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From the preface to the first (German) edition.

‘There is no general agrcement as to where an account of the theory
of infinitc series should begin, what its main outlines should be, or what
it should include. On the onc hand, the whole of higher analysis may
be regarded as a ficld for the application of this theory, for all limiting
processes — including differentiation and integration — are based on
the investigation of infinite sequences or of infinite series. On the other
hand, in the strictest (and therefore narrowest) sense, the only matters
that arc in place in a textbook on infinite serics are their definition, the
manipulation of the symbolism connected with them, and the theory
of convergence.

In his “Vorlesungen uber Zahlen- und Funktionenlehre”, Vol. 1,
Part 2, A. Pringsheim has treated the subject with these limitations.
I'here was no question of offering anything similar in the present book.

My aim was quite different: namely, to give a comprehensive
account of all the investigations of higher analysis in which infinite series
are the chief object of intcrest, the trcatment to be as free from assump-
tions as possible and to start at the very beginning and lecad on to the
extensive frontiers of present-day research. To set all this forth in as
interesting and intelligible a way as possible, but of course without in
the lcast abandoning exactness, with the object of providing the student
with a copvenient introduction to the subject and of giving him an idea
of its rich and fascinating variety — such was my vision.

The material grew in my hands, however, and resisted my efforts
to put it into shape. In order to make a convenient and uscful book,
the field had to be restricted. But I was guided throughout by the ex-
perience I have gained in teaching — I have covered the whole of the
ground several times in the general course of my work and in lectures
at the universities of Berlin and Konigsberg — and also by the aim
of the book. It was to give a thorough and reliable treatment which would
be of assistance to the student attending lectures and which would at the
same time be adapted for private study.

The latter aim was particularly dear to me, and this accounts for
the form in which I have presented the subject-matter. Since it is gener-
ally easier — especially for beginners — to prove a deduction in pure
mathematics than to recognize the restrictions to which the train of
reasoning is subject, I have always dwelt on theoretical difficulties, and



VI Preface.

have tried to remove them by mecans of repcated illustrations; and
although I have thereby deprived myself of a good deal of space for
important matter, I hope to win the gratitude of the student.

I considered that an introduction to the theory of real numbers
was indispensable as a beginning, in order that the first facts relating
to convergence might have a firm foundation. 'I'o this introduction I
have added a fairly extensive account of the theory of sequences, and,
finally, the actual theory of infinite series. The latter is then constructed
in two storeys, so to speak: a ground-floor, in which the classical part
of the theory (up to about the stage of Cauchy’s Analyse algébrique)
is expounded, though with the help of very limited resources, and a super-
structure, in which I have attempted to give an account of the later
developments of the 19t® century.

For the reasons mentioned above, I have had to omit many parts
of the subject to which I would gladly have given a place for their own
sake. Semi-convergent series, Euler’s summation formula, a detailed
trcatment of the Gamma-function, problems arising from the hyp.r-
geometric series, the theory of double series, the newer work on power
series, and, in particular, a more thorough development of the last chapter,
that on divergent scries — all these I was reluctantly obliged to set
aside. On the other hand, I considered that it was essential to deal with
sequences and series of complex terms. As the theory runs almost parallel
with that for rcal variables, however, I have, from the beginning, for-
mulated all the definitions and proved all the thcorems concerned in
such a way that they remain valid without alteration, whether the ““arbi-
trary” numbers involved are real or complex. These definitions and
theorems are further distinguished by the sign °.

In choosing the examples — in this respect, however, I lay no
claim to originality; on the contrary, in collecting them I have made
extensive use of the literature — I have taken pains to put practical
applications in the fore-front and to leave mere playing with thcoretical
niccties alone. Hence there are e. g. a particularly large number of exer-
cises on Chapter VIII and only very few on Chapter IX. Unfortunately
there was no room for solutions or cven for hints for the solution of
the examples.

A list of the most important papers, comprehensive accounts, and
textbooks on infinite series is given at the end of the book, immediately
in front of the index.

Konigsberg, Scptember 1921.
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From the preface to the second
(German) edition.

The fact that a second edition was called for after such a remarkably
short time could be taken to mean that the first had on the whole been
on the right lines. Hence the general plan has not been altered, but
it has been improved in the details of expression and demonstration on
almost every page.

The last chapter, that dealing with divergent series, has been wholly
rewritten, with important extensions, so that it now in some measure
provides an introduction to the theory and gives an 1dea of modern work
on the subject.

Konigsberg, December 1923.

Preface to the third (German) edition.

The main difference between the third and second editions is that
it has become possible to add a new chapter on Euler’s summation formula
and asymptotic expansions, which I had reluctantly omitted from the
first two cditions. This important chapter had meanwhile appeared in
a similar form in the English translation published by Blackie & Son
Limited, T.ondon and Glasgow, in 1928.

In addition, the whole of the book has again becn carefully revised,
and the proofs have been improved or simplified in accordance with the
progress of mathematical knowledge or teaching experience. This applics
especially to theorems 269 and 287.

Dr. W. Schébe and Herr P. Securius have given me valuable assist-
ance in correcting the proofs, for which I thank them heartily.

Tubingen, March 1931.

Preface to the fourth (German) edition.

In view of present difficulties no large changes have been made for
the feurth edition, but the book has again been revised and numerous
details have been improved, discrepancies removed, and several proofs
simplified. The references to the literature have been brought up to
date.

Tibingen, July 1947,
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Preface to the first English edition.

This translation of the second German edition has been very skil-
fully prepared by Miss R. C. H. Young, L. ¢s Sc. (Lausanne), Research
Student, Girton College, Cambridge. The publishers, Messrts. Blackie
and Son, Itd., Glasgow, have carefully superintended the printing.

In addition, the publishers were kind enough to ask me to add a
chapter on Euler’s summation formula and asympiotic expansions. 1 agreed
to do so all the more gladly because, as I mentioned in the original pre-
face, it was only with great reluctance that I omitted this part of the sub-
ject in the German edition. This chapter has been translated by Miss
W. M. Deans, B.Sc. (Aberdeen), M.A. (Cantab.), with equal skill.

I wish to take this opportunity of thanking the translators and the
publishers for the trouble and carc they have taken. If — as I hope —
my book meets with a favourable reception and is found useful by English-
speaking students of Mathematics, the credit will largely be theirs.

Tibingen, Fcbruary 1928,
Konrad Knopp.

Preface to the second English edition.

The second English edition has been produced to correspond to the
fourth German edition (1947).

Although most of the changes are individually small, they have none-
theless involved a considerable number of alterations, about half of the
work having been re-sct.

The translation has been carried out by Dr. R. C. H. Young who
was responsible for the original work.
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Introduction.

The foundation on which the structure of higher analysis rests is
the theory of real numbers. Any strict trcatment of the foundations of
the differential and integral calculus and of related subjects must in-
evitably start from there; and the same is true even for e. g. the cal-
culation of roots and logarithms. The theory of real numbers first creates
the material on which Arithmetic and Analysis can subsequently build,
and with which they deal almost exclusively.

The neccessity for this has not always been realized. The great
creators of the infinitesimal calculus — Leibniz and Newton ! -— and
the no less famous men who developed it, of whom FEuler 2 is the chief,
were too intoxicated by the mighty strcam of learning springing from
the newly-discovered sources to feel obliged to criticize fundamentals.
To them the results of the new methods were sufficient evidence for
the security of their foundations. It was only when the stream began
to ebb that critical analysis ventured to cxamine the fundamental con-
ceptions. About the end of the 18th century such efforts became stronger
and stronger, chiefly owing to the powerful influence of Gauss 3. Nearly
a century had to pass, however, before the most essential matters could
be considered thoroughly cleared up.

Nowadays rigour in connection with the underlying number concept
is the most important requirement in the treatment of any mathematical
subject. Ever since the later decades of the past century the last word
on the matter has been uttered, so to speak, — by Weierstrass* in the
sixties, and by Cantor 8 and Dedekind ® in 1872. No lecture or treatise

1 Gottfried Wilhelm Leibniz, born in Leipzig in 1646, died in Hanover in
1716, Isaac Newton, born at Woolsthorpe in 1642, died in London in 1727. Each
discovered the foundations of the infinitesimal calculus independently of the other,

? Leonhard Euler, born in Basle in 1707, died in St. Petersburg in 1783.

3 Karl Friedrich Gauss, born at Brunswick in 1777, died at Gottingen 1n 1853,

¢ Karl Weierstrass, born at Ostenfelde in 1815, died in Berlin in 1897. The
first rigorous account of the theory of real numbers which Weierstrass had expounded
in his lectures since 1860 was given by G. Mittag-Leffler, one of his pupils, in his
essay: Die Zahl, Einleitung zur Theorie der analytischen Funktionen, The I'6hoku
Mathematical Journal, Vol. 17, pp. 1567—209. 1920.

8 Georg Cantor, born in St. Petersburg in 1845, died at Halle in 1918: cf.
Mathem. Annalen, Vol. 5, p. 123. 1872,

8 Richard Dedekind, born at Brunswick in 1831, died there in 1916: cf. his

book: Stetigkeit und irrationale Zahlen, Brunswick 1872,
1



2 Introduction.

dealing with thc fundamental parts of higher analysis can claim validity
unless it takes the refined concept of the real number as its starting-
point.

Hence the theory of real numbers has been stated so often and
in so many different ways since that time that it might seem superfluous
to give another very detailed exposition 7: for in this book (at least in
the later chapters) we wish to address ourselves only to thosc already
acquainted with the elements of the differential and integral calculus.
Yet it would scarcely suffice merely to point to accounts given elsewhere.
For a theory of infinite series, as will be sufficiently clear from later
developments, would be up in the clouds throughout, if it were not
firmly based on the system of real numbers, the only possible foundation.
On account of this, and in order to leave not the slightest uncertainty
as to the hypotheses on which we shill build, we shall discuss in the
following pages those ideas and data from the theory of real numbers
which we shall need further on. We have no intention, however, of con-
structing a statement of the theory compressed into smaller space but
otherwise complete. We merely wish to make the main ideas, the most
important questions, and the answers to them, as clear and prominent
as possible. So far as the latter are concerned, our treatment throughout
will certainly be detailed and without omissions; it is only in the cases
of details of subsidiary importance, and of questions as to the complete-
ness and uniqueness of the system of real numbers which lie outside the
plan of this book, that we shall content ourselves with shorter indications.

7 An account which is easy to follow and which includes all the essentials
is given by H. v. Mangoldt, Einfuhrung in dic hohere Mathematik, Vol. I, 8 edition
(by K. Knopp), Leipzig 1944. — The treatment of G. Kowalewski, Grundzige
der Differential- und Integralrechnung, 6" edition, Leipzig 1929, 1s accurate and
concise. — A rigorous construction of the system of real numbers, which goces into
the minutest details, is to be found in A. Loewy, I.ehrbuch der Algebra, Part I,
Leipzig 1915, in A. Pringsheim, Vorlesungen uber Zahlen- und Funktionenlehre,
Vol. I, Part I, 27 edition, Leipzig 1923 (cf. also the review of the latter work by
H. Hahn, Gott. gel. Anzeigen 1919, pp. 321—47), and 1n a book by E. Landau
exclu-ively devoted to this purpose, Grundlagen der Analysis (DDas Rechnen mit
ganzen, rationalen, irrationalen, komplexen Zahlen), Leipzig 1930. A critical account
of the whole problem is to be found in the article by F. Bachmann, Aufbau des
Zahlensystems, in the Enzyklopadie d. math. Wissensch., Vol. I, 27 ¢dition, Part I,
article 3, Leipzig and Berlin 1938.



Part L
Real numbers and sequences.

Chapter L

Principles of the theory of real numbers,

§ 1. The system of rational numbers and its gaps.

What do we mean by saying that a particular number is “known’
or “given” or may be “calculated”? What does one mean by saying
that he knows the value of V2 or z, or that he can calculate V'5?
A quesuon hke this 1s easier to ash than to answer. Were I to say
that V2 = 1-414, I should obviously be wrong, since, on multi-
plying out, 1.414><1-414 does not give 2. If I assert, with greater
caution, that V2 = 1.4142135 and so on, even that is no tenable
answer, and indeed in the first instance it is entirely meaningless. The
question is, after all, how we are to go on, and this, without further
indication, we cannot tell. Nor is the position improved by carrying
the decimal further, even to hundreds of places. In this sense it
may well be said that no one has ever beheld the whole of V2, —
not held it completely in his own hands, so to speak-—whilst a
statement that Y9 = 3 or that 356-=7 — 5 has a finished and thorough.
ly satisfactory appcarance. The position is no better as regards
the number sz, or a logarithm or sine or cosine from the tables.
Yet we feel certain that V2 and n and log 5 really do have quite definite
values, and even that we actually know these values, But a clear
notion of what these impressions exactly amount to or imply we do
not as yet possess. Let us endeavour to form such an idea.

Having raised doubts as to the justification for such statements
as «I know V2", we must, to be consistent, proceed to examine
now far one is justified even in asserting that he kunows the number
— 22 or is given (for some specific calculation) the number £. Nay
more, the significance of such statcments as “I know the number 97"
ar “for such and such a calculation I am given a = 2andb = 5" would



4 Chapter 1. Principles of the theory of real numbers.

require scrutiny. We should have to enquire into the whole significance
or concept of the natural numbers 1, 2, 3, . . .

This last question, however, strikes us at once as distinctly trans-
gressing the bounds of Mathematics and as belonging to an order of
ideas quite apart from that which we propose to develop here.

No science rests entirely within itself: each borrows the strength
of its ultimate foundations from strata above or below it, such as experi-
ence, or theory of knowledge, or logic, or metaphysics, . . . Every science
must accept something as simply given, and on that it may proceed to
build. In this sense neither mathematics nor any other science starts
without assumptions. The only question which has to be secttled by
a criticism of the foundation and logical structure of any science is what
shall be assumed as in this sense ‘“‘given’; or better, what minimum of
initial assumptions will suffice, to serve as a basis for the subsequent
development of all the rest.

For the problem we are dealing with, that of constructing the system
of real numbers, these preliminary investigations are tedious and trouble-
some, and have actually, it must be confessed, not yet rcached any entirely
satisfactory conclusion at all. A discussion adecquate to the present
position of the subject would consequently take us far beyond the limits
of the work we are contemplating. Instead, therefore, of shouldering
an obligation to assume as basis only a minimum of hypotheses, we
propose to regard at oncc as known (or ‘“‘given’, or ‘“‘securcd’) a group
of data whose deducibility from a smaller body of assumptions is familiar
to cveryone — namely, the system of rational numbers, i. e. of numbers
integral and fractional, positive and negative, including zero. Speaking
broadly, it is a matter of common knowledge how this system may be
constructed, if — as a smaller body of assumptions — only the ordered
scquence of natural numbers 1, 2, 3,.. ., and their combinations by
addition and multiplication, are regarded as “‘given”. For everyone knows
— and we merely indicate it in passing — how fractional numbers arise
from the need of inverting the process of multiplication, —- negative
numbers and zero from that of inverting the process of addition .

The totality, or aggregate, of numbers thus obtained is called the
system (or set) of rational numbers. Each of these can be completely and
literally “‘given” or “‘written down” or ‘‘made known” with the help of at
most two natural numbers, a dividing bar and possibly a minus sign.
For brevity, we represent them by small italic characters; a, b, .. .,
x, ¥, . . . The following are the essential properties of this system:

1 See the works of Loewy, Pringsheim, and Landau mentioned in the Intro-
duction; also O. Holder, Die Arithmetik in strenger Begriindung, 2" edition, Berlin
1929; and O. Stolz and }¥. A. Gmeiner, Theoretische Arithmetik, 3™ edition, Leipzig
1911.



§ 1. The system of rational numbers and its gaps. 5

1. Rational numbers form an ordered aggregate; meaning that
between any two, say a and b, one and only one of the three relations

a <b. a=2b, a>b
nccessarily holds 2; and these relations of ‘“‘order” between rational

numbers are subject to a set of quite simple laws, which we assume known,
the only essential ones for our purposes being the

Fundamental Laws of Order. 1.
1. Invariably 3 a —= a.
2. a == b always implies b — a.
3. a=b,b = cimplies a = c.
4. a=<bb<c, —ora<bb=<c — impliessta <e.

2. Any two rational numbers may be combined in four distinct
ways, referred to respectively as the four processes (or basic operations)
of Addition, Subtraction, Multiplication, and Division. These operations
can always be carried out to onc definite result, with the single exception
of division by 0, which is undefined and should be regarded as an entirely
impossible or meaningless process; the four processes also obey a number
of simple laws, the so-called Fundamental Laws of Arithmetic, and further
rules deducible therefrom.

These too we shall regard as known, and state, concisely, those
Fundamental Laws or Axioms of Arithmetic from which all the others may 2.
be inferred, by purely formal rules (i. e. by the laws of pure logic).

I. Addition. 1. Lvery pair of numbers @ and b has invariably associ-
ated with 1t a third, ¢, called their sum and denoted by a + b.
2. a=d,b=>0 alwaysimplva | b =a' 4+ ¥
3. Invariably, a + b = b 4 ¢ (Commutative Law).
4. Invariably, (@ 4 b) + ¢ = a + (b + ¢) (Associative Law).
5. a < b always implics @ + ¢ < b + ¢ (Law of Monotony).

II. Subtraction.
To every pair of numbers @ and & there corresponds a third number
¢, such that a + ¢ = b.

2a > b and b < a are merely two different expressions of the same relation,
Strictly speaking, the one symbol “<<”’ would therefore suffice.

3 With regard to this seemingly trivial “law’’ cf. footnote 11, p. 9, remark 1, p. 28,
and footnote 24, p. 29.

4 'To express that one of the relations of order: a < b, a == b, or a > b, does
not hold, we write, respectively, a = b (“greater than or equal to”, “at least equal
to”’, “not less than”), a + b (‘“‘unequal to”, “‘different from’) or a - b. Each of
these statements (negations) definitely excludes one of the three relations and leaves
undecided which of the other two holds good.



6 Chapter I. Principles of the theory of real numbers.

III. Multiplication.

1. To every pair of numbers @ and b there corresponds a third
number ¢, called their product and denoted by a b.

2. a=a’, b = b always implies a b == a’ b'.
In all cases ab = ba (Commutative Law).
In all cases (abd) ¢ = a (bc) (Associative Law).
. In all cases (@ + &) ¢ = ac + b c (Distributive Law).

6 a < b implies, provided c 1s positive, ac < b ¢ (Law of Mono-
tony).

il

IV. Division.

To every pair of numbers @ and b of which the first is not O there
corresponds a third number ¢, such that a ¢ = b.

As already remarked, all the known rules of arithmetic, — and
hence ultimately all mathematical results, — are deduced from these
few laws, with the help of the laws of pure logic alone. Among these
laws, one is distinguished by its primarily mathematical character, namely
the

V. Law of Induction, which may be reckoned among the fundamental
laws of arithmetic and is normally stated as follows:

If a set M of natural numbers includes the number 1, and if, every
time a certain natural number 7z and all thosc less than 2 can be taken to
belong to the aggregate, the number (2 + 1) m1y be inferred also to belong
to it, then I includes all the natural numbers.

This law of induction itself follows quite easily from the following
thcorem, which appears cven more obvious and is thercfore normally
called the fundamental law of the natural numbers:

Law of the Natural Numbers. In every set of natural numbers that
is not “‘empty” there is always a number less than all the rest.

For if, according to the hypotheses of the Induction Law, we con-
sider the sct % of natural numbers not belonging to I, this sct 9% must
be “empty”, that is, I must contain all the natural numbers. For other-
wise, by the law of the natural numbers, % would include a number less
than all the rest. This least number would exceed 1, for it was assumed
that 1 belongs to M; hence it could be denoted by # + 1. Then n would
belong to i, but (z + 1) would not, which contradicts the hypotheses
in the law of induction.®

In applications it is usually an advantage to be able to make state-
ments not merely about the natural numbers but about any whole numbers.

5 The following rather more general form of the law of induction can be
deduced in exactly the same way from the fundamental law of the natural numbers.
If set M of natural numbers includes the number 1, and if the number (n +- 1)
can be proved to belong to the aggregate provided the number # does, then M con-
tains all the natural numbers.
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The laws then take the following forms, obviously equivalent to those
above:
Law of Induction. If a statement involves a natural number z (e. g.
“if n = 10, then 2" > n3”, or the like) and if
a) this statement is correct for n = p,
and
b) its correctness for n=p, p+ 1, ..., k (where k is any natural
number = p) always implies its correctness for n =k 4 1, then the
statement is correct for every natural number = p.
Law of Integers. In every sct of integers all 7z p that is not “empty”’,
there is always a number less than all the rest.®
We will lastly mention a theorem susceptible, in the domain of
rational numbers, of immediate proof, although it becomes axiomatic
in character very soon after this domain is left; namely the

VI. Theorem of Eudoxus.

If a and b are any two positive rational numbers, then a natural
number n always exists 7 such that b > a.

The four ways of combining two rational numbers give in every
case as the result another rational number. In this sense the system
of rational numbers forms a closed aggregate (naturlicher Rationalitats-
bereich or number corpus). This property of forming a closed system with
respect to the four rules is obviously not possessed by the aggregate of
all natural numbers, or of all positive and negative integers. Thesc are,
so to speak, too sparscly sown to mecet all the demands which the four
rules make upon them.

This closed aggregate of all rational numbers and the laws which hold
in it, are then all that we regard as given, known, secured.

As that type of argument which makes use of mnequalities and absolute values
may be a little unfamrmhar to some, 1ts most important rules may be set down here,
briefily and without proof:

I. Inequalities. Iere all follows from the laws of order and monotony.
In particular

1. The statements mn the laws of monotony are reversible; e. g. a + ¢
< b 4 ¢ always implies @ < b; and so does a ¢ < b ¢, provided ¢ > 0.
2. a<<b, c<dalways mplhesa + ¢ < b + d.
3. a < b, ¢ < d implies, provided b and ¢ are positive, ac < b d.
4. a < b always mplies — b < — q,
and also, provided a is positive, ;, < }1.
¢ 'T'o reduce these forms of the laws to the previous ones, we need only con-
sider the natural numbers m such that, in the one case, the statement 1n question
is correct for n —= (p — 1) 4 m, or, in the other, that (p — 1) + m belongs to the
non-‘‘empty’’ set under consideration.

? This theorem is usually, but incorrectly, ascribed to Archimedes; it is already

to be found in Euclid, Elements, Book V, Def. 4.

3.
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Also these theorems, as well as the laws of order and monotony, hold (with
appropriate modifications) when the signs <3, .-, ¢ 2> and “# " are sub-
stituted for “<”’, provided we maintain the assumptions that ¢, b and a are posi-
tive, 1n 1, 3, and 4 respectively.

II. Absolute values. Definition: By |a|, the absolute wvalue (or modulus)
of a, 1s meant that one of the two numbers +a and —a which 1s positive, sup-
posing a % 0; and the number 0, if a — 0. (Hence |0] — Oandifa= 0,|a] > 0.)

‘T'he following theorems hold, amongst others:

Lial--|—al. 2 lab|=la|-|b]
1]_ 1, b1 b .
3'.’a<]—_]al’ )al—lal,pmvxdeda:#:O.
Ja. (a+6]]a|l+[bl;|a+b|=|a|l—]|b]| and ndeed |a + b
=|lal~181].
5. The two relations |a| <7 and — r < a < r are exactly equivalent;

similarly for |[x —a| <randa—r<x <a+r
6. | a — b| is the distance between the ponts a and b, with the represen-
tation of numbers on a straight line described immediately below.

Proof of the first relation in 4;: +a = |a|, £ b =|b]|,so that by 3, 1, 2,
+(a+ b)=|a|+|b|, and hence [a-| 6| =|a| 4 |b].

We also assume it to be known how the relations of magnitude
between rational numbers may be illustrated graphically by relations
of positions between points on a straight line. On a straight line or
number-axis, any two distinct points arc marked, one O, the origin (0)
and one U, the unit point (1). The point I” which is to represent a number

a =§ (g >0, p S0, both integers) is obtained by marking off on the

axis, | p| times in succession, beginning at O, the ¢'h part of the dis-
tance O U (immediately constructed by elementary gecometry) cither in
the direction O U, if p > 0, or if p is negative, in the opposite direction.
This point® we call for brevity the point a, and the totality of points
corresponding in this way to all rational numbers we shall refer
to as the rational points of the axis. — The straight linc is usually
thought of as drawn from left to right and U chosen to the right of O.
In this case, the words positive and negative obviously become cquiva-
lents of the phrases: to the right of O and to the left of O, respectively;
and, more generally, a < b signifies that a lies to the left of b, b to the
right of a. This mode of expression may often assist us in illustrating
abstract relations between numbers.

8 The position of this point is independent of the particular representation
of the number aq, i. e. if a = p’/q’ is another representation with ¢’ > 0 and p’ :? 0

both integers, and if the construction is performed with ¢’, p” 1n place of g, p, the
same point P is obtained.
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This completes the sketch of what we propose to take as the
previously secured foundation of our subject. We shall now regard
the description of these foundations as characterizing the concep? of
number, in other words, we shall call any system of conceptually well-
distinguished objects (elemcents, symbols) a #uwmeber systemnz, and its
clements numbers, if — to put it quite briefly for the moment — we
can operate with them in essentially the same ways as we do with rational
numbers.

We proceed to give this somewhat inaccurate statement a precise
formulation.

We consider a system S of well-distinguished objects, which we
denote by o, B, . . .. S will be called a number system and its elcments
a, B, . . . will be called numbers if, besides being capable of definition
exclusively by means of rational numbers (i. c. ultimately by mecans of
natural numbers alone) 9, these symbols «, B, . . . satisfy the following four
conditions:

1. Between any two clements « and 8 of S one and only one of the
three relations 10

a<B, a=fB oa>B

necessarily holds (this is expressed bricfly by saying that S és an ordered
system) and these relations of order between the clements of S are subject
to the same fundamental laws 1 as their analogues in the system of rational
numbers 11,

2. Four distinct methods of combining any two elements of S are
defined, called Addition, Subtraction, Multiplication and Division. With
a single exception, to be mentioned immediately (3.), these processes
can always be carried out to one definite result, and obey the same Fun-
damental Laws 2, I—IV, as their analogues in the system of the rational

? We shall come across actual examples 1n § 3 and § 5; for the moment, we
n.ay think of decimal fractions, or similar symbols constructed from rational numbers.
See also footnote 16, p. 12.

10 Cf. also footnotes 2 and 4.

11 As to what we may call the practical meaning of these relations, nothing
is imphed; ‘““<” may as usual stand for ‘less than”, but 1t may equally well mean
“before”, “to the left of”’, “higher than”, ‘lower than’’, “subsequent to”, in fact
may express any relation of order (including ‘‘greater than’’). This meaning merely
has to be defined without ambiguity and kept consistent. Simuilarly, ‘“‘equality”
need not imply identity. Thus, for example, within the system of symbols of the
form p/g, where p, ¢ are integers and g 3 0, the symbols 3/4, 6/8, —9/—12 are
generally said to be “equal”; that 1s, for certain purposes (calculating, measuring,
and so on) we define equality within our system of symbols 1n such a way that 3/4 =
6/8 = —9/—12, although 3/4, 6/8, —9/—12 are in the first instance different
elements of that system (sce also 14, note 1),

4.



10 Chapter I. Principles of the theory of real numbers.

numbers 12, (The ‘“zero” of the system, which must be known in order
that the clements can be divided into positive and negative, is to be defined
as explained in footnote 14 below.)

3. With every rational number we can associatc an element of S
(and all others “‘equal” to it) in such a manncr that, if @ and b denote
rational numbers, «, B8 their associates from S:

a) the relation 1. holding between o and B is of thc same form as
that holding between a and b.

b) the clement resulting from a combination of « and B (i. e. « 4 B,
o — B, a+fB, or = B) has for its associated rational number the result
of the similar combination of @ and b (i. c. a+ b, a— b, a-b, or a = b
respectively).

[This is also expressed, more shortly, by saying that the system S
contains a sub-system S’ sémeilar and isomzorphowus to the system
of rational numbers. Such a sub-system is in fact constituted by those
elements of S which we have associated with rational numbers 13.]

In such a correspondence, an element of S associated with the rational
number zcro, and all elements equal to it, may be shortly referred to as
the “zero” of the system of elements. The cxception mentioned in 2.
then rclates to division by zero 4.

12 With reference to these four processes 1t should be noted, as in the case
of the symbols << and —, that no practical interpretation 1s implied. — We alwo
draw attention to the fact that subtraction 1s already completely defined 1n terms
of addition, and division 1n terms of multiplication, so that, properly speaking,
only two modes of combining clements need be assumed known.

13 Two ordered systems are semzélar 1f 1t 1s possible to associate each clement
of the one with an element of the other 1in such a way that the same one of the
relations 4, 1 as holds between two elements of the one system also holds between
the two associated clements of the other. they are zsomzorplrous relatively to the
possible modes of combining their elements, if the element resulting from a com-
bination of two elecments of the one system is associated with that resulting from
the similar combination of the two associated elements of the other system.

