ : 1 is P : U when U : X : : Y : P
yz'.l is Q: V .... U: Y::Z:Q
Take Q:V::M:UorV:Q::U:M

P + M : U is the ratio required.

X- : 1 compd. of X : U and V : Z
z

^

Let X : U : : P : V and P : Z is the ratio required

Now, we have assumed the operations of finding a fourth pro-

portional, a mean proportional, two mean proportionals, &c. Whether

these can be done, or whether any or all cannot be done, is a question

for every particular application. In arithmetic, we will suppose the

data arithmetical; a fourth proportional can always be found. In

geometry, a fourth proportional can be found to lines or rectilinear

areas ; but not to angles, &c. And a mean proportional cannot

generally be found in arithmetic, but can be found in geometry,

between two straight lines, or two rectilinear areas. But two mean

proportionals cannot be found in geometry or in arithmetic.

It must be remembered, that while we are here speaking of

geometry or arithmetic, we are not speaking of every conception we

can form of these sciences, but of the subjects as limited by the de-

finitions of what it has been agreed shall be called arithmetic and

geometry. Elementary arithmetic means the science of numbers and

fractions : elementary geometry, the science of space, so far as the

same has properties which can be deduced by allowing o^ fixed

straight lines and circles. To say that an angle cannot be trisected

geometricallyf means, that it cannot be trisected by means of straight
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lines and circles as defined. But there is an abundance of curves,

the stipulation to draw any one of wliich would secure the means of

trisecting an angle. And, by simply granting that a circle should be

allowed to roll along a straight line, and that the curve described by

one of its points should be granted, we can either square the circle, or

find the ratio of any two arcs. And, just in the same way, if we

were to define a journey to be 100 miles or less, it would be perfectly

true that we could not make a journey from London to York, but that

we could from London to Brighton.

It is surely time that the verbal distinction between different parts

of the same sciences should be done away with. Every conception

which can be shewn to be not self contradictory, can be as easily

realised by assumption as the drawing of a circle, which is itself a

perfect geometrical idea, and can only be roughly represented by

mechanical means. Whatever can be distinctly conceived, exists for

all mental purposes ; whatever can be approximately found, for all

practical uses.

It may be worth while to make the student remark the close

similarity which exists between the process in page 64, and that by

which we enlarge our ideas in algebra, from the simple consideration

of numerical magnitude to that of positive and negative quantities.

In both, we set out with a notation insufficient to express all the

results of problems ; in both, this circumstance is marked by the

appearance of unexplained results, the examination of which, on

wider grounds, shews the necessity for attaching more extensive ideas

to symbols ; and in both, the partial view first taken is wholly included

in the more general one : while in both, the processes conducted

under the wider meanings are precisely the same in form and rules

as those which are restricted to the original meanings of the symbols.

The principal difference is, that in extending arithmetic to the general

science of ratios, we are not engaged in interpreting difficulties

arising from contradictions, but from results which are only approxi-

mately attainable. But in both the reason is, that we set out with

our symbols so constructed, that we cannot undertake a problem

without tacitly dictating conditions to the result. In beginning

algebra, we make quantities indeterminate in magnitude, with symbols

of operation so fixed in meaning, that they cannot be used without

an assumption that we know which is the greater and which is the
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less of two unkr.own quantities. We liave, therefore, to examine the

different cases of problems which present different results according

as one datum is greater or less than another; and thus we obtain those

extensions of meaning which will make the problems and the symbols

equally general. In beginning arithmetic, we invent no symbols of

ratio, except those which represent the ratios of magnitudes formed by

the repetitions of a given magnitude. These we find to be not

sufficient to represent ail ratios ; though it is shewn that we can make

them represent any ratio which magnitudes can have, as nearly as

we please. The invention of new symbols of ratio must require

the generalisation of operations ; that is, we cannot speak ofmulti-

plication or division of ratios generally, while these words have a

definition which applies only to ratios of repetitions, or commensurable

ratios.