1 The third of the stipulations by means of which we here characterise the
concept of number 1s fulfilled, morcover, as a consequence of the first and second.
For our purposes, this fact 1s not essential; but as 1t 1s significant from a svstematic
point of view, we briefly indicate its proof as follows: By 4, 2, there 1 an element
¢ for which « + § — «. From the fundamental laws 2, 1, 1t then quite easily follows
tha one and the same element { of S satisfies « -|- { - «, for every «. 'T'his element
¢, with all elements equal to 1t, is called the neutral ¢clement relatively to the process
of w.ddition, or for brevity the ‘“zero’ in S. If « is different from this “zero”, there
1s, further, an element € for which « € = «; and 1t again appears that this element
is the same as that satisfying v € = « for any other « 1n S. This €, with all elements
equal to 1t, 1s called the neutral element relatively to the process of multiplication,
or, briefly, the “unit’’ in S. The elements of S produced by repeated addition or
subtraction of this ‘“‘unit”, and any others equal to them, are then called “intcgers”
of S. All further elements of S (and all equal to them) which result fiom these
by the process of division then form the sub-system S’ of S 1n question; that it
1s simelar and isomorphous to the system of all rational numbers 1s 1n fact easily
deduced from 4, 1 and 4, 2. — Thus, as asserted, our concept of number 1s already
determined by the requircments of 4, 1, 2 and 4.
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4. For any two clements x and B of S both standing in the relation
“>" to the “zero” of the system, there exists a natural number n for
which 78 > «. Here n g denotes the sum 8+ B8+ ... -{- B containing
the element B8 n times. (Postulate of Eudoxus, cf. 2, VL)

To this abstract characterisation of the concept of number we
will append the following remark *: If the system S contains no other
elements than those corresponding to rational numbers as specified
in 3, then our system does not differ in any essential feature from the
system of rational numbcrs, but only in the (purely external) designation
of the elements by symbols, or in the (purcly practical) interpretation
which we give to these symbols; differences almost as irrelevant,
at bottom, as those which occur when we write figures at one time in
Arabic characters, at another, in Roman or Chinese, or take them to
denote now temperature, now velocity or electric charge. Disregarding
external characteristics of notation and practical interpretation, we
should thus be perfectly justified in considering the system S as identical
with the system of rational numbers and in this sense we may put @ = a,
b= ...

If, however, the system S contains other elements besides the above
mentioned, then we shall say that S wmcludes the system of rational
numbers, and is an extension of it. Whether a system of this more com-
prehensive kind exists at all, remains for the moment an open question;

15 We have defined the concept of number by a set of properties characterising
it. A cnitical construction of the foundations of arithmetic, which 1s quite out
of the question within the hmits of this volume, would have to comprise a strict
investigation as to the extent to which these properties are independent of one
another, i. e. whether any one of them can or cannot be deduced from the rest as
a provable fact. Further, it would have to be sh.wn that none of these fundamental
stipulations 1s 1n contradiction with any other and other matters too would
require consideration. ‘I'hese investigations are tedious and have not yet reached a
final conclusion.

In the treatment by E. Landau mentioned on p. 2, footnote 7. 1t 1s proved with
absolute rigour that the fundamental laws of arithmetic which we have set up
can all be deduced from the following 5 axioms relating to the natural numbers:

Axiom 1: 1 1s a natural number.

Axiom 2: For every natural number n there 1s just one other number
that is called the successor of n. (I.et 1t be denoted by n’.)

Axiom 3: We have always n’ { 1.

Axiom 4: From m’ — n’, it follows that m = n.

Axiom 5: The induction law V is vahid (in its first form).

These 5 axioms, first formulated as here by G. Peano, but 1in substance set up
by R. Dedekind, assume that the natural numbers as a whole are regarded as given,
that a relation of equality (and hence also mequality) i1s defined between them,
and that this equality satisfies the relations 1, 1, 2, 3 (which belong to pure
logic).
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but an example will come before our notice presently in the system of
rcal numbers 6.

Having thus agreed as to the amount of preliminary assumption
we require, we may now drop all argument on the subject, and again
raisc the question: What do we mean by saying that we know the number
V2orm?

It must in the first instance be termed altogether paradoxical that
a number having its squarc equal to 2 does not exist in the system so
far constructed 7, — or, in geometrical language, that thc point A of
the number-axis, whose distance from O equals the diagonal of the
square of side O U, coincides with none of the ‘‘rational points”. For
the rational numbers are dense, i. e. between any two of them (which
are distinct) we can point out as many more as we please (since, if a -_ b,
b—a
n-p1
dently all liec between a and & and are distinct from these and from one
another); but they are not, as we might say, dense enough to symbolisc
all conceivable points. Rather, as the aggregate of all integers proved
too scanty to meet the requirements of the four processes of arithmetic,

the 7 rational numbers given by a 4 v forv=1,2,..., n evi-

18 The mode of defining the number-concept given in 4 is of course not
the only possible one. Frequently the designation of number is still ascribed to
objects which fail to satisfy some one or other of the requirements there laid down.
Thus for instance we may relinquish the condition that the objects under con-
sideration should be constructively developed from rational numbers, regarding
any entities (for instance pomnts, or distances, or such like) as numbers, provided
only they satisfy the conditions 4, 1—4, or, in short, are similar and 1somorphous
to the system we have just sct up. — This conception of the notion of number,
in accordance with which all 1somoiphous systems must be regarded as 1in the ab-
stract sense identical, 1s perfectly justified from a mathematical point of view, but
objections necessarily arise i connection with the theory of knowledge. — We
shall encounter another modification of the number-concept when we come to
deal with complex numbers.

17 Proof: There 1s certainly no natural number of square equal to 2, as
12 == 1 and all other integers have their squares == 4. Thus 42 could only be a

(positive) fraction z , where ¢ may be taken == 2 and prime to p (1. e. the fraction

PP

q°q
fore cannot reduce to the whole number 2. In a slightly different form: For any
two natural numbers p and ¢ without common factor, we have necessarily p? 4 2 g2
For since two integers without common factors cannot both be even, either p 1s
odd, or else p 1s even and g odd. In the first case p? is again odd, hence cannot
equal an even integer 2 g% In the second case p* = (2 p’)? 1s divisible by 4, but 2 ¢*
1 not, since it 1s double an odd number. So p? & 2 ¢* again. This Pythagoras 1s
said to have already known (cf. M. Cantor, Gesch. d. Mathem., Vol. 1, 2% ed., pp.
142 and 169. 1894),

2
is in its lowest terms). But if g is 1n its lowest terms, so 1s (g) , which there-
\
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so also the aggregate of all rational numbers contains too many gaps 18
to satisfy the more exacting demands of root extraction. One feels,
nevertheless, that a perfectly definite numerical value belongs to the point
A and therefore to the symbol V2. What arc the tangible facts which
underlie this fecling?

Obviously, in the first instance, this: We do, it is true, know
perfectly well that the values 1-4 or 1-41 or 1-414 etc. for V2 are in-
accurate, in fact that these (rational) numbers have squares << 2, i. e.
are too small. But we also know that the values 15 or 142 or
1-415 etc. are in the same sense too large; that the value which we
arc attempting to reach would have therefore to lie between the corres-
ponding too large and too small valucs. We thus reach the decfinite
conviction that the value of V2 is within our grasp, although the given
values are all incorrect. The root of this conviction can only lic in
the fact that we have at our command a process, by which the above
values may be continued as far as we please; we can, that is, form
pairs of decimal fractions, with 1, 2, 3, . . . places of decimals, one frac-
tion of each pair being too large, and the other too small, and
the two differing only by one unit in the last decimal place, i. e. by (#%5)%
if n is the number of decimal places. As this difference may be made
as small as we please, by sufficiently increasing the number 7z of given
decimal places, we are taught through the above process to enclose
the value which we arc in search of between two numbers as near
as we pleasec to one another. By a metaphor, somewhat bold at the
present stage, we say that through this process V2 itsclf is “given”, —
in virtue of it, V2 is “known”, -— by it, V2 may be “calculated”, and
SO on.

We have precisely the same situation with regard to any other value
which cannot actually be denoted by a rational number, as for instance
m, log 2, sin 10° etc. If we say, these numbers are known, nothing more
is implied than that we know some process (in most cases an extremely
laborious onc) by which, as detailed in the case of v'2, the desired value
may be imprisoned, hemmed in, within a narrower and narrower space
between rational numbers, — and this space ultimately narrowed down
as much as we please.

For the purpose of a somewhat more general and more accurate

18 This is the paradox, scarcely capable of any direct illustration, that a set
of points, dense 1n the sense just explained, mav already be marked on the number
axis, and yet not comprise all the points of the straight line. The situation may
be described thus: Integers form a first rough partition into compartments; rational
numbers fill these compartments as with a fine sand, which on minute inspection
inevitably still discloses gaps. To fill these will be our next problem.
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statement of these matters, we insert a discussion of sequences of rational
numbers, provisional in character, but nevertheless of fundamental im-
portance for all that comes after.

§ 2. Sequences of rational numbersl.

In the process indicated above for calculating V2, successive well-
dcfined rational numbers were constructed; their expression in decimal
form was material in the description; from this form we now propose

to free

it, and start with the following

Definition. If, by means of any suitable process of construction, we
can form successively a first, a second, a third, . . . (rational) number and
if to every positive integer n one and only one well-defined (rational) number
x, thus corresponds, then the numbers

(in this order, corresponding to the natural order of the integers 1, 2, 3, . . .

Xy, Xgy Xgy oo oy Xpy oo

b

n, . . .) are said to form a sequence. We denote it for brevity by (x,)
or (%, X5 . . .)

N
S R =

7.

Examples.

xnf;ll; i. e. the sequence ('1;) orl, ‘1,,;,. "'1_11’”.
x, — 2"; 1. ¢. the sequence 2, 4, 8,16,...
x, = a"; i. e. the sequence a, a?, @ . .., where a is a given number.
X, — 3 {1 = (="} 1 e the sequence 1, 0, 1, 0, 1, 0,
x,, = the decimal fraction for V2, terminated at the nth dlglt
X, ( l)n - i. e. the sequence 1, 1 -+ 1 — 1

n LS Ty Ty g

Let x, =1, %=1, x3=2x, + x, =2 and, generally, for n >3, let

x, —= Xp_3 + X,_,. We thus obtain the sequence 1, 1, 2, 3, 5, 8, 13, 21,..., usually
called Fibonacct’s sequence.

8.

9.

12,

1 1
L2, — 2—_3,5,—3,—3,...
9,345 n+1
o i R R
01234  n-—1
22345 a0
x, = the n't prime number 2; 1i. e. the sequence 2, 3, 5,7, 11, 13, ... \

3 11 25 137

‘The sequence 1, > 619 60"

.., in which x"=(1+2+"'+ﬁ)

1 In this section all literal symbols will continue to stand for rational numbers

only.

2 Euclid proved that there is an infimty of primes. If py, p,, ..., p, are any
prime numbers, then the integer m — (p,p, ... p,) + 1 is either a prime different
from p,, P2, ..., Py Or else a product of such primes. Hence no finite set of prime
numbers can include all primes.



§ 2. Sequences of rational numbers. 15

Remarks.

1. The law of formation may be quite arbitrary; it need not, in particular,
be embodied in any explicit formula enabling us to obtain x,, for a given », by
direct calculation. In examples 6, 5, 7 and 11, clearly no such formula can be im-
mediately written down. If the terms of the sequence are individually given, neither
the law of formation (cf. 6, 6 and 12) nor any other kind of regularity (cf. 6, 11)
among the successive numbers is necessarily apparent.

2. It 1s sometimes advantageous to start the sequence with a “0'»” term x,,
or even with a (—1) or (—2)!" term, x_,, x_,. Occasionally, it pays better to start
indexing with 2 or 3. The only essential is that there should be an integer m % ]

such that a,, 1s defined for every n == m. The term x,, 1s then called the initial term
of the sequence. We will however, even then, continue to designate as the #t" term
that which bears the index n. In § 6, 2, 3 and 4, for instance, we can without further
difficulties take a 0! term or even (— 1)t or (—2)!* to head the sequence. The “first
term” of a sequence is then not necessarily the term with which the sequence begins.
The notation will be preferably (x,, x,, . . .) or (x_,, %o, . . .), €tc., as the case may be,
unless 1t 1s either quite clear or irrelevant where our enumeration begins, and the
abbrewviated notation (x,,) can be adopted.

3. A sequence is frequently characterised as wnfimte. The epithet is then
merely intended to emphasize the fact that every term 1s succeeded by other terms.
It is also said that there 1s an mfinite number of terms. More generally, there 1s
said to be a finite number or an nfinite number of things under consideration accord-
ing as the number of these things can be indicated by a definite integral number
or not. And we may remark here that the word wnfimte, when otherwise used 1n
the sequel, will have a symbolic significance only, intended as a concise expression
of some perfectly definite (and usually quite simple) circumstance.

4, If all the terms of a sequence have one and the same value ¢, the sequence
1s said to be identically equal to ¢, and in symbols (x,,) = ¢. More generally, we shall
write (x,) = (x,,) if the two sequences (x,) and (x,,') agrce term for term, i. e. for
every index 1n question x, = x,,".

5. It is often helpful and convenient to represent a sequence graphically
by marking off its terms on the number-axis, or to think of them as so marked.
We thus obtain a sequence of points. But in doing this it should be borne in mind
that, in a sequence, one and the same number may occur repeatedly, even “in-
finitely often”’ (cf. 6, 4); the corresponding point has then to be counted (i. e. con-
sidered as a term of the sequence of points) rcpeatedly, or infinitely often, as the
case may be.

6. A graphical representation of a different kind is obtained by marking,
with respect to a pair of rectangular coordinate axes, the points whose coordinates
are (n, x,;) for n = 1, 2, 3, . . . and joining consecutive points by straight segments.
‘The broken line so constructed gives a picture (diagram, or graph) of the sequence.

To consider from the most diverse points of view the sequences hercby
introduced, and the real sequences that will shortly be dcfined, will be the
main object of the following chapters. We shall be interested more par-
ticularly in properties which hold, or are stipulated to hold, for a/l the
terms of the sequence, or at least for all terms beyond (or following) some
definite term3. With reference to this last restriction, it may sometimes

3 E. g. all the terms of the sequence 6, 9 are > 1. Or, all the terms of the
sequence 6, 2 after the 6'» are > 100 (or more shortly: for n > 6, x, > 100).
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be said that particular considerations in hand are valid “a finite number
of terms being disregarded”, or only concern the ultimate behaviour of
the sequence. Our first examples of considerations of the kind referred
to are afforded by the following definitions:

Definitions. 1. A sequence is said to be bounded?, if there is a
positive number K such that each term x, of the sequence salisfies the
inequality

[, | =K oo —K=<x,=<K.

The number K is then called a bound of the sequence.

Remarks and Examples.

1. In definition 8, it is a matter of practical indifference whether we write
“<K” or “<K”. For if | x,| < K holds always (.. e. for every n in question),
then we can also find a constant K’ such that | x, | < K’ holds always; indeed,
clearly any K’ > K will serve the purpose. Conversely, if | x, | < K always, then
a fortion: | x, | = K. When the exact magnitude of the bound comes 1n of course
the distinction may be essential.

2. If K is a bound of (xy), then so is any larger number K’.

3. The sequences 6, 1, 4, 5, 6, 9, 10 are evidently bounded; so is 6, 3, pro-
vided | a| < 1. The sequences 6, 2, 7, 8, 11 are certainly not so. Whether 6, 3
for every |a| >1, or 6, 12, 1s bounded or not, 1> not immediately obvious.

4. If all we know is the existence of a constant K, such that x, < K, for
every n, then the sequence 1s said to be bounded on the right (or above) and K, 1s
called @ bound above (or a right hand bound) of the sequence.

If there is a constant K, such that x, > K, always, then (x,,) is said to be
bounded on the left (or below) and K, is called a bound below (or a left hand bound)
of the sequence.

Here K, and K, need not be positive.

5. Supposing a given sequence is bounded on the right, it may still happen
that among 1ts numbers none is the greatest. For instance, 6, 10 1s bounded on
the night, yet every term of this sequence is exceeded by all that follow 1t, and none
can be the greatest®. Similarly, a sequence bounded on the left need contain no
least term; cf. 6, 1 and 9.— (With this fact, which will appear at first sight para-
doxical, the beginner should make himself thoroughly famihar.)

Among a fimte number of values there 1s of course always both a greatest and
a least, i. e. a value not exceeded by any of the others, and one which none of the
others falls below. (There may, however, be several equal to this greatest or least
value.)

6. The property of boundedness of a sequence x,, (though not the actual value
of one of the bounds) 1s a property of the tail-end of the sequence; 1t is unaffected
by any alteration to an isolated term of the scquence. (Proof?)

4 This nomenclature appears to have been introduced by C. Jordan, Cours
d’analyse, Vol. 1, p. 22. Paris 1893.

5 The beginner should guard against modes of expression such as these,
which may often be heard: “for n infinitely large, x,, = 1”’; “l is the greatest
number of the sequence”. Anything of this sort 1s sheer nonsense (cf. on this point
7, 3). For the terms of the sequence are 0, 4, %, 4, . . . and none of these is = 1, on
the contrary all of themare < 1. And there is no such thing as an “infinitely large »n’’.
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I1. A sequence is said to be monotone ascending or increasing

if, for every value of n,
Xp = Xy
it is said to be monotone descending or decveasing if, for every n,

*n = Xny1e

Both kinds will also be referred to as monotone sequences.

Remarks and Examples.

1. A sequence need not of course be either monotone increasing, or mono-
tone decreasing; cf. 6, 4, 6, 8. Monotone sequences are, however, extremely com-
mon, and usually casier to deal with than those which are not monotonc. That
1s why 1t is convenient to give them a distinguishing name.

2. Instead of ‘‘ascending” we should more strictly say ‘“non-descending”,
and instead of ‘“‘descending’’, ‘“non-ascending”. 'This, however, is not customary.
If 1n any special instance the sign of equality is excluded, so that x, < x,,, or
X, > X,,1, as the case may be, for every #n, then the sequence 1s said to be strictly
monotone (increasing or decreasing).

3. The sequences 6, 2, 5, 7, 10, 11, 12 and 6, 1, 9 are monotone; the first-
named ascending, the others descending. 6, 3 1s monotone descending, 1f 0 < a =< 1,
but monotone ascending if @ ~> 1; for a < 0, 1t 1s not monotone.

4. The designation of “monotone” is due to C. Neumann (Uber die nach
Kreis-, Kugel- und Zyhnderfunktionen fortschreitenden Entwickelungen, pp. 26,
27. Leipzig 1881).

We now come to a definition to which the reader should pay
the greatest attention, sparing no cffort to make himsclf master of its
meaning and all that it implies.

I11. A sequence will be called a null sequence if it possesses the fol-
lowing property: given any arbitrary positive (rational) number e, the in-
equality

|, ] <e
is satisfied by all the terms, with at most a finite number ® of exceptions. In
other words: an arbitrary positive number € being chosen, it is always possible
to designate a term x,, of the sequence, beyond which the terms are less than
€ in absolute value. Or a number ny can always be found, such that

| %, | <e for every 1> mn,

Remarks and Examples.

1. If, in a given sequence, these conditions are fulfilled for a particular e,
they will certainly be fulfilled for every greater ¢ (cf. 8, 1), but not necessarily for
any smaller €. (In 6, 10, for instance, the conditions are tulfilled for € = 1 and there-
fore for every larger ¢, if we putn, = 0; for € = } it is not possible to satisfy them.)
In the case of a null sequence, the conditions have to be fulfilled for every positive

s Cf. 7, 3.

10
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¢, and in particular, therefore, for every very small ¢ > 0. On this account, it is
usual to formulate the definition somewhat more emphatically as follows: (x,,)
is a null sequence if, to every € > 0, however small, there corresponds a number
1, such that

| x, | < € for every n > n,.

Here 7n, need not be an integer.

2. The sequence 6, 1 1s clearly a null sequence; for
|, | < ¢, provided n > },
€

whatever be the value of e. It is thus sufficient to put n, = 1.
€

3. The place in a given sequence beyond which the terms remain numeri-
cally < e, will naturally depend in general on the magnitude of €; speaking broadly,
it will lie further and further to the right (i. e. 27, will be larger and larger), the
smaller the given € 1s (cf. 2). This dependence of the number n, on € 1s often
emphasised by saying explicitly: “To each given € corresponds a number n, — n, (¢)
such that...”

4. The positive number below which | x, | is to lie from some stage onwards
need not always be denoted by €. Any positive number, however designated, may
serve. In the sequel, where ¢, o, K, ..., denoting any given positive numbers, we
:IG;, ke, 62’

5. The sign of x, plays no part here, since |—x,| =]x,|. Accordingly
6, 6 is also a null sequence.

6. In a null sequence, no term need be equal to zero. But all terms, whose
index is very large, must be very small. For if I choose e = 1078, say, then for every
n > a certain n,, | x,, | must be << 1075 Simularly for € - - 1071° and for any other e.

7. The sequence (a™) spectfied in 6, 3 1s also a null sequence provided | a| < 1.

Proof. If a = O, the assertion is trivial, since then, for every e > 0, | x,| < €

for everyn. If 0 < |a| < 1, then (by 3, 1, 4)

. €
may often use instead , ae, €%, etc.

|-‘l;-, > 1. If therefore we put
1
— =14 p, then > 0.
[al ) P
But in that case, for every n = 2, we have
(a) 1+ )" >1+np.

For when n = 2, we have (1 4+ p)2 =1+ 2p + p2 > 1 + 2p; the stated relation
therefore holds in that case. If, forn — k = 2,

A +pF>1+kp,
then by 2, III, 6
A+ >A4+EkpA +p)=1+¢k+Dp+Ekp2>1+(k+ 1)p,

therefore our reclation, assumed true for n = k&, is true for n =k + 1. By 2, V
it therefore holds 7 for every n = 2.

7 The proof shows moreover that (a) is valid for n = 2 provided only 1 + p
>0,i.e.p> —1, but +0. For p -= 0 and for n = 1, (a) becomes an equality.
For p > 0, tlie validity of (a) follows immediately from the expansion of the left-
hand side by the binomial theorem. — The relation (a) is called Bernoulli’s Inequality
(James Bernoulli, Propositiones arithmeticae de seriebus, 1689, Prop. 4).
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Accordingly, we now have

. — | qn - n . __l 1 1
ol = el dape < B < b
so that, however small € > 0 may be, we have

1
De

|x,] —=|a"| < € for every n >

8. In particular, besides the sequence (l> mentioned in 2., (2l,i), (%‘),
n n ‘
“1)": ((é) ), etc., are also null sequences.

5
9. A sumilar remark to that of 8, 1 may be appended to Definition 10: no
essential modification 1s produced by reading “=< €’ for “< ¢’ there. In fact,
if, for every n > n,, | x,| < €, then a fortiori | x, | = €; conversely, if, given any
€, 1, can be so determned that | x,, | == € for every n > n;, then choosing any posi-
tive number €, < € there is certainly an n, such that | x, | =< ¢,, for every n > n,
and consequently

|x,| < e for every n > n,;

the conditions in their original form are thus also fulfilled. — Precisely analogous
considerations show that in Defimtion 10 “> 2,” and ““ = n,”’ are practically inter-
changeable alternatives.

In any individual case, however, the distinction must of course be taken into
account.

10. Although 1n a sequence every term stands entirely by itself, with a definite
fixed value, and 1s not necessarily in any particular relation with the preceding
or following terms, yet it 1s quite customary to ascribe “to the terms x,”, or “to
the general term’ any pecularities 1n the sequence which may be observed on
running through 1it. We might say, for instance, 1n 6, 1 the terms dimimsh; in
6, 2 the terms increcase; in 6, 4 or 6, 6 the terms oscillate; in 6, 11 the general
term cannot be expressed by a formula, and so on. — In this sense, the character-
istic behaviour of a null sequence may be described by saying that the terms become
arbitrarily small, or ifimtely small ®; by which necither more nor less is meant than
1s contamned in Definition ® 10, viz. that for every € > 0 however small the terms
are ultimately (i. e. for all indices n >> a suitable 7,; or from and after, or beyond,
a certain n,) numericallv less than e.

11. A null sequence 1s 1pso facto bounded. For if we choose € = 1, then there
must be an integer 7, such that, for every # > n;, |x,| < 1. Among the finite
number of values | x, |, | 2], ..., | a5, |, however, one (cf. 8, 5) is greatest, = M
say. Then for K — M + 1, obviously | &y, | is always < K.

12, To prove that a given sequence 1s a null sequence, it is indispensable
to show that for a prescribed € > 0, the corresponding 7, can actually be proved
to exist (for instance, as 1n the examples that follow, by actually designating such
a number). Conversely, if a sequence (x,,) is assumed to be a null sequence, 1t 1s
thereby assumed that, for cvery ¢, the corresponding n, may rcally bc regarded as
existent. On the other hand, the student should make sure that he understands
clearly what 1s meant by a sequence 7ot being a null sequence. The meaning is
this: it is not true that, for every positive number ¢, beyond a certain point | x,, |

8 This mode of expression is due to 4. L. Cauchy (Analyse algébrique, pp. 4
and 20).

9 There need of course be no question here of the sequence being monotone.
Also, in any case, some | x,, |’s of index = n, may already be < e.
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1 always << €; there eaists a special positive number ¢, such that | x, | is not, beyond
any n , always < ¢,; after every n, there is a larger index n (and thereforc an in-
fimte number of such indices) for which | v, | == ¢,.

13. Finally we may indicate a means of interpreting geometrically the special
character of a null sequence.

Using the graphical representation 7, 5, the sequence is a nuit sequence 1f
its terms ultimately (for n > n,) all belong to the interval® —e...+ e. Let
us call such an mterval for brevity an e-neighbourhood of the origin; then we may
state  (x,) is a null sequence if every e-neighbourhood of the origin (however small)
contains all but a finite number, at most, of the terms of the scquence.

Similarly, using the graphical representation 7, 6, we can state: (v,) is a
null sequence if every e-strip (however narrow) about the aiis of abscissae contains
the entire graph, with the exception, at most, of a finite initial portion, the e-strip
being hmited by parallels to the axis of abscissae through the two pomnts (0, + ¢).

14, The concept of a null sequence, the ‘‘arbitrarily small given positive
number €’, to which we shall from now on have continually and indispensably to
appeal, and which may thus be said to form a main support for the whole super-
structure of analysis, appears to have been first used in 1655 by ¥. Wallis (v. Opera
I., p. 382/3). Substantially, however, 1t 1s already to be found in Fuclid, Elements V.

We are already in a better position to comprchend what is involved
in the idea, discussed above, of a meaning for v'2 or 7 or log 5. — In
forming on the onc hand (we kcep to the instance of v'2) the numbers

x, = 14; x,=141; x,=1414; x,==14142;.,,
on the other, the numbers
Nn=15 y.=142; y,=1415; 3= 1413;...

we arce obviously constructing two sequences of (rational) numbers (x,)
and (y,) according to a perfectly definite (though possibly very laborious)
method of procedure. These two sequences arc both monotone, (x,)
increasing, (¥,) decreasing. Furthermore x, is <y, for cvery n, but the
differences, i. ¢. the numbers

1

107
facts which convince us that we “know” V2, and can ‘“calculate” it
and so on, although — as we said before — no onc has yet had the
value V2 completely within his view, so to speak. — If we refer
again to the more suggestive representation on the number-axis, then,
obviously (cf. fig. 1, p. 25): the points x, and y, determine an interval

form, by 10, 8, a null sequence, since d, = These are clearly the

10 The word wnterval denotes a portion of the number-axis between a definite
pair of its points. According as we reckon these points themselves as belonging
to the interval or not, this 1s termed closed or open. Unless otherwise stated, the
interval will always in the sequel be regarded as closed. (For 10, 13 this is immaterial,
by 10, 9.) Supposing a to be the left end point, b the right end point, of an interval,
we call this for brevity the interval a. .. b.
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/1 of length d;; the points x, and y,, similarly, an interval /, of length
d,. Since
X =% <Yy =Y

the second interval lies wholly within the first. Similarly, the points x5
and v; determine an interval of length d;, completely within /,, and
generally, the points x, and y, determine an interval /,, completely
inside /,_;. The lengths of these intervals form a null sequence; the
intervals themselves shrink up, — one surmises, — about a definite
number, — contract to a quite definite point.

It only remains to examine how near this surmise is to truth. With
this purpose in view, we state, more generally, the following:

Definition. To express the fact that a monotone ascending sequence
(x,) and a monotone descending sequence (y,) are given, whose terms for
every n satisfy the condition

Xn = Yn
«nd for which the differences
d, = Yn— %n

form a null sequence,— we say for brevity that we are given a nest of
intervals (Intervallschachtelung)*. The n* wmterval stretches
from x, to ¥, and has length d,. The nest itself will be denoted by (/,) or
by (%5 | yn)-

The conjecture which we made above now finds its first confirma-
tion in the following:

Theorem }. There is at most one (rational) point s belonging to all
the intervals of a given nest, that is lo say satisfying, for every n, the in-
equality

Xy =SS Ve

n ==

Proof: 1If therc were, besides s, another number s differing from
it, and also satisfying the inequality

X, S =Y
for every n, then, for every », besides

Xy S S S Yoo

* A set or series of similar objects is said to form a nest or to be nested (inein-
ander geschachtelt) when each smaller one is enclosed or fits into that which 1s next
in size to it. The word nest 1s here used with the additional (ideal) characteristic
implied, that the sizes diminish to zero. When this is not implied, we shall use the
more explicit phrase that each is contained in the preceding (or we might say that
they are nested).