There is a difference between the impossible of primary arith-

metic, and that of geometry. The first is unattainable by a restricted

definition, the second by restricting the cases of general definitions

which shall be allowed to be used. In arithmetic, we attempt a

science of relative magnitudes, by running from the general notion of

relative magnitude to the more precise and easy notion of the relative

magnitudes of one certain set of magnitudes, A, an arbitrary, A-|- A,

A-j-A-f-A, &c. We are very soon taught that our symbols will

not express all ratios, that is, if we have a general notion of ratio to

think about: whence our definitions are not sufficiently extensive.

But in geometry, having assumed notions and definitions from which

we cannot help conceiving an infinite number of different lines and

curves, we immediately proceed to cut ourselves off from the use of

all except the straight line and circle; that is, the straight line between

or beyond two given points, and the circle which has a given centre

and a given radial line. Until these demands or postulates are

looked upon as resty^ictions, their sense is never understood. (See

the Appendix.)

This difference is, however, not very essential ; since it is much

the same whether we define in too limited a manner, or whether we

limit ourselves to the use of only a part of a general definition. We
shall in the sequel discard the restrictive postulates, and suppose

ourselves able to draw any line which we can shew to be made by

the motion of a point.

The method by which Euclid first exhibits four proportional
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Straight lines, though elegant and ingenious, has not the advantage

of exhibiting the notion of ratio directly applied to two straight lines.

The following theorem is directly proved from the first book, and

maybe made the guide. If a series of parallels cut off consecutive

equal parts from any one line which they cut^ they do the same from

every other. This premised, suppose any two lines OA, OB, and

take a succession of lines equal to OAand OB, drawing through

every point a parallel to a given line. Draw any other line, O C D,

intersecting all the parallels : from which the preliminary proposition

shews, that whatever multiple O a is of OA, the same is Oc of OC ;

and whatever Ob is of OB, the same is Oc? of OD. And if O a be

greater than, equal to, or less than Ob, Oc is greater than, equal to,

or less than, Orf. Hence the definition of equal ratios applies pre-

cisely to the lines OA, OB, OC, and OD, which are, therefore,

proportionals. This gives the construction of Book VI. Prop. 12, or

one analogous to it.

The metliod of finding a mean proportional between two straight

lines is given in Prop. 13; but as we now wish to make the straight

line the foundation of general conceptions of magnitude, we shall

pass at once to those considerations which involve any number of

mean proportionals. It adds considerably to the interest of this part

of the subject, that we are thus brought to the notions on which the

first theory of logarithms was founded

.

Let there be any number of lines, V, Vj, V^, Vg, in con-

tinued proportion ; that is, let all the ratios of V to V„ V^j to Vj, Vj to

Vg, &c. be the same. And let V, be greater than V ; in which case

Vj is greater than Vj, &c. If V^ were equal to V, then would Vj be

equal to Vj, &c. And, first, we have the following

Theorem. By however little Vj exceeds V, the series V, Vj, &c.

is a series of magnitudes increasing without limit : so that, however

great A may be, a point may be attained from and after which every

term is greater than A : but in all cases whatsoever, Vj may be taken
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SO near to V, that the terms of the series V, Vj, &c. between which

A lies, shall be as near to A in magnitude as we please.

Firstly, the series increases without limit. For, since V : V, : :

Vj : Vg, and V and V^ are the greatest and least, we have

V -h V2 is greater than V^ + Vi

or V2—Vi is greater than V^ —

V

Or, Vg exceeds Vj by more than V, exceeds V. Similarly, V3 exceeds

Vg by more than Vg exceeds V^ ; and so on. But if to V were added

continually the same quantity, the result would come in time to

exceed any given magnitude ; still more when a greater quantity is

added at every step.

Secondly, since then we come at last to Vn less than A, while

Vn+i exceeds A, it is plain that A will not differ from either by so

much as they differ from each other. But because

V. : V„^i : : V : V,

we have V„+i-V„ : V„ : : V,-V : V

If then Vi—V be so small that m (Vi—V) shall not exceed V,

neither will m{Vn+i—V„) exceed V„, and of course not A . Let w
be any given number, however great, and let Vj—V be less than the

mth part of V ; then will Vn+i—Vn be less than the 7wth part of A;

or, by taking m sufficiently great, may be made as small as we please.

Whence the second part of the theorem.