1+ We note here for future reference that this theorem continues to hold un-

altered when the numbers which occur are arbitrary real numbers.
2 (G51)

11.

12.
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we should also have (v. 3, I, 4)
—E = X
by 3, I, 2 and 3, II, 5, the inequalities
—d,=s—s=d,, or |s—¢|=d,

would therefore hold for every n. Choosing € = | s — s" |, d,, would never
(a fortiori not for every m beyond a certain n,) be << e. This contradicts
the hypothesis that (d,) is a null sequence. The assumption that two
distinct points belong to all the intervals is therefore inadmissible 1.

Q. E. D.

Remarks and Examples.

1. Letx, =”-;——l,y.,, = n-l‘—l; that is to say, /, == n :}...?':»:—],dn :;21

We can at once verify that we actually have a nest of intervals here, since

2
X, < Xpy1 < Vpyp1 < ¥, for every n, and since, for every n > “, we have d, <e¢,
€

however € > 0 be chosen.
n—1

oy ntld
n n

The number s = 1 here belongs to all the /,’s, since
for every n. No number other than 1 can belong therefore to all the intervals.
2. Let /, be defined as follows '?: /, 1s the interval 0 ... 1; /; the left half

of /y; /- the right half of /,; /s the left half of /;; and so on. These intervals are
obviously each contained in the preceding; and since /, has length d, —= .)ln, and
these numbers form a null sequence, we have a nest of intervals. A little considcra-
tion shows that the sequence of the x,’s consists of the numbers

1 1 1 1 21

1 1 __ 5
% » 1t w 4T T @ e
each taken twice running; and that the sequence of y,’s begins with 1 and con-
tinues with
1_1_1_1

T2 2 8 & 2 8 32 32°°°

1,1 1 1 _ 1/, 1 1
itntatota=s(0-5)<s
11 1 1 2 1
13 e D e e e == — )= .
and 1—5—5—- 24k 3(l +4"> 3

" From a graphical point of view, what the proof indicates is that if s and
s’ belong to all the intervals, then each interval has a length at least equal to the
distance | s — s’ | between s and s’ (v. 3, II, G); these lengths cannot, therefore,
form a null sequence.

12 Here we let the index start from 0 (cf. 7, 2).

13 For any two numbers a and b, and every positive integer k, the formula

a*¥ — b% = (@ — b)(a*' + aF2 b + ... + a bk + bk)

is known to hold. Whence, more particularly, for a =% 1, the formulae

— gk — gk
l4a+...+a1 =122 anda+a’+...+a’°=1~——a
l—a l1—a

«a.
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Hence, for every n, x, < } < »,; thus s — } is the single number which belongs
to all the intervals. Here, therefore, (/,) ‘‘defines” or ‘‘determines’ the number %,
or (/) shrinks up to the number }.

3. {f we are given a nest of intervals (/,), and a number s has been recog-
nised as belonging to all the /,’s, then by our theorem, s 1s quite uniquely dcter-
mined by (/,). We therefore say, more pointedly, that the nest (/,) ‘‘defines” or
“encloses’’ the number s. We also say that s 1s the innermost point of all the intervals.

4. If s 1s any given rational number and we put, forz = 1,2, ...,x, = s — ,11

1 .
andy, = s + > then (x,, | ¥,) is evidently a nest of intervals determining the number

s itself. But this is also the case if we put, for every n, x,, —= s and y,, — s. — Mani-
festly, we can, in the most various ways, form nests of intervals defining a given
number.

This thcorem, however, only confirms what we may regard as one
half of our previously described impression; namely, that if a number
s belongs to all the intervals of a nest, then there is nonc other besides
with this property, — s is uniquely determined by the nest.

The other half of our impression, namely, that there must also
always be a (rational) number belonging to all the intervals of a nest,
is erromeous, and it is precisely this fact which will become our induce-
ment for extending the system of rational numbers.

This the following example shows. As on p. 20, let x, = 14; x, == 1-41; .. .3
y, — 15; y, = 1-42; .., Then there is no rational number s, for which x,, =~ s <y

for every n. In fact, if we put

n

— [
xn' - x”a, Yn = yna

then the intervals /,,’ = x,,’ . . . 3, also form a nest!’. But x,” = x,2 < 2 for all »,
and y,” — ¥,® = 2 for all n (because this was how x, and y, were chosen), 1 e.
x,” <2<y, On the other hand, if x,, =<s =, we should have, by squaring
(as we may, by 3, 1, 3), x, = s* = y,’ for all n. By our theorem 12 this would in-
volve s? = 2, which 1s however impossible, by the proof given in footnote 17 on
p. 12. Here, therefore, there 1s certainly no (rational) number belonging to all the
intervals.

In the following paragraphs, we will investigate what, in a case such

as this, should be done.

§ 8. Irrational numbers.

We must come to terms with the fact that there is no rational
number whose square is 2, that the system of rational numbers is too
defective, too incomplete, too full of gaps, to furnish a solution for the

U4 For 1t follows from x, < x,,, < ¥,,1 = ¥, — since all the numbers are

positive, so that squaring (cf. 3, I, 3) is allowed — that x,” S &', <900 S 9,5
further y,” — x,” — (¥p + x,)(¥, — &,); thercfore, since x, and v, are certainly

€, and ths, by 10, 8,

’, ’ 4 . . ]
<< 2 for every n, y,” — x,,” < Jom I+ © < s, provided 10n < 4

1
is certainly the case for every » > a certain n,.
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equation x? = 2. Indeed, this is only one of many equations for whose
solution the material of the system of rational numbers proves insufficient.
Almost all the numerical values which we are in the habit of denoting
by A/n, log n, sin «, tan « and so on, are non-cxistent in the system of
rational numbers and can no more be immediately “obtained’, or ‘‘deter-
mined”’, or be “stated in figures”, than can v'2, The material is too coarse
for such finer purposes.

The considerations brought forward in the preceding paragraphs
point to means for providing ourselves with more suitable material.
We saw, on the one hand, that, behind the conviction that we do
know V2, there lay no more, substantially, than the fact that we possess
a method by which a perfectly definite nest of intervals may be
obtained; for its conmstruction, the solution of the equation x% == 2 of
course gave the occasion!™. We saw, on the other hand, that if a
nest (/,) cncloses any number s capable of sp:cification at all (this still
implying that it is a rational number) then this number s is quite uniquely
defined by the nest (/,), -— so unambiguously, indeed, that it is cntirely
indifferent, whether I give (write down, indicate) the number directly,
or give, instead, the nest (/,) — with the tacit addition that, by the latter,
I mean precisely the number s which it uniquely encloses or defines. In
this sense, the two data (the two symbols) are equivalent, and may
to a certain extent be considered equal!$, so that we may write in-
deed:

(/a)=s or (x,,]y,,):s.

15 'The kernel of this procedure is in fact as follows: We ascertain that
12 < 2, 22 > 2 and accordingly put x, =1, y, — 2. We then divide the interval

Jo = Xy...¥0 1nto 10 equal parts, and taking the points of division, 1 + ll:), for

kE=0,1,2,...,9, 10, determine by trial whether their squares are > 2 or < 2.
We find that the squares corresponding to k2 == 0, 1, 2, 3, 4 are too small, those
corresponding to k = 5, 6, ..., 10 too large, and accordingly we put x, = 1-4 and
¥, = 1-5. Next, we divide the nterval /, = x, . . . y, into 10 equal parts, and go
through a similar test with regard to the new points of division — and so on. The
known process for extracting the square root of 2 1s intended mainly to make the
successive trials as mechanical as possible. — The corresponding treatment of,
for instance, the equation 10% = 2 (1. e. determination of the common logarithm
of 2) involves the following nest of intervals: Since 10" < 2, 10 > 2, we here pu:
Xy = 0, ¥ =1 and divide /, = x¢ . . . ¥, into 10 equal parts. For the points of

division, 1’;, we next test whether 10#10 < 2 or > 2, that is to say, whether 10%

< 210 or > 210, As a result of this trial, we shall have to put x, == 0:3, y, == 0-4,
The interval /, = x, ...y, is again divided into 10 equal parts, the same pro-
3 k
0 " 160
equal to 0 30 and y, to 0 31 — and so on. — This obvious procedure is of course
much too laborious for practical calculations.

18 The justification for this is provided by Theorems 14 to 19,

cedure instituted for the points of division and, 1n consequence, x, put
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Consequently, we will not say merely: ‘“thc nest (/,) defines the number
s” but rather “(/,) is only another symbol for the number s”, or in fine,
(/) #s the number s” — exactly as we arc used to look upon the decimal
fraction 0-333 . . . as merely another symbol for the number }, or as being
preciscly the number } itself.

It now becomes cxtremely natural to introduce fewtatively an
analogous mode of expression with regard to those nests of intervals
which contain 70 rational number. Thus if x,, y, denote the numbers
constructed previously in connection with the equation x2 =2, one
mizht — seeing that in the system of rational numbers there is not
a single one whose square = 2 — decide to say that this nest (x,|yy)
determines the “true” “value of V2 though one incapable of being
symbolised by means of rational numbers, — that it encloses this

(3
x| x) E yi el Ly
R Y s— f | l
— R
H 7“,0 '
Fig. 1.

value unambiguously — in fine, “it is a newly created symbol for this
number”, or, for brevity, “it is the number itself”. And similarly in every
other case. If (/) == (%,|,) is any nest of intervals and no rational
number s belongs to all its intervals, we might finally resolve to say that
this nest encloses a perfectly definite value, — though one incapable of
being dircctly symbolised by means of rational numbers, — it deter-
mincs a perfectly definite number, — though one unfortunately non-
existent in the system of rational numbers, -— it is a newly created symbol
for this number, or briefly: is the number itself; and this number, in
contradistinction to the rational numbers, would then have to be called
an irrational number.

Here certainly the question arises: Can this be done without
Sfurther justification? Is it allowable? May we, without more ado,
designate these new symbols, the nests (¥, |y,), as numbers? The fol-
lowing considerations are intended to show that to this course therc is
no ohstacle whatever.

In the first instance, a simple graphical illustration of these facts
on the number-axis (see fig. 1) gives every appearance of justification to
our resolution. If, by any construction, we have marked a point P on
the number-axis (e. g. by marking off to the right of O the length
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of the diagonal of a square of side O U) then we can in any number
of ways definc a nest of intervals cnclosing the point P. We may
do so in this way, for instance. First of all we imagine all integers

%0 marked on the axis. Of these, there will be exactly one, say p,

such that our point P lies in the stretch from p inclusive to (p + 1)
exclusive.  Accordingly we put x,=p, yo=p+ 1, and divide the
interval /y =, ...y, into 10 equal parts?”. The points of division

are p + 1]:) (with k=0, 1, 2, ..., 10), and among them, there will again
be exactly one, say p -+ {‘(1), such that P lies between x, ==p -}- ﬁl)

inclusive and y, =p + i 0—1- exclusive. The interval /; =x%;...,

is again divided into 10 equal parts, and so on. If we imagine this process
continued indefinitely, we obtain a perfectly definite nest (/,,) all of whose
intervals /,, contain the point P. No other point P’ besides P can lie in all
the intervals /,. For, if that were so, all the intervals would have to con-
tain the whole stretch P P’, which is impossible, as the lengths ot the

. 1
intervals ( /» has length 10") form a null sequence.

For every arbitrarily given point P on the number-axis (rational or
not) there are thus nests of intervals — obviously, indeed, any number
of such nests — which contain that point and no other. And in the
present instance, — i. e. in the graphical representation on the number-
axis — the converse appcars most plausible; if we consider any nest
of intervals, there seems to be always one point (and by the reasoning
above, only this one) belonging to all its intervals, which is thus deter-
mined by it. We belicve, at any rate, that we may infer this dircctly from
our conception of the continuity, or gaplessness, of the straight line 8.

Thus in this geometrical representation we should have complete
reciprocity: every point can be enclosed in a suitable nest of intervals
and cvery such nest invariably encloses one and only one point.

This gives us a high degree of confidence in the adequacy of our
resolve to consider ncsts of intervals as numbers, — which we now for-
mulate more precisely as follows:

Definition. We will say of every nest of intervals (/,) or (2, | ¥n),
that it defines or, for brevity, ¢t ¢s, a determinate number. To represent

17 Instead of 10 we may of course take any other integer = 2. For furthet
detail, see § 5.

18 The proposition, by which the ‘“continuity of the straight line” is expressly
postulated — for a proof cannot be here expected, since it is essentially a description
of the form of our concept of the straight line which is involved — is called the
Cantor-Dedekind axiom.
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it, we use the symbol denoting the nest of intervals itself, and only as an ab-
breviation replace this by a small Greek letter, writing in this sense'?, e. g,

() or (x.|y,) =o.

Now, in spite of all we have said, this cannot but seem a very arbi-
trary step, — the question has to be repeated most insistently: will it
pass without further justification? 'These purely ideal objects which we
have just defincd — these nests of intervals (or else that still extremely
questionable ‘something’ which such a nest encloses or determines) — can
we speak of thesc as numbers? Are they after all numbers in the same
sensc as the rational numbers, - more precisely, in the sense in which
the number concept was defined by our conditions 4?

The answer can only consist in deciding, whether the totality or
aggregate of all conceivable nests of intervals, or of the symbols (/,) or
{%s | ¥x) or o introduced to denote them, forms a system of objects satis-
fying these conditions 4 20; a system therefore — to recapitulate these
cenditions briefly — whose elements are derived from the rational numbers,
and 1. are capable of being ordered; 2. are capable of being combined
by the four processes (rules), obeying at the same time the fundamental
laws 1 and 2, I—IV; 3. contain a sub-system similar and isomorphous
to the system of rational numbers; and 4. satisfy the Postulate of Eud-
oxus.

If and only if the decision turns out to be favourable, all will be
well; our new symbols will then have vindicated their numerical char-
acter, and we shall have established that ZZey are numzbers, whose
totality we shall then designate as the system or set of real numbers.

Now the dccision in question does not prescnt the slightest diffi-
culty, and we may accordingly be brief in expounding the details:

Nests of intervals — or our new symbols (x,|y,) — are certainly
constructed by means of rational number-symbols alone; we have there-
fore only to settle the points 4, 1—4. For this, we shall go to work in
the following way: Certain of the nests of intervals define a rational
number 2!, something, therefore, for which both meaning and mode of
combination have been previously established. We consider two such
rational-valued nests, say (¥, |y,) == s and (x| y,") = s’. With the two
rational number-symbols s and s, we can immediately distinguish whether
the first s is <<, = or > the second s’; and we can combine the two by
the four processes of arithmetic. Iissentially, what we have to do is to
endcavour directly to recognise the former fact, and to carry out the latter
processes, on the two nests of intervals themselves by which s and s” were

19 5 is an abbreviated notation for the nest of intervals ( /,) or (x, | 3'5).
20 The reader should here read these conditions through again.
81 We will describe such nests for brevity as rational-valued.
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given, and finally to extend the result to the aggregate of all nests of intervals.
Each provable proposition (A) relating to rational-valued nests will ac-
cordingly give rise to a corresponding definition (B). We begin by setting
down concisely side by side these pairs of propositions (4) and
definitions (B) 22

Equality: A.Theorem. If(x,|y,) = s and (x,'|y,’) =" are two
rational-valued mnests of intervals, then s=3s' holds if, and only if,

besides
n = Yn and x, < yy/,
we have 2
X' S Yp and x, <y,
Jor every n.
On this theorem we now base the following:

B. Definition. Two arbitrary nests of intervals o = (x,|y,) and
o' = (x," | ¥') are said to be equal if and onlv if
) X = Yn's X S Ya
Jor every n.

Remarks and Examples.

1. The numbers x,, and «,” on the one hand, y, and y,” on the other, need
of course have nothing whatever to do with one another. This is no more sur-
prising than that rational numbers so entirely different in appcarance as 3, i,
and 0 375 should be referred to as “equal”. Equality is indeed something which

22 The import of proposition and definition should 1n cach case be interpreted
in relation to the number-axis.

* Into the very simple proofs of the propositions 14 to 19 we do not propose
to enter, for the general reasons explained on p. 2. They will not present the
shghtest difficulty to the reader, once he has mastered the contents of Chapter II,
whereas at this stage they would appear to him strange; moreover they will serve
as exercises in that chapter. Merely as a specimen and example for the solution
of those problems, we will here prove Theorem 14:

a) If s = ¢, then we have both x, <s <y, and x,” <s < y,’, whence at
once, x, < ¥, and x,” < y,, for every n.

b) If conversely x, =<y,  for every n, then s = s’ must hold. For if we had
s > ¢, 1. e. s — §" > 0, then, since (y,, — x,) 1s a null sequence, we could so choose
the index p, that

Vp— %X, <s—s or x,—s >y,—s.
As however s is certainly = y,,, this would imply x, — s" > 0. We could therefore
choose a further index r for which
V' —xy <Ly — ',

Since x,” = ', this would imply y,” < x,. Choosing an integer m excced-
ing both p and », we could deduce, in view of the respective ascending and descend-
ing monotony of our sequences of numbers, that a fortiori y,," < x,,, — which con-
tradicts the hypothesis that x,, < y,’ for every n. Thus s < s’ is ensured.

By interchanging throughout the above proof the accented and non-accented
letters, we deduce in the same manner that if x,” <y, for every n, then s" =3 s
— If then we have both ~,” =<y, and x, = ¥, holding for every n, then s =
necessarily follows. Q. E. D,
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is not fixed @ priori, but needs to be established by some form of definition, and
1t 1 perfectly compatible with marked dissimilarity 1n a purely external aspect.
n—1 l n -

1
30 3 ) and 12, 2 are cqual 1in accordance with

2. The two nests (
our present definition
1
“n
denoting a nest all of whose intervals have both their left and their right endpoints
1 1
e ”) = (0] V) = 0.

4. It sull remains to establish — but the proof 1s so simple that we will not
go nto 1t further — that (cf. Footnote 23), in conscquence of our definition, we
have a) ¢ — o (Footnote 24), b) o == ¢’ always implies ¢’ = o, and ¢) 6 = o’, 0o’ —= o’
involve ¢ = o”,

Inequality: A. Theorem. If (x,]|y,) =s and (x,'|¥,’) =5 are
two rational-valued nests, then we have s <s', if and only if

s -

. 1
3. By 14, we may write e. g. (s ~ ) =§ = (s|5), the latter symbol

-= 5. In parncular, (—

x, =y, for every n, but not x," =y, for every n,

i.e. v, <, for at least one m.
B. Definition. Given any two nests of intervals ¢ = (x,|y,) and
o — (x| 3.), then we shall say o -2 o', if
x, <y, for ecvery n, but not x, =y, for every n,

’

i. e. for at least one m, y,, . x,,'.

Remarks and Examples.

1. It is clear that by 14 and 15 the totality of all conceivable nests is ordered.
For if o and o’ are any two of them, cither there 1s equality, o = o’, or, for at least
one p, we have y, < x)/, implying o < ¢’, or finally, for at least one 7, ¥,” < x,,
mplying ¢’ < o. T'he last two cases cannot occur simultaneously, since, for m
greater than » and », we should then have, a fortior, v,,” <2 ~,;’, which 1s 1impossible.
Thus between ¢ ard ¢’ one and only one of the three relations

<o, =0, o'<o

always holds, and the totality of these new symbols 1s thus ordered by 14 and 15.
2. Here again 1t would have to be established in all detail that the laws of
order 1 continue to hold good with the adopted defimtions of equality and in-
equalhity. T'aking as model the proof in the footnote to Theorem 14, this presents
so few essential difficulties that we will not enter into 1t further: The laws of order
do, effectually, all remain val:d.
3. In consequence of 14 and 15 we now have, therefore, for every n

Ay 2

What does this meani It means that each of the rational numbers x,, is, 1n ac-
cordance with 14 and 15, not greater than the nest ¢ == (x, | ,,). Or: if we con-

-
g = Yy

2 1lere 1t may be clearly recognised that this “law” is by no means trivial:
it has indeed to be proved that with the given defimtion of equality every nest of
intervals 1s effectually ‘“‘equal” to itself, that is to say that the conditions of that
definition are fulfilled, when the same nest is taken for both of the nests of intervals
which we are comparing.

15
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sider any particular one of the numbers x,, say v, and denote 1t for brevity by x,
then we may write (see 14, Rem. 3)
(¥, —) x=— (x 1 |x+l) or = (x]|x)
» o n n -
and our statement takes the form
(x]x) < (v [ Yn)
We may prove it as follows. If it were not true, then for at least one 7,
Ve <x, le y, <y
and so a fortiori, if m is greater than r and p,
Ym < X,
which certainly cannot be the case. In the same way we sce that ¢ < y,. Accord-
ingly, o is to be regarded as lying between x,, and y, for each n, in other words, as con-
tained within the wnterval /,.

The fact that no other number o', besides o, can possess the same property
is now easily proved. If in fact there were a second nest of intervals o’ -= (v, | ¥,,")
such that for cvery definite index p we also had x, < o' < ¥Yp then the left hand
inequality means, more precisely (cf 3), that (v, | v,) == (v,”| »,”) and so, hy 14
and 15, x, =<y,  for every #. Since this must hold in particular for n p, we
deduce x,, <"y, for every p, which signifies, by 14 and 15, that 0 = ¢’. In the
same manner the right hand nequality 1s seen to imply that ¢’ < 6. 'T'hus neces-
aarily o = o', which was what we set out to prove.

4. By 15, ¢ 1s > 0, i. e. “posttive”, 1f and only if (x, |v,) > (0]0), that is
to say, if for some suitable index p, x, > 0. But in this case, as the x,’s increase
with n, we have a fortiort x, > 0 for every n > p. We may therefore say: o =—
(¥ | ¥5) 15 posttive if, and only if, all the endpoints x,, y, arc positive from and
after a defimite index. — "T'he exact analogue holds of course for o << 0.

5. If ¢ > 0, and, for every n =X p, &, = 0, let us form a new nest (x," | ¥,")
= o’ by putting x,” = &’y = ... = x';_, all equal to x,, but every other x,” and
v, equal to the corresponding x, and y,. By 14, obviously ¢ == o”; and we may
say: If o 1s posttive, then there are always nests of intervals equal to 1t, for which
all the endpoints of intervals are positive. 'The exact analogue holds for ¢ < 0.

So far then, in respect of the possibility of ordering them, our nests
of intervals may be said to vindicate their character as numbers com-
pletely. It is no more difficult to establish a similar conclusion with regard
to the possibilities of combining them.

Addition: A. Theorem ®. [f(x,|y,)and(x, |y, are any two nests
of intervals, then (x, + x,', ¥, + ¥5") i also one, and if the former are both
rational-valued and respectively = s and = s’, then the latter is also rational-
valued, and determines the number s - s'.

B. Definition. If (x,|y,) = o and (x,’ | y,’) == o’ are any two nests
of intervals and o'’ denotes the nest (x,, + %', Yo + ¥.') deduced from them,
then we write

o' =0+t 0o

and o’' is called the sume of o and o'.

38 With regard to the proof, cf. footnote 23.
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Subtraction: A. Theorem. If (x,]|y,) is a nest of intervals, then so
is (— ¥n| — %,); and if the former is rational-valued == s, then the latter
is also rational-valued, and determines the number — s.

B. Definition. If o = (x,|y,) i any nest of intervals and o' de-
note the nest of intervals (— y, | — x,), we write

!’
G = —0

and say o' is the opposite of a. — By the difference of two nests of inter-
vals we then mean the sum of the first and of the opposite of the second.

Multiplication: A. Theorem. If(x,|y,) and (x,’ |y,’) are any two
positive nests of intervals, — replaced, if necessary, (in accordance with
15, 5) by two nests of intervals equal to them, for which all the endpoints
of intervals are positive (or at least non-negative),— then (x,x,’ |y, ¥,")
is also a nest of intervals; and if the former are rational-valued and respec-
tively = s and = §', then the latter is also rational-valued, and determines the
number s s'.

B. Definition. If (x,|y,) —=o and (x,/|y,’) =o' are any two
positive nests of intervals for which all the endpoints of intervals are positive
— which is no restriction, by 15, 5 — and ¢" denote the nest (x,%," | yo¥5")
derived from them, then we write

and call ¢"' the product of o and o',

The slight modifications which have to be made in this definition if
one or both of ¢ and ¢’ are negative or zero, we leave to the reader, and
henceforth consider the product of any two nests of intervals as defined.

Division: A. Theorem. If (x,|y,) is any positive nest of intervals
for which all endpoints of intervals are positive, (cf. 15, 5) then so is (l xl) N

n n

and if the former is rational-valued, and = s, the latter is also rational-

valued, and determines the number %

B. Definition. If (x,|y,) = o is any positive nest of intervals for

which all endpoints are positive, and o’ denote the nest (71 - l), then we

n n

write

o =

Q=

and say o is the veciprocal of o.— By the quotient of a first by a second
positive nest of intervals we then mean the product of the first by the reciprocal
of the second.

The slight modifications necessary in this definition, if o {in the one
case) or the second of the two nests of intervals (in the other) is negative,

17.

18.

19.
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we may again leave to the reader, and henceforth consider the quotient
of any two nests of intervals of which the second is different from 0, as
defined. — If (x,|y,) = o = 0, then the above method fails to produce
a “reciprocal” nest: division by O is here also impossible.

The result of the preceding considerations is thus as follows: By
definitions 14 to 19, the system of all nests of intcrvals is ordered in the
sense of 4, 1, and admits of having its elements combined by the four
processes in the sense of 4, 2. In consequence of the theorems 14 to 19,
as stated in each case, this system possesses further, in the aggregate of
all rational-valued nests, a sub-system, similar and isomorphous to the
system of rational numbers, in the sense of 4, 3. It remains to show that
the system also fulfils the Postulate of Eudoxus. But if (x,|y,) = o and
(x," | ¥') = o’ are any two positive nests for which all endpoints of in-
tervals are positive (cf. 15, 5), let x,, and y,, " be a definite pair of these
endpoints; the theorem of Eudoxus ensures the existence of an integer
p, for which p x,, > ,,, and the nest p o, or (p x, | p ¥,), in accordance
with 15, is then effectually > o'.

The next step should be to establish in all detail (c¢f. 14, 4 and 15,
2) that the four processes defined in 16 to 19 for nests of intervals obey
the fundamental laws 2. This again offers not the slightest difficulty and
we will accordingly spare ourselves the trouble of setting it forth 26. The
Fundamental Laws of Arithmetic, and thereby the entire body of rules valid
in calculations with rational numbers, effectually retain their validity in the
new system.

By this, our nests of intervals have finally proved themselves in
every respect to be numbers in the sense of 4: The system of all
nests of intervals is a number-system, the nests themselves are numbers 7.

—

26 As regards addition, for instance, it should be shown that:

a) Addition can always be carried out. (This follows at once from the defini-
tion.)

b) The result is unique; i. e. ¢ —= ¢’, 7 = 7’ (in the sense of 14) mmply
o--7 =0 }|-7/,—if the sums are formed in accordance with 16 and the test
for equality carried out in accordance with 14, In the corresponding sense, 1t should
be shown further that

c) o -+ 7 =17+ o always.

d) (e + o) + 7 = ¢ + (o + 7) always.

e) ¢ < ¢’ implies ¢ + 7 < o’ + 7 always. —

And similarly for the other three processes of combination.

27 Whether, as above, we regard nests of intervals as themselves numbers,
or imagine some hypothetical entity introduced, which belongs to all the intervals
Jn (cf. 15, 3) and thus appears to be in a special sense the number enclosed by
the nest of intervals and, consequently, the common element in all equal nests —
this at bottom is a pure matter of taste and makes no essential difference. — The
equality o =- (x, | ¥,) we may, at any rate, from now on, (cf. 13, footnote 19) read
indifferently cither as ““o is an abbreviated notation for the nest of intervals (x, | ¥,,)”’,
or as ‘o is the number defined by the nest of intervals (x,, | ¥,)".
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This system we shall henceforth designate as the system of real numbers.
It is an extension of the system of rational numbers, — in the sensc in
which the expression was used on p. 11, — since there are not only rational-
valued nests but also others besides.

This system of real numbers is in one-one correspondence with
the whole aggregate of points of the number-axis. For, on the strength
of the considerations set forth on pp. 24, 25, we can immediately assert
that to every necst of intervals o corresponds one and only one point,
namely that common to all the intervals /,,, which on account of the Cantor-
Dedekind axiom is considered in cach case as existing. Also two nests of
intervals ¢ and ¢’ have, corresponding to them, one and the same point,
if and only if they are equal, in the sense of 14. To each number o (that
is to say, to all nests of intervals cqual to each other) corresponds exactly
one point, and to each point exactly one number. The point corresponding
in this manner to a particular number is called its image (or representative)
point, and we may now assert that the system of real numbers can be uniquely
and reversibly represented by the points of a straight line.