Theorem. In the preceding series, the selection

V V„ V,„ V3„ &c.

constitutes a similar series of continued proportionals. For, since

any two consecutives in the upper line next given are proportional

to those under them in the lower,

v, V„ V, v„

v„ V„+. V„+2 v,„

we have (xxii.) V : V^ : : V^ : V2„ : and so on.

If between each of the terms of the series we insert the same number

of mean proportionals, the series thus formed will have the same pro-

perties as the original. Let us say we insert two mean proportionals

between each two terms. Then we have

H
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V K K' Vi L L' v. M M' V3

Now the only question about the continuance of the same ratio from

term to term is in the ratios V, : L, Vj : M, &c. But I say that since

V : K : ; K : K' : : K' : Vi V : V^

Vi : L : : L : L : : L' : V, ^""^ V^ : V,

that V : K : : Vj : L. For if not, let these latter ratios differ ; say

V is to K more than V, is to L. Then is K to K' more than L is

to L' ; and hence (presently will be shewn) the ratio compounded of

V to K and K to K', or V : K', is greater than that compounded of

V, : L and L : U or V : L'. Similarly, V to K' and K' to V, being

more than Vj : L' and L' : Vg, we have V : Vj is more than V, to Vg,

which is not true. Therefore V is not to K more than Vj to L ; a

similar process shews that it is not less : consequently,

V : K ; : Vi : L

or the continuance of the primary ratio is uninterrupted.

The theorem assumed in the above is thus proved. IfA : B more

than P : Q we have inK greater than nB, while wP is less than nQ;
or any other descending assertion. And if B : C more than Q : R,

we have ^B greater than 3/C, while a-Q is less than y R. Or we have

mxA greater than nx^, nx^ greater than nyC, or mxk greater than nyC
?w.rP less than nxQ, nx(i less than ny^, ox mxV less than wyR

that is, A is to C more than P is to R ; which is what we assumed.

If then we insert a mean proportional between V and A, giving

V M A
if between each we insert a mean proportional, we have

V M' M M" A

If we proceed in this way, we shall come at last to a series of the

form

V V, V„ V„_,(V„ = A)

in which no two quantities differ by so much as a given quantity K.

We can actually insert one mean proportional between any two

quantities ; it is done in geometry between two lines, and (page 60)

two magnitudes of any sort may be made (one being given) propor-

tional to two lines. Thus, let A, B, C, be continually proportional
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lines, or let B be a mean proportional between A and C. Then if

A and C were taken proportional to (say angles) M and K, it follows

that ifA : B : : M : L, that M, L, and K are continued proportionals,

by a proof of the sort given in the lemma of the last theorem.

Granting, then, that every two magnitudes have one mean propor-

tional, we may now shew that they have any number of intermediate

proportionals ; as follows

:

We set out with 2 quantities, and the first insertion adds 1, the

second 2, the third 2^, the fourth 2' and the wth 2"-^ Con-

sequently, n complete insertions add

1 + 2 + 22 -f + 2"-i
or 2" - 1

to the first 2 ; giving 2" -[- 1 in all. Now, let us suppose that 2" + 1

divided by p leaves a quotient g, and a remainder r which is not

greater than p. Consequently, we have for the whole number (V and

A inclusive) after n insertions,

V = pq -{-r which is also p{q + l) — (p — ^)

and p— r is also not greater than p ; and Vm=A when m=v and

is greater or less than A, according as m is greater or less than v.

If then out of the series (the proportion being continued up to

Vp(g+i)) we select

V Vg V23 (Vpq less than A)

V V5+1 V2 (q+i) C^p{q+i) greater than A)

We see V and Vpq, and V and ^piq+i) each with p— 1 mean pro-

portionals inserted between them, namely,

V« ^2q ^(P-I)q and Yq+l V2(5+i) V(p_i)(5+i)

But from Ypq to ypiq+i) there are p passages from term to term

of the complete series, consequently, since each passage may be made

by an augmentation less than K, the difference between the two may

be made less than p K, which call Z. Hence we have the following

Theorem. To find two magnitudes, one greater and the other less

than A, but differing from it by less than a given quantity Z, between

each of which and V, p— 1 mean proportionals shall exist, obtained

by continual insertion of one mean proportional, continue the in-

sertion until no two successive terms shall differ by so much as the



76 CONNEXION OP

pth part of the quantity Z : then the quantities required and the mean

proportionals shall be in the set so found.

Hence it can be shewn that there are p— 1 magnitudes (whether

attainable or not with any given means is not the question) which

are mean proportionals between V and A. Let Pj, and Qp be mag-

nitudes, one greater and one less than A, which have such mean

proportionals, namely, let the following be continued proportionals,

V Pi P2 Pp_i (Pp greater than A)

V Qi Q, Qp_i (Qp less than A)

obtained by the preceding method, from which it is apparent that

P, is greater than Qj. Now, exactly as in page 60, if we assume

Xj to set out in value =sQ,, so that V : Xp more than V : A (Xp

bring the pth of the set of continued proportionals V, Xj, Xj, )

and to change through all possible intermediate magnitudes up to

X,=:Pj, or V : Xp less than V : A, there is but this alternative;

EITHER at some intermediate point V : Xp as V : A, or Xp = A,

OR, there is a point at which V : Xn more than V : A, being always

less when X^ is greater by any magnitude however small. The latter

may be disproved, or the former proved, as in the page cited.

To resume the original subject. It appears, then, 1st, that if be-

tween V and A we continually insert mean proportionals, in such

manner that at every step one mean proportional is inserted between

every two consecutive results of the preceding step. 2d, If the series

be continued beyond A, preserving still the same ratio between the

consecutive terms of the continuation which exists between conse-

cutive terms lying between V and A ; then will this process leave us

at last with a series of consecutive proportionals, having consecutive

terms so near together in magnitude, that every magnitude lying be-

tween V and any we please to name, shall have a term of the series

differing from it by less than Z, however small Z may be.
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Let us now make OK and HL perpendicular to any chosen

line OM, and let V be the line OK, A the line HL. Bisect OM in

C, and erect CD the mean proportional between OK and HL.

Bisect OC and CH, and erect the mean proportionals between OK
and CD, and between CD and HL. Continue this process, and we

shall thus get an increasing number of points between K and L,

which will soon give to the eye the idea of a curve line rising from

K to L. When we have thus divided OH into 2" parts, by n in-

sertions, giving 2" + 1 lines, we may, by setting off portions equal

to those intercepted in OH, continue that line on one side and the

other, and thus continue the scale of proportionals and the series of

points on one side and on the other of O and H. However far we

may go we can never complete this curve ; but if we admit that a

curve exists, wherever a series of points can be laid down, as many as

we please, and consecutively as near as we please, then we have

a right to assume this curve as existing, and, for purposes of' rea-

soning, as constructed. Call this the exponential curve, (exponere, to

set forth), which expounds ratios, a phrase to which we shall presently

give meaning. That the student may not suppose we are using an

old word in a new sense, it is necessary to inform him that this curve,

or rather the process which we have illustrated by it, is older than the

algebraical symbol a^, and that x gets the name of exponent from it.

We shall presently see the analogy.

The exponential curve being given, every line OG has its place

MP among the ordinates of the curve, and its abscissa OM, which

expounds or sets forth that place. From the nature of the formation,

it is evident that a given line has but one exponent, and that the

order of magnitude of lines (to the right of O), is also that of their

exponents.
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And the main property of the curve is this : that a fourth propor-

tional to any three lines (V being one), OK, MP, M'P', may be

found by adding the exponents OM and OM' (making OM"),
and finding the line M"P" expounded by that sum. To prove this,

make n sets of insertions in O H, and suppose M P to lie between

Vm and Vm + h while M'P' lies betweenW and Vm'+i. Now, in

the series of continued proportionals,

VV, V, (VAi = A)V,V ••••

I say that V : V„. : V„, : V„^„.