§ 4. Completeness and uniqueness of the system of real
numbers.

Two last doubts remain to bc dispelled 2: Our starting point in
§ 3 was the fact that the system of rational numbers, by reason of its
“gaps’’, could not satisfy all demands which would appear in the course
of the elementary processes of calculation. Our newly created number-
system — the system Z as we will call it for brevity — is in this respect
certainly more cfficient. E. g. it contains 2 a number o for which 0% == 2.
Yet the possibility is not excluded that the new system may still show
gaps like the old, or that in some other way it may bec susceptible of still
further extension.

Accordingly, we raise the following question: Is it conceivable that
a system Z, recognizable as a number-system in the sensc of 4, and con-
taining all the elements of the system Z, should also contain additional
elements distinct from these? 3

28 Cf. the closing words of the Introduction (p. 2).

2 For if ¢ = (x,|y,) denote the nest of intervals constructed on p. 20
in connection with the equation x% = 2, then by 18 we have o® = (x,2| ¥,%). Since,
however, x,% <X 2 and y,2? > 2, it follows that ¢* = 2, Q. E. D.

3 I.e. Z would have to represent an extension of Z in the same sense as Z
itself represents an extension of the system of rational numbers.
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It is not difficult to see that this cannot be so, so that we have in
fact the following theorem:

Theorem of completeness. The system 7 of all real numbers is in-
capable of further extension compatible with the conditions 4.

Proof: Let Z be a system which satisfies the conditions 4 and
contains all the elements of 7 If « denote an arbitrary element of Z,
then 4, 4 — in which we choose for B the number 1, contained in Z,
and also, thercfore, in Z — shows that there exists an integer p > «,
and similarly another p° > — a. For these? we have —p' <a <p.
Considering successively the (finite number of) intcgers between — p'
and p, starting with — p’, we know that we must come to a last one which
is still =< «. If this be called g, then

ga<g4 1.

By applying to this intcrval g...g 4 1 the method, alrcady re-
peatedly used, of subdivision into ten parts, a perfectly definite nest of
intervals (x,|y,) is obtained. And a repctition word for word of the
proof in 15, 3 shows that the number thus defined can neither be > nor
< a. Every element of £ is therefore equal to a real number, so that Z
can contain no clements other than real numbers.

A final objection might be this: We have succeeded in forming the
system Z in a comparatively natural, but after all an arbitrary, manner.
Other measures, obviously, might be adopted for filling up the gaps in
the system of rational numbers. (In the very next scction we shall come
across other, equally ready means to this end.) It is conceivable that
a different method would lcad to other numbers, i. e. to number-systems
differing, in more or less cssential particulars, from the one constructed
by us. — The question thus indicated may be given a precise formulation
as follows:

Let us suppose that we have somchow, starting with the system
of rational numbers, succeeded in constructing a system & of elements
which, besides still satisfying the conditions 4, — as is the case with our
system Z, — and therefore descrving the name of a number-system, also
fulfils a further requirement, usually referred to as the Postulate of
completeness, on account of the theorem proved above. — On the
strength of 4, 3, 3 contains elements, corresponding to the rational numbers.
Let (x, | y,) be any nest and let 1, and v, be the elements of & associated
with x,, y, in accordance with 4, 3; the stipulation then runs thus: 3
shall always contain at least one element s satisfying, for every n, the con-
ditions 1, < 5 = e

In exact form, our problem is now: Can such a system 3 differ in

st At this point, the Postulate of Eudoxus gains its axiomatic significance.
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any essential particulars from the system Z of real numbers, or must the
two systems be regarded as substantially identical, in the perfectly definite
sense that they can be brought into relation as similar and isomorphous
to one another?

The theorem stated below, by solving this problem in the sense
which we should anticipate, closes the construction of the system of real
numbers.

Theorem of Uniqueness. Every such system & is necessarily similar
and isomorphous to the system Z of real numbers as constructed by us. Essen-
tially, only one such system therefore exists.

Proof By 4, 3, 3 contains a sub-system &', which is similar and
isomorphous to the system of rational numbers contained in Z, and whose
elements may therefore be called, for short, the rational elements of 3.
If ¢ = (x, | 3,) is any real number, 3 must, according to our new stipula-
tion, contain an clement ¢, which for every n satisfics the conditions
In 2=, if 1, and v, are the elements of § corresponding to the
rational numbers x, and y,,.

Also, thesc conditions definc s umiquely. For if a second element
¢’, simultaneously with s, satisfied the conditions 1, < s <y, for every
n, then it would follow, word for word as in the proof of 12, that for
cvery n

Yn—p=|6—o|,

i. e. = the non-negative onc of the two elements ¢ — ¢’ and & — 8.
Let 7 stand for an arbitrary positive rational number, and 1 for the cor-
responding element in & (therefore in &°); then, on account of the similarity
and isomorphism of &’ with the system of rational numbers, we must
have, simultancously with y, — x, <7, the relation y, — r, <t holding
for a suitable index p. For every such r therefore

|s—d'| <r

If thercfore v, denotes one particular such 1+ and if v,, n=1,2, ...,
denotes the element (certainly present in &', by 4, 2) which, when repeated
n times, yields the sum v, we see, after writing down the above inequality
for r =1, and adding it to itself # times, that for every n =1, 2, ...,

nle—d|=n

must also hold. Since, however, & satisfies the postulate 4, 4, it follows
that ¢ = ¢'.

If we proceed to associate this uniquely defined clement ¢ and
the real number g, it becomes clear that & contains a sub-system F*,
similar and isomorphous to the system Z of all real numbers. That
such a system 3* is not susceptible of further cxtension compatible

21.
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with the conditions 4, but must be identical with &, was the import
of the previously established theorem of completeness. Thereby, it is
proved that & and / arc similar and isomorphous to one another,
and therefore may be regarded, in all essentials, as identical: Ouwr svstem
Z of all real numbers is in all essentials the only one possible satisfying both
the conditions 4 and the postulate of completeness.

After these somewhat abstract considerations, the main result of our
whole investigation may be summarised as follows:

Besides the rational numbers with which we arc familiar, therc exist
others, the so-called #rrational numbers. Each of them may be enclosed
(determined, given, . . .) by a suitable nest of intervals and this indeed
in many ways. These irrational numbers fit in consistently with the
rational numbers, in such a manner that the conditions stated in 4 are
fulfilled by the joint system of all rational and irrational numbers, with
which, to be brief, all calculations may be effected, formally, exactly as
with the rational numbers alone, but with greater success.

This wider system is moreover incapable of any further extension
compatible with conditions 4, and is in all essentials the only system of
symbols which satisfies these conditions 4 and also the postulate of com-
pleteness.

We call it the system of real numbers.

It is with the elements of this system, with the real numbers, that
we work (at first exclusively) in the sequel. We consider a particular
recal number as given (known, determined, defined, calculable, . . .) if
either it is a rational number and so can be literally written down with
the help of integers — inserting if need be a fractional bar or a minus
sign — or (and this holds in any case) we are given 32 a nest of intervals
defining the number.

We shall very soon see, however, that many other ways and means,
besides the nests of intervals, exist, for defining a real number. In pro-
portion as such ways become known to us, we shall widen the above-
mentioned conditions, under which we consider a number as given.

32 ].e. by the complete cxplicit specification of the (rational) endpoints n
the manner just described.
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§ 5. Radix fractions and the Dedekind section.

A few of thc methods for defining real numbers may be mentioned
at once, as particularly important from the points of view of both theory
and practice.

In the first place, a nest of intervals need not always be given in
the form (x,|y,) considered by us; it may often be written in a more
convenient form. 'Thus, as we have already seen, a decimal fraction,
c.g. 141421 . . ., may be immediately interpreted as a nest of intervals,
with the assumptions

xp = 14; x,=111; x;=1-414; ...,

and, generally, x, equal to the decimal fraction broken off after the
n™ digit; y, being derived from x, by raising the last digit by one,

. 1 . . .
ieo Yn -2 X+ e Practically, we may thus say that decimal fractions

represent a peculiarly clear and convenient specification of nests of
intervals 33,

It is obviously quite an uncssential part that the base or radix 10
of the ordinary scale of notation plays in this connection. If g 1s any
integer = 2, we have the exact analogue for fractions in a scale of
radix g or radix fractions with base g. 'I'o begin with, given a real
number o, an integer p (>, =, or <{U) is uniquely defined by the
condition

P§0’<P l'lo

The interval J, between p and p 4 1 is next divided into g equal
parts, and cach of these parts considered — both here and similarly
in the following steps — as including its left endpoint, but ot its
right one. Then o bclongs to one, and to one only, of these parts,
i. e. among the numbers 0, 1, 2,..., g— 1 there is one and
only onc — which we shall call for brevity a “digit” and denote by
2, — for which

%~ 2y i—_l.
pHUso<p+ ™)

3 "I'he drawback to it is that we can seldom perceive the law of succession
of the digits, i, ¢ the law of formation of the x,’s and y,,’s.
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The interval /; thus defined we proceed to divide again into g equal parts,
and o will, as before, belong to one, and to one only, of these parts, i.e.
a definite “digit” s, will be found for which

T % Ziy Ztl
P+g}‘g3;:a<17+g+ gz .

The interval /, thus defined we proceed to divide again into g equal parts,
and so on. The nest of intervals ( /,) = (%, | ¥,) determined by this pro-
cess, for which
2 oy Zno z,

w=pt Gt SRS ]
n=1,2,3,..))

Yn =P+ 2T %*ﬁ

n g g'.! A gﬂ—‘l gn

clearly defines the number o, so that # ¢ = (%, | ¥,). But on thc analogy
of decimal fractions we may now writc

=2 0z.

— where of coursc the basc g of the radix fraction must be known from
the context.
We have thercfore the

Theorem 1. FEvery real number can be represented in one and essen-
tially only one 3 way by a radix fraction in the scale of base g.

We mention the following theorem relating further to this represen-
tation, but shall make no use of it in the sequel:

Theorem 2. The radix fraction for a real number o — whatever be

31 That we have a nest of intervals is immediately obvious, since x,_, <
. 1
X, < ¥p = ¥,_1 throughout, and y, — x, = forms a null sequence, by 10, 7,

4% The shght alteration in our method, required if all the intervals are con-
sidered as including their right and not their left endpoints, the reader will doubtless
be able to carry out for himself. The two results differ if, and only if, the given
number ¢ 1s rational, and can be written as a fraction having, as denominator, a
power of g, so that the point ¢ 1s an endpoint of one of our intervals. — Actually
the two nests of intervais

P+ 0zi2. .2 (2 —DE~-DE—1...andp-|- 03, 2;,...2,_,2.,00...,

where the digit 2, is supposed = 1, are equal by 14. In every other case, two radix
fractions which are not i1dentical are unequal, by 14. — The reader will easily prove
for himself that, except in this case, the representation of any real number o as
a radix fraction with base g is absolutely unique,
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the chosen radix g= 2 — will prove periodic (or recurring) if and only if
o is rational 3,

A particularly advantageous choice to make is often g == 2; the pro-
cess for expressing the number o is then called briefly the method of
bisection and the resulting radix fraction, whose digits can in that case
only be 0 or 1, is called a binary fraction. The method, in a somewhat
morc general light, is this: we start from a definite interval /, and, in
accordance with some particular rule or point of view, definitely select
onc of its two halves, calling it /;; we then again make a definite choice
of one of the two halves of /;, calling it /,; and so on. By so doing, we
specify, in every case, a well-defined real number, determined with ab-
solute uniqueness by the mecthod which regulates at cach stage the choice
between the two half-intervals %.

In radix fractions, just as in decimal fractions, we accordingly see
a peculiarly clear and convenient mode of specifying nests of intervals.
They shall accordingly in future be admitted for the definition of real
numbers on the same footing as decimal fractions.

The distinction lies somewhat deeper between nests of intervals and
the following mecthod of definition of real numbers.

We suppose given, in any particular way 3, two classes of numbers
A and B, subject to the following three conditions:

1) Each of the two classes contains at least one number.

2) Every number of the class 4 is = every number of the class B.

3) If an arbitrary positive (small) number e 1s prescribed, then two
numbers can be so chosen from the two classcs, — @', say, from A4 and
b', say, from B, — that 3°

b — d e

— Then the following theorem. holds:

3¢ Here for simplicity we regard terminating radix fractions as periodic with
period 0. — That every rational number can be represented by a recurring decimal
fraction was proved by ¥. Wallis, De Algebra tractatus, p. 364, 1693, That conversely
every irrational number can always, and 1n one way only, be represented as a non-
recurring decimal fraction was first proved generally by O. Stol: (Allgemeine Anth-
metik I, p. 119, 1885).

37 An example was given in 12, 2,

38 E. g. A contains all rational numbers whose cube is < 5, B all rational
numbers whose cube 1s > 5.

3 We say for short: the numbers of the two classes approach arbitrarily
near to one another. In the example of the preceding footnote, we see at once that
conditions 1) and 2) are satisfied; that 3) is also satisfied we recognise from the
possibility of calculating (by the method of partition into tenth parts, for instance)
two decimal fractions x, and y, with # places of decimals, differing only by a umt

. . 1
in the last place, and such that x,® < 5, v,* > 5; n being so chosen that 10n < €
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Theorem 8. There exists one and only one real number o such that
for every number a in A and every number b in B the relation

aZlo=h
is always true.

Proof. It is again obvious that no two different numbers o, o’
with this property can exist. For putting | 6 — o' | == ¢, we should have
€ >0, yct b — a = € for every pair of elements a and b from 4 and B
respectively, contrary to condition 3.

There exists then at most one such number o. We find it in the
following way: By hypothesis, there is at least one number a, in A and
one number b, in B. If a; = b,, then the common value is manifestly
the number o which we are in search of. If a,; = b,, and therefore by
2), a; < by, then we choose two rational numbers x; =< a,, and y, == b,
and apply the method of bisection to the interval /; which they deter-
mine; we denote the left or right half by /,, according as the left half
(endpoints included) does or does not still contain a point of the class B. By
the same rule we next select one of the halves of /,, calling it /,, and
so on.

The intervals /3, /o, ..., /ns« - . , being obtained by the method of
bisection, necessarily form a nest

(/n) = (x| y2) = 0.

From their mode of formation, they possess moreover the property that
no number of B can lie to the left of any of their left endpoints, and no
number of A to the right of their right endpoints.

But from this it follows at once that the number ¢ enclosed by them
is the number required by theorem 3. In fact, if, contrary to the assertion
in that thecorem, a particular number a of 4 were > o, so that @ — o > 0,
then we could choose from the succession of intervals /,, a particular one,
say /p == %, . . . ¥p, with length <= @ — 0. Since x, < o =< y,, this would
imply

Yp— Oy, — X, <. da—o, ile y,<a,

whereas, actually, no point of A4 lies to the right of the right endpoint
9, of /,. If on the other hand, in any instance, b < o, it would similarly
follow that for a suitable index ¢, & < x,, whercas actually no point of
B lies to the left of the left endpoint of an interval /,. Hence we must in-
variably have a < 0 < b. Q.E.D.

As a special corollary, we have the following theorem, which sup-
plements Theorem 12, forming an extension of it to the case when the
numbers there occurring are arbitrary real numbers. In the formulation,
we anticipate the obvious definitions 23 — 25 of next paragraph.
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Theorem 4. If (x,) &s a monotone ascending, and (y,) a monotone des-
cending, sequence of (any) real numbers; if, further, x, <y, for every n,
and the differences y, — x, = d, form a null sequence; then there is invariably
one and only one real number o, such that for every n

Xy =0 X Y

We then say, as before (cf. Definition 11), that the two given sequences defiice
a nest of intervals (x, | y,) and that o is the number which it (uniquely) deter-
mines.

Proof. If with all the left endpoints x, we constitute a class 4,
and with all the right endpoints y,, a class 13, of real numbers, these clearly
satisfy conditions 1) to 3) of Theorem 3, from which the correctness of
the above statement at once follows,

Remarks and Examples.

1. Instead of 3), 1t 1s often more convenient to stipulate that e.g. every
rational number should bclong cither to 4 or to B (as was the case 1n the
example of last footnote). In tact, in that case, since rational numbers are
dense on the number axis, the requirement 3) 1s fulfilled of itself. To see this,
we have only to imagine the whole number-axis subdinvided into equal portions of
length < €/2. Now consider any one of the portions containing an element from
A, and, to the right of 1t, take another portion containing an element from B, together
with these two portions, take the finite number of portions, if any, between them.
One of these considered portions must be the first of them to contain an e¢lement
b from B. Either this particular portion, or the preceding one, will contain an element
a from A4, and we have b — a -Z e.

2. It 1s often still more convenient to divide all real numbers into two classes
A and B. In that case of course 3) 1s, a fortior, also satisfied of itself.

3. If the two classes .1 and B are given in one of the last-mentioned ways,
then we say that a Dedekind section 1s made 1in the domain of either rational or
real numbers, as the case may be . The somewhat more general specification of
two classes ! involved in our theorem 3 will also for brevity be termed a section
and denoted by (A | B). Our theorem 3 can then be stated briefly in the form:
A section (A | B) invariably defines a determmnate real number. And its proof consists
simply 1in pointing out that the specification of a scction carries with 1t the speci-
fication of a nest of intervals, which furnishes a number o with the properties required.

4. Seeing then that every section immediately provides a definite nest of
intervals, we shall henceforth regard sections as permissible means of defining
(determining, specifying, . . .) real numbers; also, we now write, 1f the section
(A | B) defines the number o,

(A4]B) - o.

4 Cf. p. 1, footnote 6.
4t This was given n the above form by A. Cupelli, Giornale di Matematicn,
Vol. 35, p. 209, 1897,
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5. The converse is of course equally true and even more easily proved. Given
a nest (a, | v,) = o, we can consider all left endpoints x, as forming a class 4,
and night endpoints a class B, and these two classes evidently furnish a section, which
defines the same number o as the nest 1tself. — A nest can accordingly be regarded
as a particular kind of section.

6. By our last remark, the method of sections (for the definition of real
numbers) 1s superior 1in gencrality to that of nests. It 1s also quite as convenient
from the intuitional point of view. For if we take, say, the section (4 | B) in the
somewhat more special form, mentioned in 2, of a section 1in the domain of real
numbers, then what our theorem umplies 15 this. If we imagine all points of the
number-axis separated mto two classes 4 and B, thinking e. g. of points of the
one class as marked black and those of the other as white; and if, when this is
done, (1) there 1s at least onc point of each kind, (2) every black point lics to the
left of every white point, and (3) every point on the number-axis is effectually
coloured cither black or white, then the two classes must come 1nto contact at a
perfectly definite place, and to the left of this place all is black, to the right of 1t all
1s white.

7. We must take care, however, not to accept the illustration just given as
a proof. Had we not already with the help of nests of intervals invented the class
of real numbers, our theorem could not be proved at all any more than 1t could
be proved that every nest defines a number. We simply agreed — and were amply
justified by the result — to repard every nest as a number. In exactly the same
way we can agree — and this 1s actually the course followed by R. Dedekind **
in his construction of the system of real numbers — to regard every section 1n the
domain of rational numbers as a “real number”, and we should then, exactly as
in our investigations 1n § 3, only have to examine whether this 1s pernussible; 1. e.
we should have to make sure whether the totality of all such sections (4 | B) forms
a number system in the sensc of conditions 4 — which 1s not more difficult than
the analogous investigations carried out 1n § 3.

Henceforward — and for the present exclusively —real numbers
form our working material. We may cven, if we please, drop the word
“real”: For the present, “number” shall invariably mean a real number.

Exercises on Chapter I.

1. From the fundamental laws 1 and 2 deduce the most important of the
further arithmetical rules, e. g. (a) the product of two negative numbers 1s positive ;
(b) a 4+ ¢ < b + ¢ invariably imphes a < b; (c) for every a we have a*0 — 0;
etc.

2. When 1n 3, II, 4 are the signs of equality correct?

3. Express the following numbers as binary and as ternary fractions (1. e.
in scales of notation of which the bases are respectively 2 and 3):

131110
2°8 3717’

find the first few figures of the binary and ternary fractions for V2, v'3, = and e.

42 Stetigkeit und 1rrationale Zahlen, Brunswick 1872,
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oa — BN

4. In the sequence 6, 7 prove x,, -- g , where a and B are the roots

% —-
of the quadratic equation x2 —= x + 1. (tlint: the sequences (2”) and (B") have
the same law of formation as the sequence 6, 7.)

5. Form the sequence (x,) of numbers given, for n "z 1, by the formula

Xpp = ax, -l b, g,

where a and b are given positive numbers and the imitial terms x,, x, 0, 1; 1,0;
-= 1, «; == 1, B; or arc arbitrary. (Here a« and B denote respectively the positive
and the negative root of the equation x* — ax -} &) In each of the four cases
give an exphcit formula for x,,.

6. If /o, /1, /2, ... I8 a sequence of nested intervals (i.¢. each contained
in the preceding) about whose lengths nothing further is known, then there 1s at
least one point which belongs to all the /,’s.

7. A real number o 1s irrational, if we can find an ascending sequence of
integers (¢,,), such that ¢,¢ 1s not an integer for any =, but i1f, when p,, stands for
the integer nearest to q,0, (4,6 — p,) 15 a null sequence.

8. Prove that (x, | 3,,) 1s a nest mn each of the following examples:

124 28 ... | (n— 1) 12--22 4 .. | nt
a) x, — - w 2 YT T T » (r=1.2,..);
b) 0 -2 x; <<y, and foreveryn > 1, v, — VY, vam - Y (v, A an);
C) 0 -7 \p TN sy ”» T} T} s ¥pitr E (\.n + ."u)x Mo \(Yn‘l Mas
d) 0 -2 Xy <}'1 3 ”» ”» 11 yYntr - :’.(\'n I yn)v Mkt TV A Nyt
= A N - / an " ’ -1 ~ - .
E) 0<x <31 » ”» > yVabt S VNV Y G (\nH 1 yn):
— /A , . — . , .
)O-Tx Ty o, » no ¥t = Mapdp Npp = (v, | )
0 < - ! . ; - Yn "V
) S S T T PR » » 2 ¥nh 1, F ) Yy - Vo1
M+

Evaluate the numbers defined in examples (a) and (g). (Cf. problems 91
and 92.)

Chapter IL
Sequences of real numbers.

§ 6. Arbitrary sequences and arbitrary null sequences.

We now resume our considerations of § 2, — and generalisc them
by allowing all the numbers which there occur to be arbitrary real numbers.
Since, with these, we may operate precisely as with rational numbers,
both the definitions and the thcorems of § 2 will, in all essentials, remain
unchanged. We may accordingly be brief.
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®Definition!. If fo each positive integer 1, 2, 3,..., corresponds
a defimte real number x,, then the numbers
Xy Xy, Xgyeesy Xpyooo
are said to form a sequence,
Examples 6, 1—12, may, of course, also serve here. Similarly, the Remarks

7, 1— 6 retain full validity. We give a few more examples, in which 1t 1s not im-
mediately apparent whether the numbers 1n question are rational or not.

Examples.

1. Let a — 03010 . , ., i. e. equal to the decimal fraction whose first few
digits were obtamed 1n a footnote (p. 24) from the equation 10 — 2; and put

Xp==a® for n=—123, ...

1
2. With the same meaning for a, let x,, = .
& " a+n
3. Apply the method of successive bisection to the interval /, =0 .., 1,

taking first the left half, then twice running the rnight half, then for the next three
steps again the left half, then four times running the right half, and so on. Denote
the number 2 so defined by b (what 1s 1ts value, approximutely?), and put for x,,
successively,

11
I Y

1 1 . .
_l' bs - br '*‘ b - b + b-l - b-) 'i

4. With the same meaning for b, put for x,, successively,

1—5, 1456, 1—56%51 1 b 1-0%1+8,...

5. With the same meaning for a and b, let v, bz the middlz point of the stretch
betwcen them, 1. e. x;, — 4 (a | b); x, thec middle point between x, and b, x,,
that between x, and a, x,, that between x, and b; — 1. e. generally, x,, ., the middle
point between x, and either a, or b, according as n 1s even or odd.

Definitions: °1. A sequence (x,) is said to be bounded if a constant
K exists, such that the inequality

|5 <K
is satisfied for every n.

2. A sequence (x,) is said to be monotone increasing if x, < x,,, for
every n; monotone decreasing, if x, = %,,, for every n.

All remarks made 1n 8 and 9 retain their full vahdity.

! For the meaning of the mark ° cf. the preface, as also later the beginning
of § 52.
2 Written as a binary fraction, b —= 001100011110 ., ,
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Examples.

1. The sequences 23, 1, 2, 4 and 5 are evidently bounded. Sequence 3 is
not bounded, and 1n fact neither on the left nor on the right; for we certainly have

1 1 1
0 < b <z and therefore b > 2™ > m, and accordingly — o < —m. Terms

2
of the sequence may therefore always be found, which are > K or < — K, how-
ever large the constant K is chosen. — For 5, the boundedness follows from the

fact that all the terms lic between a and b.

2. The sequences 23, 1 and 2 are monotone decreasing: the others are not
monotone.

The definition 10 of a null sequence and the appended remarks —
which the student should read through again carefully — also remain
unchanged.

° Definition. A sequence (x,) shall be termed a null sequence if,
subsequently to the choice of an arbitrary positive number €, a number ny = n, (c)
may always be assigned, such that the inequality 3

|| <e
is fulfilled for every n > n,.

Examples.

1. The sequence 23, 1 1s a null sequence, for the proof 10, 7 is valid for any
real a, for which |a| < 1.

2. 23, 2 1s also a null sequence, for here | x, | < ;‘, therefore < g, provided

1
n> .

€

For null sequences — these will later on play a dominating part —
a number of quite simple theorems, which will be continually applied in
the sequel, will also be proved here. The following two, in the first place,

are obvious enough:

°Theorem 1. If (x,) s a null sequence and the terms of the sequence
(x,), for every n beyond a certain value m, satisfy the condition | x,' | < | x,],
or, more generally, the condition

|xn'|§K'lxn|,

in which K is an arbitrary (fixed) positive number, — then x,’ is also a null
sequence. (Comparison test.)

3 Given any positive real number ¢, a positive rational number ¢’ < £ can be
designated; in fact, by the fundamental law 2, VI, we can fiad a natural number

1 1 . . A -
n > e’ and ¢’ == n satisfies the requirements. From this it follows that, for rational

sequences, the above definition is equivalent to the definition 10, in spite of the
fact that only rational € were allowed there.

25.

26.
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Proof. If the condition |, | < K-|x,| is satisfied for n > m
and € > 0 is given, then by the assumptions we can assign 7, > m, so
€
X
also have | x,’ | <e, (x,’) is therefore a null sequence.

The following theorem is only a special case of the preceding:

that for every n >n,, | x,| < Since for these values of # we then

°Theorem 2. If (x,) is a null sequence, and (a,) any bounded sequence,
then the numbers
x, = a, x,
also form a null sequence.
On account of this theorem we say for short: A null sequence *“‘may”
be multiplied by a bounded factor.

Examples.

1. If (»,) is a null sequence,
x x,
10 X1, Tg, 10 X3, I&’ 10 Xg oo

is also a null sequence.

2. If (x,) 1s a null sequence, so is (| x, |).

3. A sequence, all of whose terms have the same value, say ¢, is certainly
bounded. If (x,) 1s a null sequence, (c x,) is therefore also a null sequence. In

particular, (5), (ca™ for | a| < 1, etc. are null sequences,
The next propositions are less obvious:

°Theorem 1. If (x,) is a null sequence, then every sub-sequence (x,')
of (x,) ts a null sequence 4.

Proof. If, for every n > n,, | x,| <e, then we have, ipso facto,
for any such n,
[ 22" | = 2, <5,

since k,, is certainly > n,, when 7 is.
°Theorem 2. Let an arbitrary sequence (x,) be separated into two
sub-sequences (x,') and (x,''), — so that, therefore, every term of (x,) belongs

to one and only one of these sub-sequences. If (x,') and (x,"’) are both null
sequences, then so is (x,) itself.

Ik <ky<ky<...<k,<...isany sequence of positive integers, then
the numbers
xnl=xk,, (”=l’2’3»-°~)

are said to form a sub-sequence of the given sequence.
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Proof. If a number £ > 0 be chosen, then by hypothesis a num-
ber »' cxists, such that for every n > #', |2,/| < &, and also a num-
ber »”, such that for every n >n", |z, | <e. The terms z, with
index < #' and the terms «,” with index < #”, have definite places,
i. e. definite indices, in the original sequence (x,). If #, is the higher
of these indices, then for every n > n,, obviously |z, | <e, q.e.d.

©Theorem 3. If (x,) is a null sequence and (x,') an arbitrary
rearrangement® of it, then (x.’) is also a null sequence.

Proof. For every n > n,, |2,| <& Among the indices belong-
ing to the finitc number of places which the terms z,, x,, ..., z,,
occupy in the sequence (z,’), let n’ be the largest. Then obviously,
for cvery n > o', |x,'| < e&; hence (z,) is also a null sequence.