Fof V V, V, V„.: • V„

* m' * m'+l ^ m'+2 ^ m'+m—l * m'+m

we have V : Vj ::¥,„. : V;„.+i &c. &c.

whence V : V,„ : Y^. : Y^^„,

Similarly, V : V„,+i : V,„.+i : y„,+m'+2

Now, by a lemma we sliall presently shew, since M P lies be-

tween Vm and Vm + i, and M'P' lies between Vm' and Vrw'-j-i, the

fourth proportional required lies between Vm+m' and Vm+m'+2. Let

K be the value of one of the last subdivisions ofOH ; then we have

supposed OM to lie between mK and (m-|-l)K, and OM' between

m'K and (m'+l)K. The preceding makes it evident that the fourth

proportional has an exponent between {m-\-m')K and (w -f-m' 4- 2)K

;

while the sum of the exponents OM and OM' also lies between

{m-\-m')K and (w + m'+2)K. Since K can be made as small as

we please, it must follow that the sum of the exponents is the ex-

ponent of the fourth proportional; for two different magnitudes can-

not lie between two quantities which can be made as near as we

please, as can (m -\- m')K and (m -j- m') K + 2 K. If the two approxi-

mating magnitudes approach to each other, keeping one of two

different magnitudes between them, they must, at last, leave out the

other.

The lemma alluded to is as follows : If

A : B::C : D
and A : B + B' : : C + C : D + D'

Then if A, B + X, C-|-Y, D+Z, be also proportionals, where X
and Y are less than B' and C, then Z must be less than D' ; for A is
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to B + X more than A is to B + B' ; or (substituting equal ratios),

C + Y is to D + Z more than C + C! is to D + D'. Still more is

C+C (remember that C is greater than Y) to D + Z more than

C+C to D+D'; that is, D + Z is less than D+D', or Z less

than D'.

The following property we leave to the student to deduce from

the last. If there be any three lines, Xj Xj X3, expounding Y, Y^ Y3,

any lines whatsoever greater than V, then the exponent of the fourth

proportional is Xg+Xg— Xj.

These are all properties of algebraical exponents, or of logarithms,

(^Xoyuv a^i0f<,oi, numbers expounding ratios). We shall now make it

appear, that the line expounded by x is of the form a^.

Let the numerical symbol of V or O K be i? ; let that of H L or A
be a. Then, if arithmetical mean proportions be continually inserted,

we have

V (av)^ a

V c^v^ a^v^ cflv^ a

V a^v^ a^v^ a^v^ ah^ a

or generally, when 2"— 1 (say j9— 1) mean proportionals are in-

serted between v and a, the with of these proportionals is

m - m m
(2" = p) aP V P which is ^kp

if we suppose a^=.vk. Now, let us suppose a number y thus ex-

pounded by X ; and after n insertions, let this number x lie between

ma and (m-f-l)a, a being the pih part of OH, (let OH be c). We
have then

lies between m-
P

and {m + 1)-

m
between c

—

P

1 m , c
and c— + -

P P

-=o^ + /3 (^<P
Therefore, — =pec

Consequently the number expounded by m a, or m -, or x— /3 is

Vk '



80 CONNEXION OF

and since /3 diminishes without limit as the insertions continue, the
X

number expounded by x is vk*^ . That is, if we adopt general nu-

merical symbols, let OM = .r, M P =y, and we have

X

or, if we let OK represent the linear unit(v=l), and let 0H =
OK= l, HL= 10, or /c= 10, we have

or X is the common logarithm of 3/.

From the curve we see how it is that magnitudes less than V
are expounded by negative quantities, with other well-known pro-

perties of logarithms.

We see then, that the assertion " the common logarithm of 2 is

•30103 very nearly," may be thus made; which is perhaps the most

distinct view that can be given of a numerical logarithm. If we make

10V the hundred thousandth magnitude in a series of proportionals,

V, Vi, Vs, (Vioo,ooo=10) Vioo,ooi, &^-

then will the 30103rd of these proportionals, or Vg^j^g, be very nearly

equal to 2 V.

If we chose, we might, granting that the exponential curve can be

constructed, make V/cX by definition the line MP ; where X stands

for O M, and k for the ratio of H L to O K. From this it would

readily be deduced, that when k represents a commensurable ratio,

and X is — linear units where V/c^i has an arithmetical existence,

P
the results of this theory are the same as those of common algebra.

And from hence it appears, that the science known by the name of

the application of algebra to geometry (of which it is the foundation,

that a linear unit being given, every expression of algebra may be

considered as a length, or at least the symbol of the ratio of a length

to that unit) does, in point of fact, make this additional assumption,

while an application of geometry (with this assumption) to algebra,

would take away all want of rigorous conception of the meaning

of algebraical formulae, so far as the meaning of the exponent is

concerned.

The view above given is very nearly that by which logarithms
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were first calculated, but the method was not so general. The natural

logarithms (see my Algebra, p. 226) arose thus. If we suppose a

very large number of mean proportionals, then V and Vj will be very

nearly equal. Let V^ = V + X, then if we assume O H, so that X

shall expound V + X when X is very small, or more correctly, if we

suppose the limit of (V+X) divided by the magnitude expounded by

X, as X diminishes without limit, to be unity, we have the first, or

Napier's system.





APPENDIX.

ON THE DEFINITIONS, POSTULATES, AND AXIOMS
OF EUCLID.

I HERE propose to endeavour to make such a subdivision of the

definitions, &c. at the beginning of the First Book, as may enable the

student to review the reasoning of the whole.

I shall consider the 10th and 11th axioms as among the postulates,

firstly, because some old manuscripts support this change ; secondly,

because the older translations (from the Arabic) support it also, and

even place the 12th axiom in the same list; thirdly, because it is

utterly impossible to place them in Euclid's list of common notions.

For he uses no such word as axiom (Greek though it be), but calls

" the whole is greater than its part," koivh hvota, that which is in the

conceptions of every one. Now, what is the probability that he

considered " all right angles are equal," as a truth familiar to the

understanding of every beginner in geometry? His postulates

{a,iTYifjt.a,roe., demands) do, according to the etymology of the word,

include those axioms, if not the 12th also.

1 also place out of view the axioms which belong to all kinds of

magnitude as much as to space, namely, from the 1st to the 9th in-

clusive. There remains then in the shape of limitation, or assumption,

six postulates, namely, three which I will call restrictive, being those

commonly called postulates,* and three assumptions, being the 10th,

11th, and 12th axioms, so called.

Some of the definitions contain assumptions of certain conceptions

existing to which names are to be given ; namely, those of a point, a

• I have seen the word postulate defined as a self-evident problem;

and axiom as a self-evident theorem. This definition is derived from

the character of the postulates and axioms as usually given j but from no

other source.
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line, the extremities of a line, a straight line, a surface, the extremities

of a surface, a plane surface, a plane angle, a plane rectilineal angle.

Others assume the possibility of certain relations existing, as will

appear from the form in which they are put. I shall now give the

definitions, classified with the corresponding postulates, in the manner

which appears to me to be most systematic, and placing in
[ ] such

additions as seem requisite.

1. A point; an indefinable notion; but two persons, whatever

their idea of it may be, can reason together in geometry who deny a

point all parts or magnitude. Let it be granted that a point has no

parts or magnitude, and that we are concerned with no other property

of it, if there be any.

2. Aline; also indefinable, but those whose ideas of it allow it

length, and deny it breadth, can proceed. Let it be granted that all

reasoning upon lines is to be founded only upon the assumption that

they have length without breadth. [Thickness should have been

added, but breadth may mean breadth in any direction.]

3. The extremities of a line are points. [If this define any term,

it must be the term extremities^ for the other two have been defined.

To me it appears something like a theorem, as follows : That which

ends a line cannot have length, for it would be a part of the line ; it

cannot have breadth or thickness, which a line has not ; it has there-

fore the only qualities of a point on which we reason, or comes within

the definition of a point,]

4. A straight line; an indefinable notion, except by the rough

idea that it does not go on one side or the other of the two points,

[which is no definition, because it assumes the thing in question.]

Let it be granted, as a common notion, that two straight lines do not

enclose a space, or have not two points in common, without having

all intermediate points in common. Whatever the idea of a straight

line may be, this is the only property which will be appealed to.

5. Surface; an indefinable notion; those whose ideas give it

leno^th and breadth, but deny it thickness, have the means of reasoning

upon it in geometry.