OTheorem 4. If (z)) is a null sequence and (xr,') is obtained from
it by any fimite number of alterations®, then (x,') is also a null se-
quence 7,

The proof follows immediately from thc fact, that for a suitable
integer p%o, from some # onwards we must have a:"' =T, 40 For
if every z, for m > n, has remained unchanged, and x,, has received
the index #’ in the sequence (z,’), then in powt of fact for every
n>u, ,

z/ ==
if we put p=mn, —n'. " e’

Theorem 5. If (x,') and (x,”) are two null sequences and if the

sequence (x,) is so related to them that from a certain m onwards

¢/ <z <= (n > m)

then (z,) is also a null sequence.

Proof Having chosen ¢ > 0, we can chose ny, > m so that, for
every n > n,, —& <z, and z,” < 4 e. For these »n’s we then have,
ipso facto, —e <z, < ¢, that is |z, | <e; q e d

SIf kyy Ray o o o 4 kp, - . . is a sequence of positive integers such that every in-
teger occurs once and only once in the sequence, then the sequence formed by

[
Xp = Xk,

is said to be a rearrangement of the given sequence.

¢ We will describe this concept as follows: If we alter any sequence, by
omitting, or inserting, or changing, a finite number of terms (or by doing all three
things at once), and then renumber the altered sequence, without changing the
order of the terms left untouched, so as to exhibit it as a sequence (x,"), then we
shall say, (x,,') is obtained or has resulted from (x,) by a finite number of alterations.

7 It is precisely because of this theorem that one may say of a sequence that
the property of being a null sequence concerns only the ultimate behaviour of 1ts terms
(cf. p. 18).
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Calculations with null sequences, finally, are founded on the
following theorems:

OTheorem 1. If (z,) and (x,) are two null sequences, then

(yn = (mn + xn’)’

i. e. the sequence whose terms are the numbers y, ==, + x,/, is also
a null sequence. — Briefly. Two null sequences “may” be added term
by term.

Proof. If e >0 has been chosen arbitrarily, then by hypothesis
(cf. 10, 4 and 12) a number #, and a number 7, exist such that for every
€
2-,
== ny and = n,, then for n > n,

|pal =l o420 | S |2l + ]2 | <5+ 5=

n>ny, |x,| <., and for every n > ny, | 2, | < If ny is a number

€
9

(yx) is therefore a null sequence 8.

Since, by 26, 3 (or 10, 5), (— #,") is a null sequence if (z) is,
(y,) = (x, — z,) is then by the above also a null sequence, 1. e. we
have the theorem-

OTheorem 2. If (z,) and (z,)) are null sequcnces, them so 1is
(»,) = (x, — /). Or briefly: null sequences “may” be subtracted term
by term

Remarks.

1. Since we may add fwo null sequences term by tecrm, we may also do
so with three or any definite number of null sequences. For supposing this prov-

ed for (p—1) null sequences (z,), (Za"), -.., (z? ‘”), i. e. supposing the
sequence
(I"' + zn” + e + x'(lp— 1))

to be already recognised as a null sequence, Theorem 1 ensures that the
sequence (z,), for which

X, = (xn’ e +x’('P‘1)) + x'(.?)'

1s also a null sequence. The theorem thus holds for every fixed number of null
sequences.

2. That two null sequences “may” also be multiplied term by term, is
immediately clear from 2@, 1, since null sequences, by 10, 11, are necessarily
bounded.

3. Term by term division, on the contrary, is in general not allowed, as

is already obvious, for instance, from the fact that when z, % 0, 5:7'5 is con-
n
stantly =1. If we take z =1 ) = ! then the ratios 2% do not even pro
y =1. n = n ) Ta ;ﬁ ’ z. 7 A\ P

]
vide a bounded sequence.

8 For the last inequality 3, 11, 4 is used,
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4. In the case of other sequences (z,) also, little can be said 1n the first

instance about the sequence (xl) of the rcciprocal values. The following is
n

an obvious, but often useful theorem:
OTheorem 8. If the sequence (| x,|) of absolute values of the terms of (xp)

have a posiive lower bound, — f, therefore, a number y > Q0 exists, such that for
every n,
) |Za| =7 >0,
then the sequence (?) of reciprocal values is bounded.
In fact, from |2, | =y >0 it at once follows that for K=;— we have
1ok
2, | =

for every n.

In order to increase the scope both of the application of our con-
cepts and of the construction and solution of examples, we insert a
paragraph on powers, roots, logarithms and circular functions.

§ 7. Powers, roots and logarithms. Special null sequences.

As, in the discussion of the system of real numbers, it was not
our intention to give an exhaustive treatment of all details, but 1ather
to put fundamental 1deas alone in a clear light, assuming as known,
thereafter, the body of arithmetical rules and concepts, with which
after all everyone is thoroughly conversant, so here, in the discussion
of powers, roots and logarithms, we will restrict ourselves to an exact
elucidation of the basic facts, and then assume known the details of their
application.

1. Powers with integral exponents.

If x is an arbitrary number, we know that the symbol x* for positive
integral exponents & = 2 is defined as thc product of & factors, all equal
to x. Here we have therefore only another notation for something we know
alrcady. By x! we mean the number x itself, and if x 5= 0, it is convenient
to agree, besides, that

2 represents the number 1, z~* the number —;,‘— (k=1,2,3,...,
so that z? is defined for every integral p%o. For these powers*
with integral exponents, we merely emphasize the following facts:

1. For arbitrary integral exponents p and g¢ (%0) the three 29.
fundamental rules hold:

ZP .2 = gP+4; xr.yp_—_(xy)‘n; (xp)q.—_xn,

* aP is a power of base x and expoment p. This continental use of the
word power cannot be here dispensed with, in spite of the slight ambiguiy
resulting from by far the most frequent use of the word in English to designate
the exponent. This sense should be entirely discarded from the reader’s mind,
notably for § 85, 2a and others. (Tr.)
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from which all further rules may be deduced, which regulate calcu-
lations with powers?.

2. Since, in a power with integral exponent, merely a repeated
multiplication or division is involved, its calculation has of course to
be ecffeccted by 18 and 19. If therefore z is positive and defined
for instance by the nest (z,!y,), with all its endpoints > 0 (cf. 15, 5),
then we have simultancously with

- (xn ‘yn)’ z* = (Zﬁ‘yﬁ) at once,

for all positive integral exponcnts: and similarly — with appropriate
restrictions — for 2 <0 or k < o.
3. For a positive x we have furthermore

E+17 - >
zk+l S according as le

as we at once deduce from x-><-1, if we multiply (v. 3,1, 3) by z*. —
And quite as simply we find:
If x,, #, and the integral exponent k are positive, then

£k i <
z} sz according as xljxﬂ.

4. For positive integral exponents » and arbitrary @ and b we
have the formula

(e+0)"=2a"+ (;l) an-1b + (g) an—2p® 4 ...
)t ()
where (Z), for 1 <k <n, has the mecaning

(n)=n(n—l)(n~--2)...(n—k+l)
k 1.2 - 3 ... &

and (3) will be put=1. (Binomial Theorem.)

II. Roots.
If @ be any positive real number, and %2 a positive integer, then
k—
Va
shall denote a number whose kth power = a. What interests us here
is solely the existence question: Is there such a number, and to what

extent is it determined by the problem thus set?
This is dealt with in the

9 In this, the valuc 0 for the base x or y is only admissible if the cor
responding exponent is positive.
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Theorem. There is, tnvariably, one and only one positive number & 30.
satisfying the equation e (@a> o)

We write §={\/t; and call & the k™ root of a.

Proof. Ome such number may immediatcly be determined by a
nest of intervals, and its existence thereby established We use the
decimal-section method. Since 0* = 0 < a, but, p denoting any positive
integer > a, p* > p > a, — there is one and only one integer g > 0

f hich 10

o ¢ <a<(g+ )"

1he 1nterval [, determined by g and (g4 1) we divide into 10 equal
parts and obtain, in the manner now repcatedly worked out, a defi-

nite one of the digits 0, 1, 2, ..., 9, — which we may denote, say, by z,,
— and for which

2, \k 2, +1\k
(g+ 15) za< (g + ‘To‘)
and so on, and so on. We therefore obtain a nest of intervals

(J.,) = (=, |v,) whose endpoints have definite values of the form

zn

2, Za Z,.
xnz:g+1(l)+10e+"'+1 l 10" (%-—1,2,3,---)
and

n— n+1
ng +102 +"'+1z07:1+210n .

If &= xﬂlyn) be the number thereby determined, then since here all
endpomnts of intervals are > 0, it at once follows by 29, 2 that

k :
§ = (25 lyp)-
But, by construction, #¥ < a < y* for every n, hence, by § 5, Theorem 4,
we must have £ — a.

That this number ¢ is, morcover, the only positive solution of the
problem, follows directly from 29, 3, since it was thcere pointed out
that for a positive & < &, necessarily & 4 &, i e. 4.

If 2 is an even number, then — & is also a solution of the
problem. We shall not, however, take this into account in the follow-
ing pages, but interpret the kth root of a positive number @ as
meaning only the positive number &, completely and uniquely deter-

k—
mined by 801, — For a = 0, we may also put Va=01
10 g js the last of the numbers 0,1,2,..., p whose_kfh power is < a.

1 In accordance with this we have, for instance, \/2® not always =z,
but always = |z|.
18 For negative a's we will not define Va at all; we can, however, if

k is odd, write ]/a=—]/|ah
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We will not enter further into the rules for calculations with roots,
but consider them as famihar to every one, and will only prove the
following simple thcorems:

29, 3 gives at once the

k- o ko .
J1. Theorem 1. If a > 0 and a, > 0, then Va S V“: , according as

a éal . — Further we have the
n—
Theorem 2. If a > 0, then (Va) is a monotone sequence; and
we have, more preciscly,

— 3,
a>vVa>Va >--->1, ifa>1,
but

—_— 3
a<Va<Va<--<1, 1fa<l.

(For a =1, the sequence 1s of course =1.)
Proof DBy 29,3, 2> 1 involves ant! > 4" >1, and therelore
by the preceding theorem, taking #»(n +- 1) roots,

n_— n+1__
Va> Va>1.

Since for a <1 all the irequality signs are reversed, this proves the
whole statement. — Hence finally we deduce the

Theorem 3. If a > 0, then the numbers
n —
z,=Va—1
form a null sequence (momnotone by the preceding theorem).
Proof. For g =1, the assertion is trwvial, as then z,=0. If

”n— n—
a>1, and therefore Va >1, i e. x,=Va — 1> 0, then we reason

as follows: By the inequabty of Bernoulli (v. 10, 7), \"/;= 1+x,

gives a=1~4z)>14+nx, >nz,.

Consequently z, = |z, | < %, therefore (z,), by 26,1 or 2, is a null

scquence.
If 0<a<1, then % >1, and so, by the 1esult obtained,

2=

1s a null sequence. 1f we multiply this term by term by the factors \"/;,

n—
— which certainly form a bounded sequence, as ¢ < Va <1, — then
it at once follows, by 2@, 2, that

(1 — 1”/;>, and therefore also (z,),

is a null sequence, — gq.e. d.
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1II. Powers with rational exponents.

We again regard as substantially known, in what manner one may

pass from roots with integral exponents to powers with any rational
r
exponent: By a?, with tntegral p:z=0, g > 0, we mean, for any posi-

tive a, the positive number uniquely defined by

»
a? = (f}va—)p.
r
If >0, then a may also be = 0; a? must then be taken to have
the value O.
With these definitions, the thrce fundamental rules 29, 1, i. e. the

formulae
ar o’ =atr; @b = (aby; (a") =a'"

remain unaltered, for any rational exponents, and therefore calculations
with thcse powers are formally the same as when the cxponents are
integers.

These formulae contain, at the same time, all the rules for working
with roots, since every root may now bc written as a power with a
rational exponent. — Of the less known results we may prove, as
they are particularly important for the sequel, these theorems:

Theorem 1. When a > 1, — then a* > 1, if, and only if, r > 0. 32.
Similarly, when a < 1 (but positive), then a7 is <1 if, and only if,
r>0.

Proof. By 31,2, a and 1?:; are either both greater or both less

. q“ p . .
than 1; by 29 the same is true of & and (Va) = q" if and only if
p>0.

Theorem 1a. If the rational number r > 0, and both bases are

positive, then a’%a{, according as a%al.

The proof is at once obtained from 31,1 and 29, 3.

Theorem 2. If a > 0, and the rational number r lies between the
rational numbers ¥ and 1", then a' also always lies belween a” and
a8, and conversely, — whether a be <, =or>1, and 7 <,
= or >7".

Proof. If firstly, a > 1 and  <7”, then

,e
ar

P

ar =at a7 =

13 The term ‘“‘between” may be taken, as we please, either to include
or exclude equality on both sides, — excepting when a =1, and therefore all
the powers a” also =1.

8 (cb61)
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By Theorem 1, this already proves the validity of our statcment for this
case, and in the other possible cascs the proof is quite as casy. — From
this proof we deduce, indeed, more precisely, the

Theorem 2a. If a >1, then to the larger (rational) exponent also
corresponds the larger value of the power. If a <1 (but positive)

then the larger exponent gives the smaller power. — In particular:
If the (positive) base a <=1, then different exponents give different
powers. — Hence we deduce, further,

Theorem 3. If (r,) is any (rational) null sequence, then the

numbers .
z, =a"—1, (a > 0)

also form a null sequence. If (r,) is monotone, then so is (z,).
_— ni1
Proof. By 31, 3, ({/a — 1) and (\/i— — 1> are null sequences.

If therefore ¢ > 0 be given, we can so choose #n, and ng that

‘.

for n>n,, [Va ——1|<6.

i‘/l
_._1‘<s.
a

If m is an integer larger than both #, and #,, then the numbers

and for n > n,, |
|

1 1
(a; - 1) and (a m —-1) both lie betwcen — ¢ and ¢, i. e
1 1
am and ¢ ™ lie between 1 — g and 1+ ¢.

By Theorem 2, a7 then lies between the same bounds, if 7 hes be
1 .
tween — -;7 and 4 - By hypothesis we can, however, so choose #,,

that for every n > n,,
1 1 1
|'”|<—7_n- or —";;<7”<+;”“;

for n>mn,, a'™ is therefore between 1 —e¢ and 1-}e. Ilence, for
these #n's,
|a’n—1| <e,
proving that (" —1) is a null sequence. — That it is monotone, 1if
(r,) is, follows immediately from Theorem 2a.

These thecorems form the basis for the definition of

IV. Powers with arbitrary real exponents.
For this we first state the
Theorem. If (x,|y,) ts any nest of intervals (with rational end-
points) and a is positive, then

for a>1, o=(a""|a"

and for a <1, o= (a"" |a")
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is also a nest of intervals. And if (x,|y,) is rational valued and =7,
then ¢ = a'.

Proof. That in either case the left endpoints form a monotone
ascending sequence, the right endpoints a monotone descending se-

quence, follows at once from 32, 2a. By the same theorem, a™ < a"*
in the onc case (@ > 1) and a"» < a™ in the other (¢ 1), for every n.
Finally, that in both cases the lengths of the intervals form a null
sequence, follows, with the aid of 26, from

| o — | @ — 1]

for here the first factor, by 32, 3, is a null sequence, because (y, — x,)
is by hypothesis a null sequence with rational terms; and the second
factor is bounded, becausc for cvery n

0<a™ La"
in the one case (a > 1),
La”
in the other (¢ <1) o
Now if (z,|y,) =7, then » lies between z, and y,, for cvery n,
and so by 32, 2, a” lies between a™ and a», for every n; hence by
§ 5, Theorem 4, neccssarily ¢ = a’.
In consequence of this theorem, we may agree to the following
Definition ¥, If a0, and o= (x, 1y,) ts an arbitrary real
number, then:
° {=(af"la”"> it a1

a®=o, i e
= (a" | a™) if aZ1.

This definiton can of course only be regarded as appropriate,
if the concept of a gemeral power thereby determined obeys substan.
tially thc same laws as the type of power so far considered, that
with rational exponents. That this is so, in the fullest sense, is shewn
by the following considerations.

1. For rational exponents, the new definition gives the same result 34,
as the old.

2. If ¢ == ¢/, then 1 @t == g,

14 This combination 33 of theorem and definition is, from the point
of view of mecthod, of exactly the same kind as thosc set forth in 14—19:
What is demonstrable in the case of rational exponents 1s raised, in the
case of arbitrary exponents, to the rank of a definition, — whose appropriate-
ness has then to be verified.

15 This assertion, formally rather trivial in appearance, when put some-
what more explicitly, runs thus: If (x,|y,) =p¢ and (2, | ¥,) =0’ are two nests
of intervals, which may be regarded as equal in the sense of 14, then so are
those nests of intervals equal (again in the scnse of 14), which by Definition 33

give the powers a€ and a¢’. ~
L2453



35.

56 Chapter Il. Sequences of real numbers.

3. For two arbitrary rcal numbers g and ¢/, and positive @ and b,
the three fundamental rules

ac-a? = aete’; (ae.ba) = (a b)e; (ae)e' = gee’,

hold, so that with the gcneral powers now introduced we may cal
culate formally in precisely the same way as with the special types
hitherto used.

Into the extrcmecly simple proofs of these facts we will, as
cmphasized on p.49, not enter further'®; we will also, so far as
concerns the extension of theorems 32, 1—3 to general powers, now
immediately possible, content ourselves with the statcment and a few
indications of the proof. We have therefore the theorems, generalized
from 82, 1—3:

Theorem 1. When a > 1, we have a® > 1 if, and only if, ¢ > O.
Similarly, when a <1, (but positive), we have a® <1 if, and only
if, 0 > 0.

For by 32, 1, we bhave e. g. for 4 > 1, a* > 1 if, and only if,
z, > 0.

Theorem la. If the real number o is >0, and both bases are
positive, then aeéaf', according as a%a1 .

Proof by 32, 1a and 15.

Theorem 2. If a > 0 and p ts between o and ", then a¢ is al-
ways between a? and a¢’. — The proof is precisely the same as
32, 2. It yields, more exactly, the

Theorem 2a. If a > 1, then to the larger exponenmt corvesponds
the larger value of the power; if a <1 (but positive), then the larger
exponent gives the smalley power. In particular: If a &= 1, then different
exponents give different powers. — And from this theorem, exactly as
in 32, 3, follows the final

18 As a model we may sketch the proof of the first of the three fundamental
rules: If o= (z,|¥,) and o' = (. |¥,), then by 16, o+ o' = (X, + 2" | ¥ +4)
and therefore — we assume ¢ =1 —:

al = (azn : a!hz)’ a? = (a’n' | alln'), alte — (aﬂH-.’tn' I aﬂn"Hln')_

Since all endpoints (as powers with rational exponents) are positive, we
have, by 18,
a.a% =(a%.q%’ [ aﬂn,aﬂn')_

Since, however, for rational exponents, the first of the three fundamental rules
has already been seen to hold, this last nest of intervals is not only equal, in

the sense of 14, to that defining ae+e" but even coincides with 1t term
by term.
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Theorem 3. If (o,) is any null sequence, then the numbers
x, =a —1 (a>0)

form a null sequence. If (o,) s monotone, then so is (x,).
As a special application, we may mention the
Theorem 4. If (z,) is a null sequence with all its terms positive,

then for every positive e,
’ —
z, =2,

18 also the term of a null sequence. — Thus (-1—) for every ¢ >0 is a

a
n
null sequence.
1

Proof. Ife> 0 be given arbitrarily, €*is also a positive number. By
hypothesis, we can choose 7y so that, for every n > ny (cf. 10, 4 and 12),
1

. 1
I Z, =T, <ec.

For n > n,, by 35, 1a, we then also have, however,
xna = l xn’ l <e

which at once proves the whole statement.

The above theorems comprise the main principles used in cal-
culations with generalized powers.

V. Logarithms.

The foundation for the definition of logarithms lies in the

Theorem. If a >0 and b>1 are two real, and in all further 36.
respects quite arbitrary numbers, then one and only one real number &
always exists, for which

bt = a.

Proof. That at most one such number can exist, already follows
from 35, 2a, because the base b with different exponents cannot give
the same value 4. That such a number does exist, we show con-
structively, by assigning a nest of intervals which determines it, —
thus for instance by the method of decimal sections: Since b > 1,

o™ = (b—l,,) is a null sequence, by 10, 7, and there exists, conse-
quently, since ¢ and %— are positive, natural numbers $ and g for which
b? <a and b_q<% or b >a.

If, now, we consider the various integers between — p and 4 ¢ in
succession, as exponents of b, there must be one, and can be only
one — call it ¢ — for which

b <a, but ' >q.
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The interval J, = g...(g+ 1) thereby determined we divide into 10
equal parts and obtain, just as on p. 51, a “digit” z,, for which
1) atl
b’ o<a, but BT 0 >g
By repetition of the process of subdivision we find a perfectly definite

nest of intervals
z)l

2 Zp—
C [mme B
&= (x,|y,), with ; - a1
B SRR Sy IR St

for which
bzn é a< blln
for every m, — for which, therefore, in accordance with 33,
bE =a.

This theorem justifies us in the following
Definition. If a > 0 and b > 1 are arbitrarily given, then the real
number &, uniquely determined by

bé=a
ts called the logarithm of a to the base b; and, symbolically,
§=1log, a.

(g ¥s also called the characteristic, and the set of the digits z,, z,, 2, ...
the mantissa, of the logarithm.)

We speak of a system of logarithms, when the basc b is assum-
ed fixed oncc for all and the logarithms of all possible numbers are
taken to this base b. The suffix b in log, is then usually omitted
as superfluous. Very soon a particular rcal number, usually denoted
by e, appears quite naturally as the most convenient for all theo-
retical considerations; the system of logarithms built up on this
base is usually called the system of natural logarithms. For practical
purposes, however, the base 10 is, as we know, the most convenient;
logarithms to this base are called common or Briggs’ logarithms. These
are the logarithms found in all the ordinary tables!?.

The rules for working with logarithms we assume, as we did
with powers, to be already known, and content ourselves with a mecre
mention of the most important of them. If the base b > 1 is arbitrary,

17 As a matter of course, a system of logarithms may also be built up on a
positive base less than 1. This, however, is not usual. The first logarithms cal-
culated by Napier in 1614 were, however, built up on a base b < 1, which presents
some small advantages, particularly for logarithms of trigonometrical functions.
Neither Napier nor Briggs, however, really used any base. The 1dea of logarithms
as the inverse of powers only developed in the course of the 18th century.
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but assumed fixed in what follows, and if a, a’,4” ... denote any
positive numbers, then

1. log (a’ @”) = log &’ -} log a". 37.
2. log1=0; log-i— = —loga; logbh=1.
3. logae =ploga (o arbitrary, real).
4. logaélog a’, according as a§a'; 1n particular,
b. loga%O, according as a%i.
6. If b and b, are two different bases (> 1), and £ and ¢, the
logarithms of the same number ¢ to these two bases, i. e.
E=logya, & =logy a,
£=§1'logbb1; -

as follows at once trom (a =)b% = b, by taking logarithms on both
sides to the base b and taking account of 37, 2 and 3

then

1 : L1
7. (]-SE;’)’ n=2,3,4,... is a null scquence. In fact togn <e&
1
provided logn > %, that is, n >b*.

VI. Circular functions.

To introduce the so-called circular functions (the sine of a given
angle®, with the cosine, tangent, cotangent etc.) in an equally strict
manner, i e. avoiding on principle all reference to geometrical in-
tuition as element of proof and tounding solely on the concept ot
the real number, is at this stage not yet possible. This question will
be resumed later (§ 24). In spite of this, we will unhesitatingly enlist
them to enrich our applications and enliven our examples (but of
course never to prove gencral propositions), in so far as their know-
ledge may be presupposed from clementary work.

Thus e. g. the following two siumple facts can at once be ascertained: @7a.

1. If o, 0g, . v+, &, ... are any angles (that is to say, any numbers), then

(sin ;) and (cos «,)
are bounded scquences; and

18 Angles will in general be measured in radians If in a circle of radius
unity we imagine the radius to turn from a defimte initial position, then we
mceasure the angle of turning by the length of the path which the extremity
of the moving radius has traversed — taking it as posifive when the sense of

turning is counterclockwise, otherwise as megafive. An angle is accordingly a
pure number; a straight angle has the measure + & or —a, a right angle the

measure +—g< or —»i;-. To every definitely placed angle there belongs an
infinite number of mcasures which, however, differ from one another only by
integral multiples of 2x, i. €. by whole turns. The measure 1 belongs to the
angle, the arc corresponding to which is equal to the radius, and which there-
fere in degrees is 57917’ 44”.8 nearly.
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(sm a,,) and (cos ot,,)
n n

are (by 26) null sequences, for their terms are derived from thosc of the

2. the sequences

null sequence 7) by multiplication by bounded factors,

VII. Special null sequences.
As a further application of the concepts now defined, we will
examme a number of special sequences:
o1 If |a| < 1, then besides (a™) even (na@™) is a null sequence.
Proof. Our reasoning is analogous to that of 10, 7°: For

a =0, the assertion is trivial; for 0 <|a|<1, we may wnt,
with o > 0,

o

n 7 '

- L]

1+( 1 )9+"'+ (n)e
Since here in the denominator each term of the sum is positive, we
have for every # > 1,

|a| = 1-17(-), and therefore |a"|=

la"| < ! , therefore |na"|< _lz_i
(") 2 @—Te
)¢
Thus we have
|na® as soon as L2 _
na"| < e, e

i. e. for every
2
n>1-4 Pyl

The result thus proved is very remarkable: it asserts, in fact,

that for a large # the fraction is very small, and its denominator

n
(1+o)"
therefore very much greater than its numerator. This denominator is
however constant (=1) for p =0, and when g is very small (and
positive), it only increases very slowly with #. Nevertheless, our result
shows that provided only # be taken sufficiently large, the deno-
minator is very much larger than the numerator 2. The point 7, from

(1——_:5)7 lies below a given ¢ — we found #, =1~ ;%Ta .
does indeed lie very far to the right, not only when &, but also when

which |na”| =

Q= |71‘| — 1, is very small (i. e. |a| very near to 1). Substantially this

19 Except that 4 and ¢ need no longer be rational.
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and only this is truc: However |a| <1 and € > 0 may be given, we
have always, from a readily assignable point onwards, |7 a” | <.

From this result many others may be deduced, e. g. the still more
paradoxical fact:

°2. If |a| <1 and « real and arbitrary, then (32*a®) is also a null
sequence.

Proof. If « <0, then this is evident from 10, 7, because of 26,
1

2; if « >0, write | a| * = a,, so that by 35, 1a, thc positive number
a, is also << 1. By the preceding result, (z @,") is a null sequence. By
35, 4

[#a,"]%, i.e. n*|a|* or |n*ra"|,

therefore, finally, (by 10, 5), n* a itself is also the term of a null sequence 2L,

3. If 0 > 0, then (loiun

) is a null sequence 22, to whatever base b > 1

the logarithms are taken.
Proof. Since b >>1, ¢ > 0, we have (by 35, 1a), b° > 1. There-

fore ((b%z)n) is a null sequence, by 1. Given € > 0, we have consequently

from a certain point onwards, — say for every n > m —

’ €

n
(b r)n <€ b’
But, in any case,

logn __g+1_ 4 g+1
o < (b7)° b (br})q»}—l’

if g denote the characteristic of logn (so that g =<logn <g -+ 1). If,
therefore, we take n > b™, log n, and a fortiori g + 1, is > m. Hence the
last valuc above, with our choice of m, is

bsu =g, 1 e. log 7 < e for every n>mny=>bm",

nﬂ'

<ba.

20 Writing as above |a| = , |ma™| —= we may also say:

1 __n_
1+e a+4em
(1 4 @) becomes — for a positive ¢ — mare pronouncedly large, or, also more pro-
nouncedly infinite, than n itself, — by which we again (cf. 7, 3) mean nothing more
and nothing less than that our sequence is precisely a null sequence. — For future
reference we remark here that the results proved in 1 and 2 arc also valid for a
complex q, provided only |a| < 1.

21 With the same change of notation as above, we may say here: “(1 4 ¢)*
becomes more pronouncedly infinite than every (fixcd) power however large of =
itself”’,

22 Or, in words, “log n becomes less pronouncedly large than every power, how-

ever small (but determinate and positive), of n itself”’.
3+ (c 51)
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4. If o and 8 are arbilrary positive numbers, then

o)
1lﬂ
is a null sequence —, however large o and however small B may be®.
Proof. By 3, ('O;El_:) is a null sequence, bccause {—>O; by
n

33, 4, therefore, so is the given sequence.

n___
5. (wn)E(\/n-—l) is a null sequence. (This result is also very
remarkable. For when # is large, we have a large number under

the V ; the exponent of the V is, it is true, also large; but it is
not at all evident a priors which of the two — radicand or exponent —
will, so to spcak, prove the stronger.)

n___
Proof. For #>1, we certainly have V#u >1, therefore

n__
x, = Vn — 1 certainly > 0. Hence 1n

n=( k) =14 (7 ) e, 4+ ()2

all the terms of the sum are positive. Consequently we have, in
particular,

n\ o_ n(m—1) 4
> (3o 0

n

or 24
. 2 2 4
< ST T
n— 5
Hence
2
'xn ' < Ty
n?

n__
so that (z,) = V» — 1 is in fact by 26,1 and 35, 4 a null sequence.
6. If (x,) is a null sequence whose terms are all > — 1, then for
every (fixed) integer R, the numbers

k
:r,',=\/1+a',,—l

also form a null sequence?.
#3 «Every power of log =z, however large, (but fixed) becomes less
pronouncedly large than every power of n itself, however small (but fixed).