6. The extremities of a surface are lines. (See remarks on 3.)

7. A plane surface; an obvious notion, roughly defined by lying

evenly between bounding straight lines. [This notion, however

obvious, does admit of a stricter definition. It is a surface of such

kind that ani/ two points in it being joined by a straight line, all
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intermediate points of the straight line are on the surface. This

property is tacitly appealed to throughout.]

8. A plane angle ; the inclination, or bending towards each other

of two lines in a plane. [This definition is superseded by the next;

no angle except one made by straight lines is ever used.]

9. A rectilineal angle (plane), the inclination of two straight lines.

[An obvious notion of opening; it is tacitly assumed that we know

how to determine when two angles are equal, or when one of them

exceeds the other, as in the fourth proposition.]

10. Right angles are those made by a straight line, called a

perpendicular, which falls on another straight line, making equal

angles on both sides. Postulate ; let it be granted that all right angles

are equal. [This is far from an obvious postulate ; the reason for it

seems to have been as follows : That two straight lines which coincide

in two points coincide in every point between them, has been admitted ;

it is sufficiently obvious to sense that they coincide beyond or on each

side of the two common points ; that is, they coincide altogether,

throughout all possible length. This seems an infinite assumption ;

and if it be assumed instead that all right angles are equal, it may be

proved afterwards that no two straight lines have a common segment

;

that is, that two straight lines which coincide for any length, never

afterwards separate. But it may be shewn, that the assumption of all

right angles being equal, amounts to the same infinity of assumption ;

as follows : The right angle is by definition the half of the opening

which two straight lines make, when one is the continuation of the

other, as AB, BC. To assume that all right angles are equal, is to

assume that the doubles

h -r -\ABC
V -r H
D E F

of right angles are equal ; that is, that if we lay B on E, with ED
coinciding with BA, then EF and BC will coincide. Now it is

precisely the same thing to assume, that when AB is made to coincide

with D E up to the point E, that the two coincide beyond it.

I should recommend the student to make to the assumption that

two straight lines cannot coincide in two points without coinciding

between them, the addition that they also must coincide beyond them.
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It may then be directly proved that all doubles of right angles are

equal, and thence that all right angles are equal.]

The definitions 11, 12, 13, 14, need no remark, being purely

nominal.

14. The circlef a plane figure, having all points of its boundary

(15. the circumference) equally distant from a given point (16. the

centre) within it. [Here is tacitly a postulate, namely, that this point

lies within the figure. It is also assumed in the first proposition, that

if any point of a circle be within another, the two circles must

intersect. There are several assumptions of this kind, which shew

that Euclid did not affect that extreme form of accuracy which sub-

sequent commentators have attributed to him. The assumption of a

circle assumes the existence of an isosceles triangle.]

17. A diameter of a circle is a line passing through the centre,

and terminated both ways by the circumference ; it divides the circle

into two equal parts, or (18. semicircles). [Here is a demonstrable

theorem positively assumed. The application of one part of the

circle to the other (as by revolution of one-half round the diameter)

as in the fourth proposition, would prove it.]

From (19.) to (23.), the definitions are merely nominal.

24. If there be a triangle having three equal sides, let it be called

equilateral. [In this form I give all definitions, the existence of the

objects of which is to be established.]

25. An isosceles triangle is one having two sides equal.

26. A scalene triangle has the three sides unequal.] This defini-

tion is never used.]

(27.) and (28.) are nominal
; (29.) tacitly refers to the thirty-

second proposition ; and from (30.) to (33.), should be written in

the manner of (24.)

(35.) If there be two right lines, which being produced ever so

far on the same side never meet, let them be called parallels. And

let it be granted, that if two right lines falling upon a third make

interior angles together less than two right angles, they are not

parallels. [This bone of contention, when reduced to the form in

which it is most palpable to the senses, is as follows : Let it be granted

that two right lines which meet in a point, are not both parallel to any

third line. This assumed, Euclid's axiom follows. For he is able to

shew that the one parallel which he afterwards draws, through a point

to a given line, has the property of making the two internal angles
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equal to right angles : there is but one parallel; consequently all lines

which have not that property are not parallels.]

It remains to add what I have called the restrictive postulates.