# The substitution, when n> 1, of the value n——;— for (n — 1) which

it cannot exceed, is an artifice often useful in simplifying calculations.

2% By the assumption that all z,’s > — 1, we merely wish to ensure that
the numbers z,” are defined for e¢very m. From a definite point onwards
this is automatically the case, since (z,) is assumed to be a null sequence and
therefore from some point certainly |z,| < 1, and hence z, > —1.
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Proof. From the formulae set forth on p. 22, Footnote 13, where
|

we put @ = V1 }x, and b=1, it follows that?2
’r__ Zn .
n T e Nhk=1 (L __\i-2 0

(V1+x,,) +<V1+x,,) +...41
therefore, since the terms in the denominator are all positive and
the last is 1,

ENESESE

whence, by 26, the statement at once follows.

7. If (x,) is a null sequence of the same kind as in 6., then
the numbers

Y. =log (14 x,)
also form a null sequence.
Proof. If 5 >1 is the base to which the logarithms are taken, and
€ > 0 is given, we write
b —1l=¢, 1—0b:=¢g
so that we have €, = b ¢4 > €, > 0. We then choose n, so large, that

for every n > my, | %, | <€, For those #'s we have, a fortiori,

— gy T X, <&, e b <14 ox, << bt
therefore (by 35, 2 or 37, 4)
[yl =1log (1 -+ x,) | <¢;

with which the statement is proved.
8. If (x,) is again a null sequence of the same kind as in 6.,
then the numbers
Zp=(14x,)’—1

also form a null sequence, if o demotc any rcal number.
Proof. By 7. and 26, 3, the numbers

2, = Q'IOg(l—*—zn)

form a null sequence. By 35, 3 and 37, 3 the same is true of the numbers

b —1=(Q1-+=x) —1=2z, q. e d.

% We assume k == 2, since for k=1 the assertion is trivial.
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§ 8. Convergent sequences.
Definitions.

So far, when considering the behaviour of a given sequence, we have
been chiefly concerned to discover whether it was a null sequence or not.
By extending this point of view somewhat, in a manner which readily
suggests itself, we reach the most important concept of all with which
we shall have to deal, namely, that of the convergence of a sequence.

We have already (cf. 10, 10) described the property which a sequence
(#,) may have, of being a null sequence, by saying that its members
become small, become arbitrarily small, with increasing n. We may also
say: Its terms, as n increases, approach the value 0, — without, in general,
ever reaching it, it is true; but they approach arbitrarily near to this
value in the sense that the values of its terms (that is to say, their differences
from Q) sink below every number € (> 0), however small. If we substitutc
for the value 0 in this conception any other real number £, we shall be
concerned with a sequence (x,) for which the differences of the various
terms from the definite number ¢ — that is to say, by 3, II, 6, the values
| x, — &|, — sink, with incrcasing #, below every number ¢ > 0, how-
ever small.

We state the matter more precisely in the following:

° Definition. If (x,) is a given sequence, and if it is related to a
definite number & in such a way that

(xn - f)
Jorms a null sequence?, then we say that the sequence (x,) converges
to &, or that it is convergent. The number € is called the limiting value
or limit of this sequence; the sequence is also said to converge to §, and
we say that its terms approach the (limiting) value £, tend to ¢, have the
limit ¢, This fact is expressed by the symbols
x,—>§ or limx,=E§.
To make it plainer that the approach to ¢ is effected by taking the index n
larger and larger, we also frequently write 2

xX,>E for n—>oo or limx,=E.
n—>w

Including the definition of a null sequence in the new definition,
we may also say:
x,—> & for n—> o (or limx, = £) if for every chosen € >0, we can
n—>m

always assign a number ny = ny (c), so that for every n > ny, we have
l Xn — f I <=

1Or (¢ — x,) or | x, — £]; by 10, 5 the result is exactly the same.

2 Read: “x, (tends) towards ¢ for n tending to infinity” in the one case, and
“Limit x, for n tending to infinity equals ¢” in the other. In view of the definitions
40, 2 and 3, it would be more correct to write here “n — 4 ®”’; but for simplicity
the + sign is usually omitted.
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Remarks and Examples.

1. Instead of saying “(x,) is a null sequence”, we may now, more shortly,
write “x, — 0”. Null sequences are convergent sequences with the special limiting
value 0.

2. Substantially, all remarks made in 10 therefore hold here, since we are
concerned only with a very obvious generalisation of the concept of a null sequence.

3. By 31, 3 and 38, 5, we have fora > 0

V;—»l and \"/11 -1,

4. If (x, | y,) = o, then x, = o and y,, ~ ¢. For both
|%, — o] and also |y, —o| are =]y, —x,],

so that both, by 26, 1, form null sequences together with (y,, — x,).
(— 14365

5. Forx, =1— > n? that is, for the sequence 2, PR R R tae 1,

1
for | x, — 1| = n forms a null sequence.

6. In geometrical language, x, -> £ means that all terms with sufficiently
large indices lie 1n the neighbourhood of the fixed point £. Or more precisely (cf.
10, 13), 1n every e-ncighbourhood of ¢, the whole of the terms, with at most a finite
number of exceptions, are to be found 3. — In applying the mode of representation
of 7, 6, we draw parallels to the axis of abscissae, through the two points (0, ¢ 4 ¢€)
and may say: x, - > £, if the whole graph of the sequence (x,), with the exception
of a finite 1nitial portion, lics in every e-strip (however narrow).

7. The lax mode of expression: ‘“for n = ®©, x, = ¢’ instead of x, —> ¢,
should be most emphatically rejected. — For an integer n = oo does not exist and
v,, need never be = £. We are concerned merely with a process of approximation,
sufficiently clear from all that precedes, which there is no ground whatever for
imagining completed in any form. (In older text books and writings we frequently

find, however, the symbolical mode of wrting: “limx, = £”, to which, since 1t
n—=w

1s after all meant only symbolically, no objection can be taken, — excepting that
it is clumsy, and that wrniting “n — 00’ must necessarily create some confusion
regarding the concept of the infinite in mathematics.

8. If x, > £, then the isolated terms of the sequence (x,) are also called
approximations to £, and the difference ¢ — x,, is called the error corresponding to
the approximation x,,.

9. The name ‘“convergent” appecars to have been first used by J¥. Gregory
(Vera circuli et hyperbolae quadratura, Padua 1667), and “divergent” (40) by Bernoulli
(Letter to Letbmiz of 7. 4. 1713). It was through the publications of A. L. Cauchy
(see p. 72, footnote 18) that a limiting value came to be denoted generally by the
prefixed symbol “lim”. The arrow sign (—), which is so particularly appropriate,
came to common use after 1906, through the works of G. H. Hardy, who himself
referred it back to J. G. Leatham (1905).

To the definition of convergence we at once append that of diver-

gence:
° Definition 1. Every sequence which is not convergent in the sense 40.

of 39 is called divergent.

2 Frequently this is expressed more briefly: In every e-neighbourhood of
¢ “almost all” terms of the sequence are situated. The expression ‘“almost all”’
has, however, other meanings, e. g. in the Theory of Sets of Points.
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With this dcfinition, the sequences 6, 2, 4, 7, 8, 11 are certainly
divergent.

Among divergent scquences, onec type is distinguished by its
particularly simple aud transparent bchaviour, e. g. the sequences (n?),
(n), (a") for a > 1, (logn), and others. Their common property is
evidently that the terms increasc with increasing # beyond every bound,
however high. For this rcason, we may also say that they tend to 4 oo,
or that they (or their terms) become infimitely large. This we put
more precisely in the following

Definition 2. If the sequence (x,) has the property that, given an
arbitrary (large) positive number G, another number n, can always be
assigned such that for every n > n,

Ny - G)

then * we shall say that (x,) diverges to |- o, tends to + oo, or is definitely
divergent ® with the limit | oo ; and we then write

X%, >+ o (form— x) or limx,=~+ o0 or lmx,= 4+ oo.
n—>L

We are merely interchanging right and left by defining further:

Definition 3. If the sequence (x,) has the property that, given an
arbitrary negative number — G (large in absolute value), another number
ng can always be assigned such that for every n > n,

xn<'_'G:

then we shall say that (x,) diverges to — oo, tends fo — oo or is definitely
divergent > with the limit — oo, and we write

X, >—a (forn—> o) or limx,=—w or lim x, = — .
n-—>xo

Remarks and Examples

1 The sequences (n), (n?), (n®) for « >0, (logn), (log n)* for « >0,
tend to 4 oC; those whose terms have these values with the negative sign
tend to — 0O.

2.In general: If z,— 4 00, then x,/ = — 2, - — 00, and conversely. —
It is therefore sufficient, substantially, to consider divcrgence to + 0O 1n what
follows.

8. In geometrical language, z, — 4+ 0O means, of course, that however a
point G (very far to the right) mdy be chosen, all points z,, except at most a
tinite number of them, remain beyond it on the right. — With the mode of

4 Notice that hcere not merely the absolute values |z, |, but the numbers z,
themselves, are required to be > G.

5 It is sometimes even said, — with apparent distortion of facts, — that
the sequence converges to 4+ 00. The recason for this is that the behaviour
described in Definition 2 resembles in many respects that of convergence (39).
We will not, however, subscribe to this mode of expression, although a mis-
understanding would unever have to be feared. — Similarly for —00.
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representation in '?, 6, it means that' howcver far above the axis of abscissae
we may have drawn the parallel to it, the whole graph of the sequence (z,) —
excepting a finite initial portion, lies still further above it.

4. The divergence to 4 O need not be monotone; thus for instance the

sequence 1, 21,2, 22 3, 23, 4,24, ..., k, 2%, ... also diverges to 4 00.
5. The succession 1, —2, 43, —4, ..., (- 1)"~*=, ... docs not diverge
to 400 or to —00. — This leads us to the further

Definition 4. A sequence (x,), which either comverges in the sense
of definition 89, or diverges definitely in the sense of the defini-
tions 40, 2 and 3, will be said to behave definitely (for n— o0).
All other sequences, which therefore nesther converge, nor diverge defini-
tely, will be called indefinitely divergent or, for short, indefinite®.

Remarks and Examples.

1. The scquences [(—1)*], [(-2)*], (@®) for a < —1, and likewise the se-
quences 0,1,0,2,0,8,0,4,... and 0, —1, 0, —2, 0, —3, ..., as also the sc-
quences 6, 4, 8 are obviously indefimitely divergent.

2. On the contrary, the sequence (|a”|) for arbitrary a, and, in spite of
all irrcgularities in detail, the sequences (3"+(—2)"), (n+ (—1)"log =),
(n® +(— 1)* n), show definite behaviour.

3. The geometrical interpretation of indefinite behaviour follows imme-
diately from the fact that there is neither convergence (v. 89, 6) nor definite
divergence (v. 40, 3, rem 3).

4. Both from x,—4 00 and from z,-»— 00 it follows, provided every

1
z < 8. — On

1
term < 07, that = 0; for |z, | >G= l evidently implies
n &

the other band, z,— 0 1n no way involves definite behaviour of (—)

n

-n" 1y . . ... .

Example: For z, =(_hl’ we have z, — 0, but (_1:—) indefinitely diver-
bt

gent. — We have however, as 1s easily proved, the

Theorem: If (x,) 1s a null sequence whose terms all have the same sign,
then the sequence <—::-> is definitely divergent; — and of course to + 00 or
24

— 00, according as the x,'s ave all positive or all negative.

8 We have therefore to consider threc typical modes of behaviour of a
cquence, namely: a) Convergence to a number &, in accordance with 39;
b) divergence to 4 00, 1n accordance with 40, 2 and 3; c) neither of the
wo. — Since the behaviour b) shows some analogy with a) and some with c),
modes of expressions in use for it vary. Usually, 1t is true, b) is reckoned as
livergence (the mode of expression mentioned 1n the last footnote cannot
be consistently maintained) but “limting values” 400 and — 0O are at the
same time spoken of. — We therefore speak, in the cases a) and b), of a de-
inite, in the case c) of an 1ndefinite, behaviour; in case a), and only in
his case, we speak of convergence, in the cases b) and c) of divergence. —
Instead of “definitcly and indefinitely divergent”, the words “properly and im-
properly divergent” are also used Since, howcver, as remarked, defimite di-
vergence still shows many analogies to convergence and a limit is still spoken
of in this case, it does not seem advisable to dcsignate this case precisely as
that of proper divergence.

? From some place onwards this is certainly the case
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To facilitate the understanding of certain cases which frequently
occur, we finally introduce the following further mode of expression:

O Definition 5. If two sequences (x,) and (y,), not necessarily con-
vergent, are so related to ome another that the quotient
x’l
I
tends, for n— --00, to a definile finite limit differcnt from
zero®, then we shall say that the lwo sequences are asymptotically
proportional and write briefly

xﬂNyn‘
If in particular this limit is 1, then we say that the two sequences are
asymptotically equal and wrile, more expressively

. xn o Yne
Thus for instance

‘/;;{?1‘2"’ log (b n” 4 23) ~v log n, yn+1—\/;~—l;,

1+24--+n~ 02, 13422400 n2 f nd.

These designations are due substantially to P. du Bois-Reymond (Annali
di matematica pura ed appl. (2) IV, p. 338, 1870/71).

To these definitions we now attach a serics of simple, but quite

fundamental
Theorems on convergent sequences.
41. OTheorem 1. A convergent sequence determimes ils limit quite
uniquely®.

Proof. If z, —£, and simultaneously z, — &, then (z, — &) and
(¢, — &) are null sequences. By 28, 2,

((x‘n - 6) - (xﬂ - 5')) = (E, - 5)

is then also a null sequence, i.e. £=¢, q. e.d.?°

8 z, and y, must then necessarily be = Q from some place onwards. This
is not required for every n in the above definition.

® A convergent sequence therefore defines (determines, gives...) its
limit quite as uniquely as any nest of intervals or Dedekind section defines the
number to which it corresponds. Thus from this point we may consider a real
number as given if we know a sequence converging to it. And as formerly we
said for brevity that a nest of intervals (x,|y,) or a Dedekind section (4 |B)
or a radix fraction s a real number, so we may now with equal right say that
a sequence (¥,) converging to § is the real number &, or symbolically: (z,)=§.
For further details of this conception, which was used by G. Canfor to construct
bis theory of real numbers, see pp. 79 and 95,

10 The last step in our reasoning, by which the reader may at first sight
be taken aback, amounts simply to this: If with respect to a definite numerical
value @ we know that, for every ¢>0, we always have |a|< s, then we
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° Theorem 2. A convergent sequence (x,) is invariably bounded. And
if | x, | = K, then for the limit £ we have' | £| =< K.

Proof. If x,—> ¢ then we can, given € > 0, assign a number m,
such that for every n >m

E—e<x, <€+
If therefore K; is a number greater than the m values | x, [, | %3], . - .
| %, |, and greater than | £ | 4 €, then obviously
I Xn I < Kl

for cvery n. Now let K be any bound of the numbers | x, |. If we had
| €] > K, then |£] — K >0 and therefore, from some place onwards
in the sequence,
and therefore | x, | > K, which is contrary to the meaning of K.

° Theorem 2a. x,—> & implies | x,| —| £|.

Proof. We have (v. 3, II, 4)

[1xal = €1 S 15— €15
therefore (| #,| — | £|) is by 26, 2 a null sequence when (x, — £) is.
° Theorem 3. If a convergent sequence (x,) has all its terms different

from zero, and if its limit ¢ is also == 0, then the sequence G) s bounded;

or in other words, a number y > 0 exists, such that | x,| =y > 0 for every
n; the numbers | x, | possess a positive lower bound.

Proof. By hypothesis, 3| €| =€ > 0, and therc exists an integer
m, such that for every n > m, | x, — £| < ¢ and therefore | x, | > 3| £ | 22
If the smallest of the (m -} 1) positive numbers |, |, | 2], . . ., | %]
and 1| ¢£| be denoted by y, then y >0, and for every 7, |x,| =7y,

lick=1 gqeud
Y

X

If, given a sequence (x,) converging to &, we apply to the null se-
quence (x, — &) the theorems 27, 1 to 5, then we immediately obtain
the theorems:

necessarily have « = 0. For 0 is the only number whose absolute value is less than
every positive €. (In fact | 0] < ¢ is true for every € > 0. But if « 3 0, so that
| «| > 0, then | « | is certainly not less than the positive number ¢ = 4| « |.) Simi-
larly, if we know of a definite numerical value « that, for every € > 0, we always
have « =< K + ¢, then we must have further « =< K. The method of reasoning
involved here: ‘‘If for every € > 0, we always have | o | < €, then necessarily o« = 0”
is precisely the same as was constantly appled by the Greek mathematicians (cf.
Euclid, Elements X) and later called the method of exhaustion

11 [{ere the sign of equality in | ¢ | < K’’ must not be omitted, even when,
for every n, | x, | < K. .

12 For n >~ m, all the x,’s are therefore necessarily =% 0.
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OTheorem 4. If (z,') is a sub-sequence of (x,), then
xz,— & implies x—¢&.

O©Theorem 5. If the sequence (x,) can be divided into two sub-
sequences* of which cach converges to &, then () itself converges to &.

©Theorem 6. If (x,) is an arbitrary rearrangement of z,, then
z, —&  implies x]—E.

OTheorem 7. If x — & and (x,) results from (x,) by a finite
number of alierations, then x| —&.

OTheorem 8. If z,/—¢& and x.” — &, and if the sequence (x,) is
so related to the sequences (x,’) and (x.") that from some place onwards,
(3. e. for every m =m, say,)

x”l é x" g x"".
then =, — &.

Calculations with convergent sequences are bascd on the following
four theorems:

O Theorem 9. x,— & and y, —n always implies (x,+y,)—&+7,
and the corresponding statement holds for term by term addition of any
fixed number — say p — of convergent sequences.

Proof. If (z, — &) and (y, — ) are null sequences, then so, by
28,1, is ((x, +v,) — (£ + 7)) In the same way, 28, 2 gives the

©Theorem9a. x,—¢ and y,—, always implies (x, — y,)—&—1.

©Theorem 10. z,— & and y,— 7, always implies z,y, &1,
and the corresponding statement holds for term by term multiplication
of any fixed number — say p — of convergent sequences.

In particular: x, —§& implies cx,—c&, whatever number p
denole.

Proof. We have

Tp Y — M= (@, — )y, + . —m&;
and since here on the right hand side two null sequences are multi-
plied term by term by bounded factors and then added, the whole
expression is itself the term of a null sequence, q. e. d.
OTheorem 1. x,— & and y,—n always implies, if every x, 0
and also £ 0,

Proof. We have
Yo _ N _InE—%un

= E— (a8
Ty § xn‘f - xu‘E °

13 Or three, or any definite number.
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Here the numerator, for the same reasons as above, rcpresents a null

1 .
sequence, and the factors e by theorem 3, bounded. Therefore
*Ln

the wholc expression is agam the term of a null sequence. — Only
a particular case of this is the
°Theorem 11a. «x,-> ¢ always implies, if every x, and also ¢ are

:FO’ l 1

Xy &
These fundamental theorems 8—11 lead, by repecated application,
to the following more comprchensive
°Theorem 12. Let R =R (¥, a®, 2, ..., x®) denote an ex-
pression built up, by a finite number of additions, subtractions, multi-
plications, and divisions, from the letters a@, 2, ..., x®, and arbitrary
numerical coefficients'®; and let

(x'(‘ﬂ), @), ooy (@P)

be p given sequences, converging respectively to £V, E®, ..., E®. Then
the sequence of the numbers

R,.=R(x;”, :tf), . x:‘m)_,R(é-u)' E@ L 5(2,))

provided neither in the evaluation of the terms R, , nor in that of the
number R(EW, ED, ..., W), division by O is anywhere required.

These theorems give us all that 1s required for the formal mani-
pulation of convergent sequences: We give a few more

Examples.
1. z, — & implies, if a > 0, nvanabdly, 42,

a" —~ab.
For
& —ab =at (a"""s— 1)

ts a null scquence by 35, 3
2. x, — & mmplies, 1if every x, and also § are >0, that

loga, —log §.
Proof. We have
Zn —¢

log 2, — log & =log 3 = log (1 + f"f_}

§

which by 88, 7 is a null sequence, since z, >0 implics &'Z___—>— 1.

1 In theorems 3, 11 and 1la, it is sufficient to postulate that the limit of
the denominators is % 0, for then the denominators are, from some index m on-
wards, necessarily % 0, and only “a finite number of alterations” need be made,
or the new sequence need only be considered for n > m, to ensure this being the

case for all.
15 More shortly: a rational function of the p variables x™, v , | ~x® with

arbitrary numerical coefficients.
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8. Under the same bypotheses as in 2., we also have, for arbitrary real p,

w}.’—» §e.
Proof. We have

P e
o _ n — xn_E _
\\ zl —k —59<5—e—1)_ee[<1+ : ) 1].

N xﬂ'—’f

which by 38, 8 is a null sequence 8, since ~* Y > — 1 and tends to 0 as n — 0.

(This 1s to a certamn extent further completed by 35, 4.)

Cauchy's theorem of limits and its generalisations.

There is a group of theorems on limits!? essentially more pro-
found than the above, and of great significance for later work, which
originated in their simplest form with Cauchy'® and have in recent
times been extended in different directions We have first the simple

OTheorem 1. If (%y, 2,,...) 1S @ null sequence, then the arith-
metic means

S Y S
also form a null sequence.

Proof. If & is given > 0, then m can be so chosen, that for

every n > m we have |:c”| < -2‘— For these n's, we then have

, Lx,,_—l_—_x,+...+z,,,] en—m

lxnlg n+1 +2n+1'
Since the numerator of the first fraction on the right hand side now
contains a fixed number, we can further determine s,, so that for

n > n, that fraction remains <-%. But then, for every n > n,, we

have |z,'| <&, — and our theorem is proved. — Somewhat more
general, but ncvertheless an immediate corollary of this, is the
OTheorem 2. If ®,— &, then so do the arithmelic means

Lot 2,4+ ... + 2,
z, = ¢

16 Examples 1. to 3. mean — in the language of the theory of functions —
that the function a® is continuous at every point, the functions logz and z¢
at every positive point.

17 The reader may defer the study of these theorems until, in the later
chapters, they come into use.

18 Augustin Lowss Cauchy, born 1789 in Paris, died 1857 in Sceaux. In
his work Analyse algébrique, Paris 1821 (German edition, Berlin 1885, Julius
Springer) the foundations of higher analysis are for the first time developed
with full rigour, and among them the theory of infinite series. In what follows
we shall frequently have to refer to it; the above theorem 2 may be found on
p. 59 of that treatise.
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Proof. By theorem 1,

n

(0—§)+(1“§)+"'+(n_§) ’
(“’ g n+1 < )=(x — &)

is a null sequence when (z, — &) is, q. e d.
From this theorem, the corresponding one for geometric means
now follows quite easily.

Theorem 3. Let the sequence (¥, ¥4, .--)— 7, and have all its
members and its limit n positive. Then also the sequence of geo-
metric means

" ____
W =V, Yy,

Proof. From y,—» 7, since all the numbers are positive, we
deduce, by 42, 2, that

z, = logy, —& = log 7.
By theorem 2, it follows that

.___
9;"’ = ?Lﬁ__:ti‘j%'_'_'_ﬁ_’! = log "/y1 Vo oo V= log yn’—b log 7.

By 42, 1, this at once proves the truth of our statement.

Examples.

. —————— -0, because —11‘—-—» 0.
n_ /9373 ” »
2. Vn—_—VL 1—-—2«...‘”:—1»—»1, because ;‘:—i—»l.

8. — 1, because {/7—» 1.

n
4. Because (l —1——,17) —>¢ (v. 464 in the next §), we have by theorem 8,

T GG () - 252 e
nl

\

<3

or, therefore,
19— 1
—_— ]/n! - —,
n e

n___
a relation which may also be noted in the form “}/n! gi
”
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Essentially more far-reaching, and yet as easily proved, is the
following genecralisation of Cauchy’s theorems 1 and 2, due to
- Toeplitz'®:

°  OTheorem 4. Lot (%, %,,...) be a null sequence and suppose
the coefficients a,, of the syslem

aUU
@io0 %41
a, a., Ay
(A) 20 21 T2
....... . .
wt @pa ot 2yn

satisfy the two conditions:
(a) Every column contains a null sequence, i. e. for fixed p >0

a,,—0 when n— + oco.

(b) There exists a constant K, such that the sum of the absolute
values of the terms in any one row, 1i.e., for every n, the suin

|@no| + | @us| -+ <o +|a,, | remans < K.

— Then the sequence formed by the numbers

’
Z” = a‘noxO _l— anlxl + an?xﬂ + i + annxﬂ
is also a null sequence.
Proof. If ¢ 1s given > 0, determine m so that for cvery # > m

& -,
|z, | < 3K lhen for those #’s,

|xn,l < |an0x0+ o +anmxm| +—;"

By the hypothesis (a), we may now (as m is fixed) choose n, > m,
&
so that for every n > n,, we have |a,,2,+ -+ a,,. %, | < 5 Since

for these #’'s |z,’| is then < e, our theorem is proved.
In applications it is useful to have the following

©Complement. If, for the coefficients a., are substituted other
numbers @y = Q.3 -Gy, oblained from the numbers a,.; by multiplication

1% Cauchy’s Theorem 1 has been generalised in several ways, in particular
by ¥. L. W. V. Jensen (Om en Sitning af Cauchy, Tidsknft for Mathematik, (5)
Vol. 2, pp. 81—84, 1884) and O. Stolz (Uber eine Veraligemeinerung eines Satzes
von Cauchy, Mathemat. Annalen, Vol. 33, p. 237. 1889). The above formulation,
due to O. Toephtz (Uber lineare Mittelbildungen, Prace matematycznofizyczne,
Vol. 22, p. 113—119, 1911), is in a certain sensc a final generalisation, for this reason
that it shows (1. c.) the conditions, recognised in Theorem 5 as sufficient, to be
also necessary, for v, - - £ to imply x,” -~ € n all cases (cf. 221, and the work of I.
Schur: Uber hincare Transformationen 1n der Theorie der unendlichen Reihen, Jour.
f.d. reine u. angew. Math., Vol. 151, pp. 79—111. 1920).
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by factors «.; — all in absolute value less than a fixed constant o, —
thew the numbers

’ ’ ’ ’
Xp = Ano%o—+ An1 %1+ *+* + apn Ty
also form a null sequence.

Proof The aj;’s also satisfy the conditions (a) and (b) of
theorem 4; for, if p is fixed, a,,— 0 by 26, 1, and the sums

|ano|+ |ant| 4+ -+ + | ann} remain < K = oK.

From Theorem 4 we may now deduce the wesult”

OTheorem 5. If x,— &, and the coefficients a,, satisfy, besides
the conditions (a) and (b) of Theorem 4, the further condition

(C) 20 + A + e +a””=An_,1,?0
then also the sequence formed by the numbers

xn'= an0x0+an1w1+ te +annxn—’5'

Proof. Wec now have

:t”"-—— Ané + “no(mo - E) + 2,17, _§)+ ot +ann(xn _E)’

whence our statement at once follows, in consequence of condition (c),
by theorem 4.

Before giving examples and applications of these important theorems,
we may prove the following further generalisation, which pomts in a
new direction.

OTheorem 6. If the coefficients a,, of the system (A) satisfy, ,
besides the conditions (a), (b) and (c) mentioned in Theorems 4 and b,
the further comdition, that

(d) the numbers in each of the “diagonals” of A form a null
sequence, 1. e. for fixed p, B0 when n— -+ 00,

then it follows from x,~—& and y, —»n that the numbers

— Eop A
2, = “noxo yn+anl wl yn-—1+ +annxn y()-—>¢ 1.
Proof. Since

Ty Yp—y = (xv - f)yn-v + f'yn—w
we have

n n
2, = A‘:“nv yn—v(xv - E) + E'é;a”,. VYn—ve

=0

%0 In the applications, we shall generally have 4, = 1.

%L For positive a,y, this theorem may be found in a paper by the author
“Uber Summen der Form ayb,+a, by, + -+ +a, b, (Rend. del circolo mat,
di Palermo, Vol. 32, p. 95—110. 1911).
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Here the first sum tends to zero, by Theorem 4 and its complement,
for (x, — &) is a null sequence and the factors y,_, are hounded.
And if the second sum be written in the form

E vann vyv = E Zanryﬂ
=0
we see, by theorem 5, that this, and thereby also z,, tends —&n;
for the numbers a,, = @npn-» satisfy, in consequence of (d), precisely
the condition (a) there stipulated.

Remarks, applications and examples.
1. Theorem 1 is a particular case of Theorem 4; we need only put, in
the latter, 1

n+4+12
Theorem 2 is derived in the same way from Theorem 5. The conditions

(a), (), (c) are fulfilled.
2. If «,, &g, ... are any posihive numbers, for which the sums

n=0,1,2,..))

Gpog=10ny =+ =0y =

eytoy 4 .o+, =0,—>400,
it follows 2 from x,, — ¢ that

aoxo+a,x1+ cF oy z,

z,/ also — §.
tagt ...+ an ¢
In fact, we need only put, in theorem 5,
o = 2 n=0,1,2 ...
" on =0,1,.

to see that the statement is correct. The conditions (a), (b), (c) are fulfilled.
— For «,=1, we again obtain Theorem 2.

2a. The theorem of no. 2. remains true for £=4 o0 or £=—o0. The
same remark holds for the general thcorem 5, provided all the a,»’s are =0
there. For if z, — 4 o0 and, as in the proof of Theorem 4, m be so chosen,
given G > 0, that for every > m we have z,> G+ 1, then for those #'s
we have

2y > (GH 1) @amyyF eoe +nn)—8no | Zo| = oo —nm | Zu |

In consequence of the conditions (a) and (c¢) in Theorems 4 and 5, we may
therefore so choose @, that for every n>mn, we have zy' > G. Hence
Z, — 4 00.

3. Instead of assuming the «,’s positive and o, - + o0, it suffices [by (b)]
to require only that | oy | + | &, | + ... 4+ | &, | = 4 00, with the proviso, however,
that a constant K exists, such that * for every n

ool +lal+ oot oy SK lagt oy +oe+ oyl
(For positive «,, K=1 gives all that is here required.)

22 0, Stolz, loc, cit. — Of course it also suffices, that the «,'s be from
some point onwards = 0, provided only o, —400. The z,’s must then be con-
sidered from that point onwards, after which g, is > 0.

2 Jensem, loc. cit. — If a,, is the first of the «'s to be 3= 0, then the z,'’s
are defined only for n = m.
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4. If in 2. or 3 we put, for brevity, «, T, =¥,, then we obtain:

y0+y1+"'+yn -d d _&_
ct0+al+...+a,,->$’ provice Oy &

and provided the ea,'s satisfy the conditions given in 2. or 3.
5. If we write further yo+¥, 4+ ... + ¥ =Y, and oo+ o, + oo +an =44,
then the last result takes the form:
n Yn—l

Y, ) y
7 i &, provided 4 A —-£,

and provided the numbers o, =4, — 4,_, (n =1, , = 4,) satisfy the conditions
given in 2. or 3.
6. Thus we have, for instance, by 5.:

. 1+2+...+n_, B n s ” _l
R T il Ptk
Similarly we have
I L e e . n? 1
1 = - —————————— T —
im o hmn"’—-(n——-l)“ 3
and generally
» 14 ? ?
lim1 +2P 4+ .. 4 n - fim "™
np+1 .nr+1___(,n_1)p+l
D
= lim i 1

= ’
@+1)a? - (P;I) av—ty. ., PFI1

if p denotes a positive integer.
7. Similarly we find, if we anticipate the proof in 46 a of the convergence
1
of the sequence of numbers (1 +%>n+ .

logl+4log2+4...4logn lognl
nlogn “log n®

s __1__(11) n=0,1, 2 ...
= on\ v=0,1,...,n

-1, i.e. lognl~logn".

8. The numbers

fulfil the conditions (a), (b) and (c) of the theorems 4 and 5; for if p be fixed,
2,,— 0, sccing that it is

1 (n) n?
=— , and therefore —_ . 38, 2
2" \p <2n (v )
while

[Bug |4 oo+ @un] =8noF oo +aun=1,

for every n. Therefore z, — & always implies

ot (D) ()t (1)

5" — &
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9. The same specialisations as were given in 1., 2., 3. and 8. for theorem §
may of coursc also be applied to thcorem 6. We merely mention the two
following theorcms:

(a) From x, — ¢ and y, — 7 it always follows that

5_%_3’" + x_)_ylfjlj :T.J yn~2 + cc. + 1:"2“! .y 7.
n+41 >
(b) If (x,) and (¥,) are two null sequences, the second of which fulfils
the extra condition that for every =

EAEIEAE TR A

remains less than a fixed number K, then the numbers

xn=xoyn+x1yn-—1+---+xnyo

form a null sequence. (For the proof we put az, = yp—» in thcorem 4.)

10. The reader will have noticed that it 1s 1n no wise essential that the
rows of the system (A) of thcorem 4 should break off exactly at the n' term.
On the contrary, these 1ows may contain any number of terms. Indced, after
we have mastered the first principles of the theory of infinite series, we shall
sec that thesec rows may contain even an infinity of terms (@9, @uyy - -+, Ay, -,
provided only the other conditions imposed on the system be fulfilled. The
theorem hereby indicated will be formulated and proved in 221.

§ 9. The two main criteria.

We are now sufficiently prepared to attack the actual problems of
convergence. There are two mamn points of view from which we
propose, in what follows, to examine the sequences which come before
us. We have above all to consider the

Problem A. Is a given sequence (x,) comvergent, or definitely
or indefinitely divergent? (Briefly: How does the sequence behave
with respect to convergence?) — And if a sequence has pioved to
be convergent, so that the existence of a limiing value is ensured,
we have further to consider the

Problem B. To what limit & does the sequence (,), recognized
to be convergent, tend?

A few exam ples may make the significance of these problems
clearer: If for instance we are given the sequences

(v@z—1), m—v), (a+1)), ((1+3)),

1 1
14+ e —
2188 L.uued ¢
(1+2 + 33 4 +n), ( 2 -n), ete.

n? log »n

examination of their construction shows that there are always two (o1
morc) forces which here, so to speak, oppose one another and thereby
call forth the variation of the terms. One force tends to increase,
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the other to diminish them, and it 1s not clear at a glance which of
the two will get the upper hand or in what degree this will happen.
Every means which enables us to decide the question of convergence
or divergence of a given sequence, we call a criterion of convergence
or of divergence; these scrve, thercfore, to solve the problem A.

The problem B is in general much more difficult. In fact, we
might almost say that it is insoluble, — or else 1s trivial. The latter,
because a convergent sequence (z,), by thcorem 41, 1, entirely deter-
mines its limit & which may thercfore be regarded as “given” by the
sequence itself (cf. footnote to 41, 1). On account, however, of the
boundless complexity and multiplicity of form which sequences show,
this conclusion does not scem very satisfactory. We shall wish, rather,
not to consider the hmit & as “known”, until we have before us a
Dedekind section, or still better a necst of intervals, for instance a radix
fraction, in particular a decimal fraction. These latter especially are the
methods of representing a real number with which we have always been
most familiar. If we regard the problem in this hght, we may call
it the question of numerical calculation of the limitl.

This question, one of great practical significance, is usually in
theoretical considerations of very second-rate importance, for from a
theoretical point of view, all modes of representation for a real number
(nests, sections, sequences, ...) are precisely equivalent. If we observe
further, that the representation of a real number by a sequence may
be considered as the most general mode of representation, our problem B
may be stated in the following form.

Problem B’. Two convergent sequences (z,) and (z,) are given, —
how may we determine whether or not both define the same limit, or
whether or not the two limits stand in a simple relation to one another?

A few examples will serve to illustrate the kind of question referred to:

1. Let 45-

ST P

Both sequences are quite easily (v. 46a and 111) scen to be convergent,
But it is not so apparent that if & denotes the limit of the first scquence, that
of the sccond is=¢x,

2. Given the sequence

1
1)

8 1 In 4

2’ 57 12’ 29’ °°°

in which the numerator of each fraction is formed by adding twice the nume-
rator of the last fraction preceding to the numerator of the last fraction but
one (e. g. 41 =2.17 4 7), and similarly for the denominators. — The question of

1 Numerical calculation of a real number == reprcsentation of that num-
ber by a decimal fraction. For further details, sece chapter VIII.
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convergence again gives no trouble, nor does the numerical evaluation of the

limit, — but how are we to recognise that this limit =} 2?
. Let 1 1 1 — 1)
B Le “"=(1“§+€—?+“'+£zn)~1) (n=12..

and let x,{ be the perimeter of the regular polygon with » sides inscribed in
the circle of radius 1. Here also both sequences are easily seen to be con-
vergent. If & and &’ are their limits, — how does one see that here & = 8.§£?

These examples make it seem sufficiently probable, that Problem B
or B’ is considerably harder to attack than Problem A. We therefore
confine our attention in the first instance entirely to the latter, and to
begin with make ourselves acquainted with two criteria, from which
all others may be deduced.

First main criterion (for monotone sequences).

A monotone bounded sequence is invariably convergent; a mono-
tone sequence which is not bounded is always definitely divergent.
(Or, therefore: A monotone sequence always behaves definitely, and
1s then and only then convergent, when it is bounded, and then and
only then divergent, when it is nof bounded. In the latter case the diver-
gence is towards -}- 0o or — oo according as the monotone sequence is
ascending or descending.)

Proof. a) Let the sequence (x,) be monotone ascending and not
bounded. Since it is then (because x, > z,) certainly bounded on
the left, it cannot be bounded on the right; given any arbitrary (large)
positive number G, there is then always an index n,, for which

Zp, >G.

But then, since the.sequence is monotone increasing, we have for
every n > my, a fortiori, z, > G, and so, by Definition 40, 2, actually
%,— -+ co. Interchanging right and left, we see in the samec way
that a monotone descending sequence which is not bounded must
diverge to — co. Thus the second part of the proposition is also proved.

b) Now let (x,) be a monotone ascending, but bounded sequence.
There is then a number K, such that ]a:”l Z K for every n, so that

xlgxnéK

for cvery n. The interval J, = «, ... K therefore contains all the terms
of (x,); to this interval we apply the method of successive bisection:
We denote the right or the left half of J, by Ja» according as the
right half does or does not still contain points of (z,). From J, we
select one half by the same rule, and call this J;; and so on. The
intervals of the nest so constructed have the property?, that no point

* The reader should illustrate the circumstances on the number-axis.
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of the sequence lies to the 7ight of them, but at least one lies inside
each of them. Or in other words: the points of the sequence (while
monotonely progressing towards the right) penetrate ¢nfo each interval,
but do not emerge from it again; in each of these intervals, therefore,
all points from a certain index onwards come to lie. We may there-
fore, if we suppose the numbers #,, n,, ... properly chosen, say that:

In J, lie all x,’s with n > n,, but to the right of J, lie no
more x,’s.

If £ is now the number determined by the nest (), it can at
once be shewn that z,— &. For if eis given >0, choose the index p
so that the length of J is less than e¢. For n > 7y, all the z,’s lie,
together with &, in ]p, so that for these #’s we must have

|xn - £| <e.
(®, — &) is therefore a null sequence, and z,—£, q. e. d.
By a suitable interchange of right and left, we see that monotone

descending bounded sequences must also be convergent. Thus every
part of the theorem is proved.

Remarks and Examples.
1. We f{irst draw attention again to the fact that (cf. 41, 1) even when
|#a | << K, we may have for the limiting value £ the equality |&| =K.

2. Let
1 1 1 .
x"=n+_._l+n_+2+“.+_2_; n=1,2,....
As
1 1 1 1 1
R TS Sy Sabres el Trans ks Py Rl
the sequence is monotone increasing, and as z, < " 1 <1, it is also bound-
ed. It is thervefore convergent. Of its limit & we know no more, so far, than that
z, <EZ1
for every », which e. g. for » =3 becomes g%<§§ 1. Whether it has a ra-

tional value, or whether ¢ bears a close relation to a number appearing in any other
connection — in short: an answer to problem B — cannot here be perceived at
once. Later on we shall see that £ is equal to tt e natural logarithm of 2. I. e. the
logarithm of 2 whose base is the number e introduced in 46a below.

8. Let z,= (1 + %- + —;— 4 oeee o %) , so that the sequence (z,) is monotone

increasing (cf. @, 12). Is it bounded or not? — If G is given arbitrarily > 0,
chose m > 2 G; then for n>2M

> (D) s G B e
>%+2-%+4-—;—+8-%+---+2’”“1o2—1";=g-> G.

The sequence is therefore not bounded and consequently diverges — 4 0O.
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4. If 0 = (x,|y,) is an arbitrary mest of intervals, the left and right end-
points of the mtervals respectively form two monotone, bounded and therefore
convergent sequences, We then have

limr, =limy, =@, |yp)=0.

46a. As a particularly important example, we will consider the tw
= » N o &
sequences whose terms are 2 \‘_‘1 IV el w0 g

x_<1+ )” and_y, = 1+ w=123..)

(TSRS Q ot
We have no means of percewmg immediately (cf. the general remark

on p. 78) how the sequences bchave as # increases.
We proceed to show first that the second sequence 1s monotone
descending, that is to say that for n > 2

Yoor >3, or (14 25)"'> (142

This incquality is 1 fact equivalent 3 to

or to
(?{9§1>”> 1+%, i e to (1+;21__1>">1+;l‘_.

But the truth of fhis inequality is evident, since, by Bernoulli’s in-
equality 10, 7 we have, for « > — 1, ¢ = 0 and every n >1,

A4+« >1+na,

or in particular
1 \n n n 1
(1+;{‘=T1) >1+17§—:T>1+F=1+7n"

As, moreover, y, > 1 for every n, the sequence (y,) is monotone des-
cending and bounded, and thercfore convergent Its limit will ofter
occur later on; it is, since Euler’s ime, denoted by the special 4 letter e.
As rcgards this number, we can only deduce for the present that

1<e<y,
which for e. g. # = 5 becomes
1<e< <3

3 T'hat is to say, each inequality follows from all the others.

4 Euler uses this letter to designate the above Iimit 1n a letter to Goldbach
(25. Nov. 1731) and 1in 1736 1n his work: Mechanica sive motus scientia analytice
exposita, 11, p. 251,
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The first of our two sequences, on the contrary, is monotone ascending.
In fact, x,_; << x,, here means ®

() =)
14+ \"

o O+5504<<;ff“

n— 1

2 __
i e. -—-~/(" ])—(l-—l
n?

But, again by 10, 7, we have actually for every n > 1,

(=) >1—=1—

The scquence (x,) is thercforc monotone increasing.
As, in any case,

(1 + :l)" < (1 J- f)"“ e %, <Vn

we have, for every n, x, < ¥,, i. ¢. (x,) is also bounded and hence con-
vergent. As, finally, the numbers

o= () (2 ) = e

are all positive and (by 26, 1) form a null sequence, we conclude at once
that (x,,) has the same limit as (y,). Thus
limx, =limy, =e

And for this number e we have furthermore, as has appeared in the proof, in

o= etz (2] ™)

a nest of intervalb defining it. (It provides, for instance taking » — 3,
the inequality $% << e < 25%; we shall however become acquainted later
on (§ 23) with othcr sequences converging to e, which arc more convenient
for numerical calculation.)

This is the number e that (cf. p. 58) forms the base of the natural
logarithms. We shall accordingly agree to use the symbol log to mean
this natural logarithm to the base e, unless the contrary is expressly stated.

The fruitfulness of the first main criterion is duc above all to the
fact that it allows us to deduce the convergence of a sequence of
numbers from very few hypotheses, and these such as are usually very
easy to verify — namely, from monotony and boundedness alone. On
the other hand, however, it still relates only to a special, even though
particularly frequent and important kind of sequence, and therefore

5 Cf. footnote 3.
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appears theoretically insufficicnt. We shall therefore ask for a criterion
which enables us to decide quite gemerally as to the convergence or
divergence of any sequence. This is accomplished by the following

°Second main criterion (1% form).

An arbitrary sequence (x,) is convergent if and only if, given
e8>0, a number ny=n,(e) can always be assigned, such that for any
two indices n and W' both greater than n,, w: have in every case

o, —an]|<e. —
We first give a few

Explanations and Examples.

1. The remarks 10, 1, 3, 4 and 9 are also substantially applicable here;
and the reader is recommended to read them through once more in this con-
nection.

2. The criterion states — to put it in intuitive language: all z,'s with
very high indices must lie very close together.

8. Let zy=0, x; =1, and lct every term after these be the arithmetic
mean between the two terms which precede it, i. e. for n =2

Zpn—1+ Ty
=Ty

so that 2, =1%, 23=4%, #,= 5§, .... In this evidently nof monotone sequence it
is clcar, on the one hand, that the differences betwcen consecutive terms form
a null sequence; for it may be verificd quite easily by induction that®
R

211
and so tends to 0. On the other hand, between these two consecutive numbers
all the following ones lie. If therefore, after ¢ has been assigned >0, we

Tngg— Ty =

choose p so large that -231; < &, we have

lxn_xn’l<'

provided only #» and »’ are >>p. By the 2°! main criterion the sequence (z,)
is therefore convergent. The limit § also happens to be easily obtainable. A little
reflection in fact leads to the surmise that £ =2. In point of fact, the formula

can immediately be proved by induction and shows that @, —§ is actually a
null sequence.

Before trying to fathom the mecaning of the 27¢ main criterion
further, we proceed to give its
Proof. a) That the condition of the theorem — let us call it for
brevity its e-condition — is mecessary, i. e. that it is always fulfilled
T 41— %k , X — Tk~
+2 +_k 3 1
it follows that if proved for every n <k, it is true for n =%k +1.

¢ This is true for #=0 and 1. From zj o—2k4,=
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if (x") is convergent, is scen thus: If o, — &, then (x, - &) is a null
sequence; given ¢ > 0, we can so choose 5, that for every n > n,,

|z, — & is < —; . If besides n, we also have »n' > n,, then |x, — &|

&
'é‘:
|2, — w | = | @, — ) — (ow — )| S |2, — &+ 2w — | <g+g5=0¢
which proves this part of the theorem.

b) That the g-condition is also sufficicnt is not so easy to see
We again prove it constructively, by deducing from the sequence (z,)
a nest of intervals (J) and then showing that the number determined
thereby is the limit of the sequence. This is done as follows:

Any & > 0 being chosen, |z, — a,-| must always be < ¢ provided
only the indices #» and #” both exceed some sufficiently large value.
If we suppose the one fixed and denote it by p, then we may also
say: Given any & > 0, we can always assign an mdex p (actually, as
far to the right as we pleasc) so that for every n > p

is also < and so

|z, —z,[<e.
. 1 1 1
U we choose successively E=, g wr gEs v then we get:

1) There is an index p, such that
for every m > p,, we have |z, — =, |< %

2) There is an index p,, which we may assume > p,, such that
for every n > p,, we have |z, —ap | < »;—_,,

and so on. A kth step of this kind gives:
k) There is an index p,, which we may assume > p,_,, such that

for cvery n > p,, we have |z, — a‘,,k] < %

Accordingly we form the intervals J,:

1. The interval xp, — 3 ...z, - 3 call J; it contains all the z,'s
for » > p,, in particular, therefore, the point z, . It therefore contains
in whole or part the nterval , — ... %, -+ 1, in which all z's
with # > p, lic. As these points also lie in J,, thcy he in the common
part of the lwo intervals. This common part we denote

2) by J, and may state: J, lies in J, and contains all points z,
with # > p,. If in this result we replace p, and p, by p,_, and p,,
and denote therefore

k) by J, the portion of the interval Tp, — % ce a:pk+2ik which

lie.s in ],‘__1., we may then state: J, lies in J,_, and contains all
points z, with n > p,.
4 (G 51)
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But (]k) is then a nest of mtervals; for each interval lies in the
preceding and the length of ], is g;,;

Now if & is the number thus determined, we assert, finally, that

z,—&.

In fact, if an arbitrary ¢ > 0 be now given, we choose an index # so
large that %< g. We then have
o |z, — & isT<e,
since &, together with all #'s for n > p_. lies in J and the length
of J is <e. This proves all that was required’.

for every n > p

Further examples and remarks.

1. The sequence 48, 3 can easily now be seen to be convergent For
we have here, if #/ > n:

1 1 (—1»-n-1
Tn' = T = i<2n+1—§n+3+ ey +1 )'
If inside the bracket, we take the successive terms in pairs, we see (cf. later
81 ¢, 3) that the valuc of the bracket is positive, so that
1 1 (—1yr-n-1
x”'_2n+1_2n+3+"' + 2" +1 °
It we now let the first term stand by itself and tike the following terms in
pairs, we see further that

lxnl_

| 2 — = !
n n|<2'n—+—1-

Therefore |z, —z,| is <&, provided #» and #’ are both >§1;. The sequence
is therefore convergent.

2. If 2, = (1+%+---+%), we have already scen in 46, 3 that (z,) 1s
not convergent, With the aid of the 2°d main criterion, this 1s deducible fiom
the fact that here the g-condition is not satisfied for s<-;—. For however =,

may be chosen, we have for #n>n, and ' =2#% (also therefore > n)

1 1 1 1 1
—n—_ﬁ+n—_}_—2'+"'+2—;>”-2—n—§,

not therefore < 8. The sequence is therefore divergent, and in fact definitely
divergent, since it is evidently monotone ascending.

3. The previous example shows at the same time that the contrary of the
fulfilment of the s-condition is the following (cf. also 10, 12): Not for every
choice of §>>0 can 7, be so assigned that the e-condition is then fulfilled;
there exists on the contrary (at least) one particular number g, > 0 such that,

Tp! — Tn

? We shall become acquainted with other proofs of this fundamental cri-
terion. The proof given above leads immediately to the definition of the limit
by the aid of a nest of intervals. — A critical account of earlier proofs of the
criterion may be found in A. Pringshesm (Sitzungsber. d. Akad. Miinchen, Vol. 27,
p. 303. 1897).
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above every mumber my, however large (therefore infinitely often) two positive in-
tegers # and #’ may be found for which
|@p' — 0 | = 8,>0.

4. The 20 main criterion is now usually, after P. du Bois Reymond (Alige-
meine Funktionentheorie, Tubingen 1882), called the general principle of conver-
gence. In substance, it originated with B. Bolzano (1817, cf. O. Stolz, Mathem.
Ann. Vol. 18, p. 259, 1881) but was first made a starting point, as an cxpressly
formulated principle, by 4. L. Cauchy (Analysc algébrique, p. 125).

Our main criterion may also be given somewhat different forms,
which are sometimes more convenient in applications. We supposc
the notation for the numbers # and %’ so chosen that »' > u, and
therefore we may wrte #’ = n -} k, where k is again a positive integer.
We then formulate thus the

O Second main criterion (Form 1a). 19.

The necessary and sufficient condition for the comvergence of the
sequence (x,) s that, given any & > 0, a number ny = n,(¢) can always
be assigned so that for every n > m, and every k > 1 we always have

Iwn+k"“xn| <E.

From this statement of the criterion we can draw further con-
clusions. If we suppose quite arbitrary natural numbers %, k,,..., &

y Ry e

chosen, then we must have, in view of the above, for every n > n,
lxﬂ+kn—xnl<8'
But this implies that the sequence of differences

dn = (xﬂ‘* ka ™ xn)
forms a null sequence. — In order to make ourselves more readily
understood, we will call the sequence (d,) for short a difference-sequence
of (z,). In it, d, is thcrefore the difference betwcen z, and some de-
finite later term. Our critenion may then be formulated thus:

©Second main criterion (2"? form). 50.

The sequence (x,) is convergent if and only if every one of its
difference-sequences 1s a null sequence.

Proof. The necessity of this condition we have just proved; we
have still to show that it is sufficient. We accordingly assume that
every difference-sequence tends to 0, and have to show that (x,) con-
verges. But if (z,) were divergent, there would, by 48, 3, exist a par-
ticular number &, such that above every number #,, however large,
two numbers # and #' =n -}k would always lie, for which the
difference

|20 4k — %o | Was 2.
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Since this must be the casc infinitely often, there would — in contradic-
tion to the hypothesis — exist difference-sequences 8 which did not tend
to 0; (x,) must therefore converge, q. e. d.

Remark. If (x,) 1s convergent, and we choose a particular difference-sequence
(d,), we therefore certainly have d, — 0. But it should be expressly emphasized
that from d,, — 0 alone the convergence of (x,) need not follow. On the contrary,
for this, 1t 1s only sufficient that every arbitrary difference-sequence (not merely
a particular one) should prove to be a null sequence.

If for instance the sequence (1, 0, 1, 0, 1, . . .) is considered, every difference-
sequence for which all &,’s (from some pont onwards) are even numbers 1s a null
sequence. Nevertheless the sequence 1n question is not convergent. Smmularly 1n

. . 1
the divergent sequence (x,) with x, =14+ 44 ... 4 . Y difference-scquence
for which the indices k,, are bounded forms a null sequence.

Extending somewhat further the last obtained formulation of the
criterion, we may finally formulate it thus:

°Second main criterion (34 form).

If vy, voy . « v, ¥y . . . is any sequence of positive integers ® which
diverges to -}- w, and ky, ks, . . ., k,, . . . are any positive integers (with-
out any restriction), and if we again call the sequence of differences

d" = Xty T Xy

for short a difference-sequence of (x,), then for the convergence of (x,)
it is again necessary and suflicient that (d,) is in every case a null sequence.

Proof. 'That this condition is sufficient is obvious from the pre-
ceding form of the criterion, since (d,) must, in the present case also,
always be a null sequence when v, is chosen == #. And that it is necessary
may at once be scen. For if £ 1s chosen > 0, there certainly exists, if
(x,) is convergent (v. Form 1a), a number m, such that for every n > m
and every k = 1, we have

| Xppr — 2, | <e.

As v, diverges — -}- o0, there must be a number n, such that

for n>mn, we have always v, >-m.

But then, by the preceding, we have, for n > n,, always

Ix"nﬂn - %, l - l dnl <g,

i. e. (d,) is a null sequence, q. e. d.

¥ For if we denote by n,, n,, n;, . . . the infinite number of values of n for
which that inequality (each time with a suitable choice of &) is assumed to be poss-
ible, a difference-scquence would exist whose 7', n,'", n,th, . . . terms were all in
absolute value 2> ¢, ~ 0. This could not then be a null sequence,

¥ Equal or uncqual, monotone or not monotone.
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§ 10. Limiting points and upper and lower limits.

The concept of the convergence of a sequence of numbers as
defined in the two preceding paragraphs admits of another, some-
what more gencral mode of trcatment, by which we shall at the same
time beccome acquainted with some other concepts, of the utmost
importance for all that comes after.

In 39, 6, we have already 1llustrated the fact of a given sequence
(z,) being convergent by saymg that every ¢-neighbourhood (however
small) of £ must contain all the terms of the sequence — with the possible
exception of a finite number at most. — There is therefore in every
neighbourhood of &, however small, certamnly an infinite number of
terms of the sequence. For this rcason, & may be called a limiting
point or point of accumulation of the given sequence. Such points
may, as we shall at once sce, occur also in the case of divergent
sequences, and we define thercfore quite generally:

ODefinition. A wnumber & shall be called a limiting point* of
a given sequence (%,) if every neighbourhood of &, however small, contains
an infinite number of the terms of the scquence; or, thercfore, if, for
any chosen &> 0, there is always an infinite number of indices #
for which

|2, —&| <.

Remarks and examples.

1. The distinction between thus definition and the definition of limit given
1n 39 lics, as already indicated, in the fact that here | ¢, — & | <Z ¢ needs to be ful-
filled not for cvery n after a certain point, but only for any infinitc number
of w’s, and thercfore 1n particular for at least one # beyond every n,. On the
other hand, in accordance with 39, the limit § of a conveirgent sequence (x,)
15 always a hmiting point of the sequence.

2. The scquence 6, 1 has the limiting point 0; 6, 4, the limiting points
0 and 1. (Every number which occurs an infinite number of times in a
scquence (x,) 1S tpso facto a liniting point.) 6, 2, 7 and 11 have no limting
point; 6, 9 and 10 have the himiting point 1.

3. We now form an example of more than illustrative significance: If p
1s an integer == 2, there is obviously only a fimite number of positive fractions
for which the sum of numerator and denomunator = p, namely the fractions

—1 --2 1
Z’—l_—’ ?—§~ i Of thesc we suppose left out all those which are not
in their lowest terms, and now consider in succession all the fractions thus
formed for p=2,3,4,.... This gives the scquence, beginning with

1 1 3 2 1
:'Q‘:sv_3‘,4: 2»‘3’: Tr-'-;
which contains all positive rational numbers. 1f alter cach of these numbers
we insert the same number with sign changed and start with 0 as first term,
we have in the sequence

(a) 1,2

* German: Hiufungswenrt, Haufungspunkt or Hiufungsstelle. (Tr.)

52.

33.
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. 1 1 . 1 1
(b) 0, 1, '—1, 2; —2, 2‘» '—'"2‘1 3: '—37 ‘3'» - 3’ 4: "’4;
8 .3 2 _2 1
20 T3 T g 4

thus formed obviously all rational numbers occurring, each exactly once.

For this remarkable sequence every real number is a limiting point; for
every neighbourhood of every real number contains an infinity of rational
numbers (cf. p. 12).