I cannot believe that Euclid, who appears to assume vert/ obvious

propositions, even when he might prove them, could have intended to

require formally the admissions that a straight line may join two

points, and may be continued, and that a circle may be drawn with a

given centre and radius. If this had been the case, why not assume

(Prop. IV.) that two straight lines may be drawn making equal angles

with two other straight lines,— a conception more difficult than that

a straight line may be drawn. I conceive, therefore, that the meaning

of the three assertions commonly called postulates, is as follows:

Let it be considered as intended, that no assumption of processes shall

be made, except only the drawing of a straight line between two given

points, the continuation of any terminated straight line to any in-

definite (not given) distance, and the construction of a circle with a

given centre and radius.

THE END.
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" There is a vast deal of astronomical information conveyed in a most winning and

unassuming manner in this delightful little volume, which, not less for the novelty of
its plan, tlian the extent of its intelligence, reflects infinite credit on the taste and
talents of its projector and editor, Mr. Darley."

—

Sun, April 5, 1830.



WORKS ON MATHEMATICS, HISTORY, ETC.

ON THE ORIGIN OF UNIVERSITIES AND ACADEMICAL
DEGREES.

By Hkkry Malden, M.A., late Fellow of Trinity College, Cambridge; Professor

of Greek in tlie University of London. Foolscap 8vo, 35, 6d. cloth.

NIEBUHR'S HISTORY OF ROME. Vol. I.

Translated by Julius C. Hare, M.A., and Connop Thirlwall, M.A., Fellows of

Trinity College, Cambridge.

Second Edition, revised, Avith the Corrections and Additions made in the Third

Edition of the Original, 8vo, I6s.

NIEBUHR'S HISTORY OF ROME. Vol. II.

Translated by Julius C. Hare, M.A., and Connop Thirlwall, M.A., Fellows

of Trinity College, Cambridge. 8vo, 16s.

" Niebuhr undertook to write the His-
tory of Rome from the earliest ages of the
city to the establishment of the empire of

Augustus. Of this great work he accom •

plished only a portion ; and his History
will remain to succeeding ages as a frag-

ment, but it is a fragment which may be
compared to the unfinished colossal statues
that are found lying in the granite quarries
of Syene, conceived with all the vastness
and precision of Egyptian art, which, had
they been finished, might have overtopped
the gigantic Memnon, but which, when
they were relinquished by the hand that
first fashioned them, were destined to
remain for ever imperfect. We should as
soon expect an artist to arise, who should
elaborate, and erect amid the Theban

temples, a halfhewn Rameses, as a scholar
who should complete the Roman- History
of Niebuhr."

—

" Here we close our remarks upon this
memorable work; a work which, of all

that have appeared in our age, is the best
fitted to excite men of learning to intel-

lectual activity; from which the most
accomplished scholar may gather fresh
stores of knowledge, to which the most
experienced politician may resort for

theoretical and practical instruction, and
which no person can read as it ought to
be read, without feeling the better and
more generous sentiments of his common
human nature enlivened and strength-
ened."

—

Edinburgh Review, Jan. 1833.

A VINDICATION OF NIEBUHR'S HISTORY OF ROME
From the Charges of the Quarterly Review. By Julius Charles Hare, M.A.,

Fellow of Trinity College, Cambridge. 8vo, 2*. 6d.

BRIEF OUTLINES OF DESCRIPTIVE GEOGRAPHY,
To which is subjoined a Table of Latitudes and Longitudes. By Henry H.

Davis. Foolscap 8vo, with Maps, 2s. 6d. cloth.

" The Outlines here presented to the Public, are the results of actual extempora-
neous Lessons."

—

Preface.

geography"simplified ;

Being a brief Summary of the principal Features of the Four Great Divisions of

the Earth, with a more detailed Account of the British Empire. Also, a familiar

Explanation of the Use of the Globes, and an Appendix. By an Experienced

Teacher. 12mo, is. bound.
III.

OUTLINE MAPS.
Mercator Europe.—British Isles.

Three Maps, folio, stitched in cover, Is. Single Maps, 4rf. each.

GEOGRAPHICAL PROJECTIONS.
Mercator.—Europe.—British Isles.

Three Maps, folio, stitched in cover. Is. Single Maps, id. each.
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