4. We shall frequently make usc of the principle of arrangement in order
applied in this example We therefore formulate it somewhat more generally:
Suppose that for every %k of the series £ =0, 1, 2, ... a sequence

xék), x{k)r xék)’ L (:=0,1, 2, -

is given. We can then, tn many different ways, form a sequence (z,) which con-
tains every tevin of each of these sequences and contains 1t exactly once.

The proof consists simply 1n assigning a sequence (x,) which fulfils what
is required. For this purpose we write the given sequences in rows one be:
low the other:

0, 0 (0 0
xé), a‘i), .15), ey :c,('),

1 1 1 a
M, ™, =, ..., D, ...

:L'(()k), Il(_k), xé"), .o e uy 3‘,('”,

e e o o« e o e & ® .+ e o e e o

The “diagonal” of this system which joins the element x(()”) to the element x,(,o’

then contains all elements x'(.k) for which 24 #n=p, and no others. They are

p 41 in number. These terms we write down in succession, taking p=0,1,2, ...,
and describe each of the diagonals say from bottom to top. Thus we obtain

the sequence
2
2, =0, 20, 22, 2, 20, 2B O, ...,
which evidently fulfils the requirements. (Arrangement by diagonals¥*).

Another arrangement frequently used is that “by squares”. Here we
first write the elements xé”’, z}”), v, xz‘,p) of the p* row, then the elements

standing vertically above x;p) in the above system: x;)”"l), ...,x},‘”. These

groups of 2p + 1 terms are then written down in succession for p=0,1,2, ...,
and this gives, beginning with

1 2 2
z, :v(()”, N ) z{, xé’, zl(z), =P, =z, x.go’, xés), ..

the arrangement by squares **.
If some or all of the rows in the above system consist of only a finite

number of terms, or if the system consists of only a finite number of rows,
then the arrangements described above undergo slight and immediately ob
vious modifications.

* German: Anordnung mach Schrdglinien. (Tr.)
* German: Anordnung nach Quadraten. (Tr.)
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5. An example similar to 8. is the following: For every p = 2 there are
exactly p —1 numbers of the form —;—-{-% for which the sum of the positive

integers k and m is equal to p. If we suppose these written down in succession,
for p=2, 3, 4,..., we obtain the sequence

9 3 3 4 1 4 5 & 5
1) 9 ’ 2 ) 3 ) N 3 ’ 1 > 6 ) —“‘G y ese @
. o 1 1 1
We find that this scquence has the limiting pomnts 0, 1, o g g

and no others,

6. As in the case of the limit of a convergent sequence, the limiting
points of an arbitrary sequence may very well not belong to the sequence
itself. Thus in 3. the irrational numbers, and in 5. the value 0, certainly do
not belong to the sequence concerned. On the other hand, in both cases the
value }, for instance, is both a hmiting point and a term of the sequence.

We proceed to give a theorem which 1s fundamental for our
purpose, due originally to B. Bolzano1°, though its significance was first
fully recognised by K. Weierstrass ‘.

OTheorem. Euvery bounded sequence possesses at least ome limit-
ing point.

Proof. We again determine the number in question by a suitable
nest of intervals. By hypothesis there exists an interval J, which
contains all the terms of the given scquence (x,) To this nterval
we apply the method of successive bisection and designate as J, its
left or right half according as the left half contains an infinite
number of the terms of the sequence or mot. DBy the same rule we
designate a defimte half of J, as J,, and so on. Then the intervals
of the nest () so formed all have the property that an infinite
number of terms is contained in each, whilst to the left of their left
endpoint there is always at most a finite number of pomts of the
sequence. The point & thus defined is obviously a lmiting point;
for if ¢ > 0 is given arbitrarily, choose from the succession of inter-
vals J one, say ], whose length is < ¢. The terms of (z,), in
number infinite, which belong to the interval J, then lie ipso facto
in the g-neighbourhood of &, — which proves all that we require.

The similanty of the definitions of limiting point and limit (or
limiting value) in spite of the difference emphasized in 53, 1 (“every
limit is also a limiting point, but not conversely”) naturally creates
a certain relationship between them. This is elucidated by the
following

.

10 Rein analytischer Beweis des Lehrsatzes, dafi zwischen je zwey Werthen,
die ein entgegengesetztes Resultat gewiihren, wenigstens eine reelle Wurzel
der Gleichung liege, Prag 1817.

1 In lis lectures.
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OTheorem. Every limiting point & of a sequence (x,) may be re
garded as the limit of a suitable sub-sequence of (x,).

Proof. Since for every ¢ > 0, we have, for an infinite number
of indices, |:vn — &| < &, we have, in particular, for a suitable n =k,
|21, —&| < 1; for a suitable # =k, > k,, we have similarly |2, — &| < 3,
and in geneial, for a suitable n =%, > k,_;

|‘”k,.“§l<% (»=23,...).

For the subsequence (z,) = (;,) thus picked out, we have z,/— &,
as (x;, — &), by 26, 2, forms a null sequence.

The proof of the thecorem of Bolzano-Weierstrass gives occasion
for a further most important remark: The intervals J, of the nest
there constructed not only had the property that within them lay an
infinite number of terms of the sequence (z,), but as we noticed,
they had the further property that to the left of the left endpoint of
any definite one of the intervals there lay always a finite number
only of the terms of the scquence. Irom this, however, it follows
at once that no further lhimiting point can lie to the left of the limiting
point & alrcady determined. For if we choose any real number &' < &,
we have ¢ =} (& — &’) < 0; choosing an interval ]q of length < e, we
have the whole of the e-neighbourhood of the pomt & lying to the
left of the left endpoint of J and therefore containing only a finite
number of terms of the sequence. Therefore no point & to the left
of & can be a limting point of the sequence (z,), and we have the

Theorem. FEuvery bounded sequence has a well-defined least limit -
ing point (i. e. one farthest to the left).

If we interchange right and left in these considerations, we obtain 12
quite similarly the

Theorem. Euvery bounded sequence has a well-defined greatest limiting
point 13 (i. e. one farthest to the right).

These two special limiting points we will designate by a special
name.

Definition. The least limiting point of a (bounded) sequence will
be called* its lower limit or limes inferior. Denoting it by x,
we write
limz, =x or liminfz, =2x

n->xo n->w

12 Or by reflection at the origin.

13 These thecorems are again obvious except in the case in which the sequence
(x,,) has an infinite number of limiting points, like e. g. the sequence 53, 5. For
among a finite number of values there must always be both a greatest and a least.

* The German text has “untere Ilaufungsgrenze, unterer Limes, Limes inferior”,
(Tr.)



§ 10. Limiting points and upper and lower limits. 93

(possibly omitting the subscript m—co). If wm is the greatest li-
miting point of the sequence, we write

limz, =pu or limsupz, =pu

n->x n->w
and call u* the upper limit or limnes superior of the sequence (z,).
We have necessarily always » < u.

Since every g-neighbourhood of the point % contains an infinite
number of terms of the sequence (x,), and since on the other hand
only a finite number of terms of the sequence can lic to the left of
the left endpoint of any such neighbourhood, x (or similarly u) is also
characterised by the following conditions:

Theorem. The number x (or p) is the lower (or upper) limit of 59.
the sequence (x,) if and only if, given anm arbitrary &> 0, we have
still for an infinite number of n's,

x, <x+e (or >p—e),
but for at most a finite number 14 of u's,
x, <n—e (or >p-+ce)
Before we give a few examples and explanations of this theorem,
let us complete our dcfinitions for the case of unbounded sequences.

Definitions. 1. If a sequence is unbounded on the left, then we 60.
will say that — oo is a lmiting point of the sequence;-and if it is
unbounded on the right, we will say that oo is a luniting point
of the sequence. In these cases, however large we choose the number
G > 0, the sequence has an infinity of terms !* below — G or above 4 G.

2. If therefore the sequence (x,) is unbounded on the left, then — a0
is the least limiting point, so that we have to write

x»=Ilmz, = — co.
n->»+wo
Similarly we have to write
p=Ilimx, =4 co
n>+o

if the sequence is unbounded on the right. In these cases, nowever
large we choose the number G > 0, we have, for an infinity of indices,
r, <—Gorz, >-4G.

* The German text has ‘“‘obere Hcdiufungsgrenze, oberen Limes, Limes superior”.
(Tr.)

U Or: There is an index n, from and after which we never have x, < x — ¢
(> p + ¢) but beyond every index #, there is always another n for which x, < x + ¢
(> p—e).

18 Here therefore — and similarly in the following definitions — the portion
of the straight line to the right of + G plays the part of an s-neighbourhood of
+ o0, the portion to the left of — G that of an s-neighbourhood of — oo.

VPSRN
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3. If, finally, the sequence is bounded on the lcft, but not on the
right and (besides - o0o) has no other limiting pomnt, then + oo is
not only its greatest, but at the same time its least limiting point, and
we shall therefore equate the lower limit also to -+ oo:

x =limg, = + 00;
n->+o

and correspondingly we shall have to equate the upper limit to — oo,

pu=lmz, = — oo
. n>+o

if the sequence is bounded on the right, but not on the left, and (besides — o0)
has no other limiting point. The former (latter) case occurs if and only
if, given any G > 0, the inequality

% >G (x, <—G)
holds for an infinite number of n’s, but the inequality

%, <G (x,>—0G)
for at most a finite number of n’s, that is to say therefore when x, - + @
(— ), Cf. 63, Theorem 2.

Examples and explanations.

61. 1. In consequence of the preceding definitions, every sequence of numbers
now of 1tself defines, absolutely uniquely, two determinate symbols x and g,
(which may now, it is true, stand for + 00 or —oo, and which bear the re-
lation x =< p to one another 1%, And the following examples show that x and u
may actually assume all finite or infinite values compatible with the in
equahity » < u.

In fact, for the sequence we have

(Tys 2y 25, 40 0) x= | u=

1. »m=12234,... 4+ | +
2 @+ My=a+1, at2, a+~;—, a-t+4,... a |+
3. a,b,a b abd,... (a < b) a b
4. (a+(;n})fl)§a—-],a+~;,a—-:—li,a+-i—~,... a a
S. (1)yrem)=-1, +2, —3, +4,... —w | 100
6. (a—n"""")Y=a—1, a—-2, a—%, a—4,... — o0 a
7. (—n)=-1, -2, -3, ... —0 | —0

2. The reader should note particularly that it is not contradictory to
theorem 39 that an infimite number of terms of the sequence should lie to the
left of » or to the right of u. Thus for instance we have, for the sequence

1\ . ;
((— 1)"”1_ ), i. e. for the sequence — 2, +%, —%, +2—, —-g—, ... evidently

16 We say of every real number that it is <4 and > — o0, and for
this reason we occasionally designate it expressly as “finite”.,
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x=—1, p=41, and both to the left of x and to the right of u lies an
infinite number of terms of the sequence (and between x and u lies no term of
the sequencel). It is therefore not at all necessary that there should be only a
finite number of terms of the sequence outside the interval % ... ux. Thcorem
59 only asserts in fact that at most a finite number of terms of the sequence
can he to the left of x —¢ or to the right of u-+¢.

8. “A finite number of alterations” has no effect on the limiting points
of a sequence — nomne, in particular, on its upper and lower limits. These
therefore represent an ulfimate property of the sequence.

4. Since a sequence (z,) determines both the numbers x and u with
complete uniquencss, and since their value, in connection with our definition, was
also enclosed by a well defined nest of intervals, we have herein a new legi-
timate means of defining (determining, giving) real numbers: a real number
shall henceforth also be regavded as *‘gwven”, if 1t is the upper or lower himit of a
given sequence. This means of determining real numbers is evidently still more
general than thc one mentioned in 41, 1 since now the sequence utilised need
not even be convergent, or be subject to any restriction whatever!?.

As may be seen, in the light of 83, we have also the following

Theorem. The upper limit u of the sequence (x,), p=limzx,, is
also, in the case p == =+ 00, charactevised by the two following conditions:

a) the limit &' of every comvergent sub-sequence (x,') of (x,) s
invariably < u; but there exists

b) at least one such sub-sequence, whose limit is equal to u; —
and correspondingly for the lower limit.

A concept related to that of the upper and lower limits, though
one which must be sharply distinguished from it, is the concept of
upper and lower bounds of a scquence (x,), which is derived from
the following consideration: If no term of the sequence lies to the

right of ,u=li_mxn, so that for every n, x, <y, then p is a bound
above (8, 4) of the sequence, — but one which cannot be replaced
by any smaller one; g is thercfore in this case the least bound above.
But such a least bound also exists if therc is a term of the sequence
> u. For if for instance x, is > pu, then by 39 there is certainly
only a finite number of terms in the sequence which are >z, and
among these there is necessarily (8, 5) a largest one, say z,. We
then have, for every n, z, _S_xq, 1. e z, is a bound above of the se-
quence, — but again one, which cannot be replaced by any smaller
one. Ewvery sequence bounded on the right therefore possesses a definite
least bound above. Since, in the same way, every sequence bounded

17 Whereas therefore a nest of intervals (with rational endpoints) was at
first to count as the only means of defining a real number, we have now
deduced quite a series of other means which we now admit as equally legi-
timate: Radix fractions, Dedekind sections, nests of intervals with arbitrary
real endpoints, convergent sequences, upper and lower limits of a sequence In
all these cases, however, we saw how at once to assign a nest of intervals
(with rational endpoints) which encloses the given number.

62.
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on the left must have a definite greatest bound below, we are justified
in the following

Definition. We define as the up per bound * of a sequence bounded
on the right the least of its bounds above (invariably determinate by our pre-
liminary remarks), and similarly as the lower bound * of a sequence
bounded on the left the greatest of its bounds below. A sequence unbounded
on the right is said to possess the upper bound -}- oo, one unbounded on the
left, to possess the lower bound — wo.

The concepts of upper and lower limits are due to A. L. Cauchy (Analyse
algébrique, p. 132, Paris 1821) but werc first made generally known by P. du Bois-
Reymond (Allgemeine Funktionentheorie, Tubingen 1882). Both nomenclature
and notation have remained variable up to the present day. The particularly con-
venient notation hm and lim used in the text was introduced by A. Pringsheim
(Sitzungsber. d. Akad. zu Munchen, vol. 28, p. 62. 1898), to whom the designations
of upper and lower hinuts are also due **.

It should bc expressly pointed out again that the upper (and similarly the
lower) bound 1s not necessarily determined by the tail-end of the sequence. Thus

1\ . .
the upper bound of the sequence (’—1) is 1, and 1s obviously altered if the first term of
the sequence 1s altered.

The previous investigations of this paragraph were carried out quite
independently of the considerations on convergence of §§ 8 and 9, and
give us, for this very rcason, a new means of attacking the problem of
convergence A of §9. It may be shewn that the knowledge of the lower
and upper limits » and p of a sequence — the knowledge, thercfore, of
two numbers whose existence is a priori ensurced — entirely suffices to
decide whether or how the sequence converges or diverges. We have
in fact the thcorems

Theorem 1. The sequence (x,,) is convergent if and only if its lower and
upper limits x and p are equal and finite. If X is the common value (different,
therefore, from + o or — o0) of » and u, then x, — A.

Proof. a) Letx = p and their common value = A, Then, by 59,
given g, therc is at most a finite number of #»’s for which

X, <k—e=A—c¢g,

* German: Obere, untere Grenze {frontier). The word ‘“‘frontier’ is not usual
in English writings, though sometimes found in French. The distinction between
any bounds and the marrowest bounds is emphasized chiefly by the article the in the
latter case; the upper bound and the lower bound always denoting the latter. For
fear of ambiguity, however, the word “bound” in the general sense is avoided as
much as possible in Enghsh text-books. (T'r.)

** We have omitted reference here to the untranslated term “Haufungsgrenze”
of the German text: “Die im Texte benutzte ausfuhrlichere Bezeichnung Haufungs-
grenze soll nur den Unterschied zu der soeben definierten unteren und oberen
Grenze starker betonen”. (Tr.)
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and similarly at most a finite number of #’s for which
X, =pte= Ate.
For every n == some n,, we therefore have
A—e<wx, <<A+g or |x,—2A|<g

i. e. the sequence is convergent and A is its limit.
b) If, conversely, lim x, = A, then, given € > 0, we have, for every
n>ny(e), A —e <x, <A+ e Therefore the inequality

x, <A+ (>A—2
is satisfied for an infinite number of #’s, but the inequality
X <A—e (>A+¢)

for at most a finite number of #’s. T'he former inequalities (with <C) imply
x = A, the latter p =— A. This proves all that we required.

Theorem 2., The sequence (x,) is definitely divergent if, and only if,
its upper and lower limits are equal, but have the common value '8 +- oo or
— . In the former case it diverges to 4 oo, in the latter to — oo.

Proof. a)If x=pu=- o0 (or — o), then this signifies, by
60, 2 and 3, that, given G > 0, we have from and after a certain #,

x,>+G (<-G);

we thercfore then have limx, = - o (— o).

b) If, conversely, lim x, — - o0, then, given G >0, we have for
every n after a certain ny, %, > -~ G; thercfore

the incquality x, << 4 G is satisfied for at most a finite number of
n’s, whereas

the inequality x, > + G is satisfied for an infinite number of #’s.
But this implies, by 60, that x = -+ o0 and #pso facto also p = 4+ oo.
Therefore » == p = - . And in precisely the same way we show that
if limx, = — o0, then x = p = — oo.

From thesc two theorems we at once deduce further:

Theorem 3. The sequence (x,) s indefinitely divergent if and only if
its upper and lower limits are distinct.

The content of these threc theorems provides us with the following

Thivd main critevion for the convergence or divergence of a sequence: 64.

The sequence (x,) behaves definitely or indefinitely, according as its
upper and lower limits are equal or distinct. In the case of definite behaviour,
it is convergent or divergent, according as the common value of the upper
and lower limits is finite or infinite.

18 Tn occasionally speaking of the symbols 4+ o and — o (which are cer-
tainly not numbers) as ‘‘values”, we make use of a mere verbal licence, to which
no importance should be attached.
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The following table gives a summary of possibilities as regards the
convergence or divergence of a sequence and of the designations used
in this connection.

% =u, both =43 4 0O x=pn=+4+00 or — 00 <l pu

convergent (with limit 1) | divergent (or possibly: con-
vergent) towards (or: with

n }:Tw’;" =1 limit) + 00 or — 00; in both indefinitely
cases: defimtely divergent. divergent
T, >4 Iim 2, =+ 00 or — 00
(for n — -+ 00) x,—>~+ 00 or — Q0
convergent divergent

indefinite

definite behaviour behaviour

§ 11, Infinite series, infinite products, and infinite
continued fractions.

A numerical sequence can be specified in the most diverse ways;
this is sufficiently evident from the examples which have been given,
In these, however, for the most part, the nth term x, was for conveni-
ence given by an explicit formula, enabling us to calculate it at once.
This is by no means the rule, however, in the applications of sequences
in all parts of mathematics. On the contrary, the sequences to be examined
generally present themselves indirectly. Besides several less important
kinds, three types especially come into consideration; of these we will
now give a brief discussion.

66. I. Infinite series. These are sequences given in the following
way. A sequence is at first assigned in any manner (usually by direct
indication of its terms), but without being intended itself to form the
object of discussion. From it a new sequence is to be deduced, whose
terms we now denote by s,, writing

So=Qy; Sy =ay+ a,; §,=a,+ a, + a,;
and generally
Sp,=etata,+...+a, (@®=012.6.)).
It is the sequence (s,) of these numbers which then forms the object of
investigation. For this sequence (s,) we use the symbolical expression

67. a) a,ta +a,+...4+a,+ ...
or more shortly
b) . ata, +a,+t...

or still more shortly and more expressively:

®
Za,
n-0
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and this new symbol we call an Znfinite series; the numbers s, are
called the partial sums or sections* of the series. — We may therefore
state the

° Definition. An infinite series is a symbol of the form 68.
Z‘a,, or ag--a,“+a,+ ...
n--0

or

a+a,+ay+...4a,+...
by which is meant the sequence (s,) of the partial sums
Sp—dg-Fay + ...+ a, (n=0,1,2,...)

A
Remarks and Examples.

1. The symbols

1

n—a

own 0 on
ay+ Zay; ay |l ay-t Fayy ayta ... ta,t+ 2 oa,
n 1 2 n mi

on
shall be entirely equivalent to Za,. The index 7 1s called the index of summation.
n=10

Of coursc any other letter may take 1ts place
a0 2]
Zay; a(,+a1+a2+2ae; etc.,
v—0 e -3

The numbers a, are the terms of the series. They need not be indexed from 0 on-
wards. Thus the symbol

]
Za, denotes the sequence (ay, a, + ap, a, + a; + a,,...)
A=1
and more generally,

a,
k=p ®

denotes the sequence of numbers s,, 5,4, $,,2, . . . given by
Sp=a,+a,,+...+a, for n=p,p41,
Here p may be any integer E 0. Finally we also write quite shortly
PN ay

when there is no ambiguity as to the values which the index of summation has to
assume, — or when this 1s a matter of indifference.

2. Forn=0,1,2,...leta,be

1 1
/f—'z,.: b)=m; o) =1; d) =mn
9 =G5 D=0 9 =(1est+;
1

h)

Ta@Fn@FaFD o = a real number %= 0, — 1, — 2, ,

* German: Teilsummen oder Abschnitte.
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We are then concerned with the infinite series

a)n‘:{)z":1+2 '_Z+'g‘+ v
1 1 1 ]
b)ﬂ%(”+13mj— istgstggt
) 1+14+1+4-25 d)O41+2+34--+3
] (—___1)7 — 1- .l_}. .
e)a:—z(/)—""—i'l_ '2"{' 3 4+ ;

1) f(~1)151—1+1—1+—---: ) 1-3+4+5-T4+9—+...;

1 1 1 1
h>2(a+k)(a+k+l) wrD @ DErd)  er)E@rn T

And we have in these simply a new — and as will be seen, very con
venient — symbol for the sequences (s,, Sy, S3. »+.) for which s, is

1 1 1 1
a) =1+.2+_+...+,,.;=2_§'_‘; (\

11 1
b =1ztas™t 34+ TEFDETY

1\ (1 1 1 1.
c)=n+l; d)—_—".t_(né_*__ll;

o _1__+__+...+€ +)1 (ct. 45,3 and 48, 1);

= }[1 — (—1)**1] (see footnote 19);

8) = (=" (n + 1);

B~ T+ : SR !
Tal@F+ D) @+ D@+ " T e+ n)(ednF1)

a0+ G- i)t (;rn,“ )
ﬁ-:z+ 1

I

.
.—d

3. We emphasise above all that the new symbols have no significance in them-
selves. Addition, 1t 1s true, 1s a well-defined operation, always possible, with regard
to two or any particular number of values, in one and only one way. The partial
sums s, therefore, however the terms a,, may be given, have under all circumstances

k<3
definite values. But the symbol Z2a, has in itself no meaning whatever, — not
n=0
even in a case as transparent, seemingly, as 2 a; for the addition of an infinite number
of terms is something quite undefined, something perfectly meaningless. It must

be considered substantially as a convention that we are to take the new symbol
to mean the sequence of its partial sums.

1 Equal to 1 or 0, according as » is even or odd.
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4, The reader should take particular care to distinguish a series from a se-
quence 2°: A series is a new symbol for a sequence deducible by a definite rule from it.
5. The symbol with the sign of summation “2” can of course only be used
when the terms of the scries are formed by an explicitly assigned law, or when a
particular notation is available for them. If for instance the numbers
1 1 1 1 1 1 1
2 3 5 7T I o our
or the numbers
1 1 1 1 1 1 1
3 7T 8 15 20 26 31 ¢

are to be the terms of a scries, we shall have to use the explicit symbols

1,1, 1 1 1 1
gty tgsgta byttt
and .
11 1, 1,1 1
glhatgtiztatogtart

and write down as many terms as necessary, till we may assume that the reader
has recognised the law of formation. For the first of these two series, this may
be expected after the term ';: the terms are the reciprocals of the successive prime
numbers. In the second example 1t will not be known even after the term }; how
to proceed: the denonunators of the terms are meant to be the integers of the form

p1—1 Bya=234,...)
in order of magnmtude.

We now adopt the further convention that all expressions used to
describe the behaviour, in respect of convergence, of a scquence are to
be carried over from thc sequence (s,) to the infinite scries X' a, itself.
Thereby we obtain in particular the following

Definition. An infinite series X' a, is said to be convergent, definitely 69.
divergent or indefinitely divergent, according as the sequence of ils partial
sums shows the behaviour indicated by those names. If, in the case of con-
vergence, s, —> S, then we say that s is the value or the sumn of the convergent
infinite series and we write for brevity

-
Za =s,
v -0

so that 3 a, denotes not only the sequence (s,) éf the partial sums, as laid down
v—=0
in the preceding definition, but also the limit lims,, when this exists?'. In
the case of definite divergence of (s,), we also say that the series is definitely
divergent and that it diverges to + o or — o© according as s, — +
or — —oo. If finally, in the case of indefinite divergence of (s,), » and
are the lower and upper limits of the sequence, then we also say that the series
is indefinitely divergent and oscillates between the (lower and upper) limits
% and p.

20 The additional epithet of “infinite’” may be omitted when obvious.
21 Exactly as we may now, 1n accordance with the footnote 9 to 41, 1, write

(5a) = s
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Remarks and examples.
1. It is at once obvious that the series 68, 2a, b and h converge and have

for sums 42, 1 and —1- respectively; 2c and d are definitely divergent towards
o

+o00; 2e is convergent and has for sum the number s defined by the nest %2
(sap—1 ] 52); 2f, finally, oscillates between 0 and 1, and 2g between —o0 and
-+ co.

2. As regards the term sum the reader must be expressly cautioned about
a possible misunderstanding: The number s is not a sum in any sense previously
in use, bul only the himit of an wnfinite sequence of sums; the equation

)
2a, =8 or a+ta+---ta,+---=5s
n=0

is therefore neither more nor less than another way of writing
lims,=s or s,—s.

It would thereforec seem more appropriatc to speak not of the sum but of the
hmit or value of the series. However the term “sum” has remained in use
from the time when infinite series first appeared in mathematical science and
when no one had a clear notion of the underlying limiting processes or,
generally, of the “infinite” at all.

8. The number s s therefore no sum, but is only so named, for the sake
of brevity. In particular, calculations involving series will in no wise obey
all the rules for calculating with sums. Thus for instance in an (actual) sum
we may introduce or omit brackets in any manner, so that for instance,

1-14+1-1=1-)+(@1-1)=1—-(1—-1)—1=0.

But on the contrary
SEDr=1—141—14—ee
n=0

is mot the same thing as

A=1)+ A =D+ A= 1) - =04+0+040e
1—(1—-)—(1=1)=(l=1)— -+ =1—0—0—0—--..,

Nevertheless, calculations involving series will 'have many analogies with those
involving (actual) sums., The existence of such an analogy has, however, 1n
every particular case to be first established.

4. It is also, perhaps, not superfluous to remark that it is really quite

or as

oo
paradoxical that an infinite series, say 251;, should possess anything at all

n=0
7)+ (g=g) et (@) - ¢
22 = —_—— ——m —a—— soe — e e | == ——
In fact szk_l.-(l 5 + 3% + + 5A—1 " 9% 12
1 1 - g
+3—.4+"'+(_2_k—:'i)_27z’ so that s“< Sg <85 L+ o+ similarly from s,,

1 1 (1 1 ) .
_1—(—2——?)—---— ﬁ—é—m we deduce that sy > s, > s,>> +++. Finally

91— Sap_1 =+2_k_l:-—1’ i. e. positive and tending to 0. By 46, 4 and 41, 5,

we have s, —>(sy;._; | 5;)- Cf. 8le, 3 and 82, 5 where these considerations
are generalised.
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capable of being called its sum. Let us interpret it in fourth-form fashion by
shillings and pence: I give some one first 1 s.,then !/ys., then !/, 5., then /g s., and
so on. If now I never come to an end with these gifts, the question ariscs, whether
the fortune of the recipient must thereby nccessarily increase beyond all
bounds, or not. At first one has the feeling that the former must occur; for
if I continue constantly adding something, the sum must — it seems — ulti-
mately exceed every value. In the case under consideration this 1s not so,
since for every =

1.1 1 1 .
sn=l—i——2+4+...+2—,;»—~2—2nremams<2. -

The total gift therefore never reaches even the amount of 2s. And if we now, in

spite of this, say that 2 2ln is equal to 2, then we are really only using an abbreviated

expression for the fact that the sequence of partial sums tends to the limit 2. — Cf.
the well-known paradox of Achilles and the tortoise (Zenon’s paradox).

5. In the case of defimte divergence we can also, in an extended sense, speak
of a sum of the series, which then has the “value’ 49 or —c0. Thus for instance

the series
21 _ 1 1 1
n£11;1F2+3_I4+ /

is definitely divergent, and has the ‘“‘sum” -}- 00, because by 46, 3 its partial 3 sums
- + o0. We write for short

s

1
_=+w_ v
n=1 " -
which is only another mode of writing for
1 1
(O SO B
im {14 9 + + ” + oo
6. In thc case of an indefinitely divergent series however, the