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Preface

Abu Ja’far Muhammad ibn Musa al-Khwarizmi
(whose name gives us the word ‘algorithm’) wrote
an algebra textbook which included much of what is
still regarded as elementary algebra today. The title
of his book wasHisab al-jabr w’al-muqabala. The
word al-jabr means ‘restoring’, referring to the pro-
cess of moving a negative quantity to the other side of
an equation; the wordal-muqabalameans ‘compar-
ing’, and refers to subtracting equal quantities from
both sides of an equation. Both processes are famil-
iar to anyone who has to solve an equation! The word
al-jabr has, of course, been incorporated into our lan-
guage as ‘algebra’.

In a similar vein, Doctor Johnson gave this definition of “algebra” in hisDic-
tionaryof 1755:

This is a peculiar kind of arithmetick, which takes the quantity sought,
whether it be a number or a line, or any other quantity, as if it were
granted, and by means of one or more quantities given, proceeds by
consequence, till the quantity at first only supposed to be known, or
at least some power thereof, is found to be equal to some quantity or
quantities which are known, and consequently itself is known.

Since the time of Al-Khwarizmi and Johnson, the subject of algebra has changed
considerably. Firstly, we no longer restrict ourselves to considering just numbers;
the variables and symbols in our equations may be vectors, matrices, polynomi-
als, sets, or permutations. Secondly, the way we look at these equations has also
changed. As far as possible, we don’t care what the variables stand for, but only
the “laws” that they obey (associative, distributive, etc.); so that we can prove
something about a system satisfying certain laws which will apply to systems of
numbers, matrices, polynomials, etc. We sometimes refer to this as “abstract al-
gebra”.
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These notes are intended for the course MAS117,Introduction to Algebra, at
Queen Mary, University of London. The course is to be given for the first time in
the spring semester of 2007.

The course is intended as a first introduction to the ideas of proof and abstrac-
tion in mathematics, as well as to the concepts of abstract algebra (groups and
rings). TheUndergraduate Studies Handbooksays:

This module is an introduction to the basic notion of algebra, such as
sets, numbers, matrices, polynomials and permutations. It not only
introduces the topics, but shows how they form examples of abstract
mathematical structures such as groups, rings, and fields and how al-
gebra can be developed on an axiomatic foundation. Thus, the notions
of definitions, theorem and proof, example and counterexample are
described. The course is an introduction to later modules in algebra.

The course replaces the earlier courseDiscrete Mathematics, with which it
shares some material. But since it is a new course, I have re-written the notes
from scratch. Of course, these notes arenot a substitute for the lectures!

The exercises at the ends of the chapters vary in difficulty from routine to
challenging. To a first approximation, the easier exercises come first.

If you enjoyed this course, the next step is MAS201,Algebraic Structures I.
You can also find a set of notes for this course on my web page.

This set of notes is a slightly revised version of the notes which were available
during the course. I am grateful to Matilda Okungbowa for a number of correc-
tions.

Note: The pictures and information about mathematicians in these notes are
taken from the St AndrewsHistory of Mathematicswebsite:
http://www-groups.dcs.st-and.ac.uk/~history/index.html

Peter J. Cameron
25 June 2007
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Chapter 1

What is mathematics about?

There is a short answer to this question: mathematics is aboutproofs. In any
other subject, chemistry, history, sociology, or anything else, what one expert says
can always be challenged by another expert. In mathematics, once a statement is
proved, we are sure of it, and we can use it confidently, either to build the next
part of mathematics on, or in an application of mathematics.

1.1 Some examples of proofs

In this part of the course we are going to talk about how to prove things. Let us
start with an easy theorem.

Theorem 1.1 Let n be a natural number. Then n2 is odd if and only if n is odd.

If you know what the words in the theorem mean, you might try a few cases,
to get a feel for what the theorem is about:

1 is odd 12 = 1 is odd
2 is even 22 = 4 is even
3 is odd 32 = 9 is odd

and so on. It seems to work. But this is not yet a proof; we are not convinced that
if you went on far enough, you might find a number for which the theorem was
not true.

First let us read the theorem more carefully.

Natural number This means one of the counting numbers, 0,1,2,3,4, . . .. (Ar-
guments still occur among mathematicians about whether 0 should count as a nat-
ural number or not. This is just a matter of names, and doesn’t affect the theorem
very much. We will say that 0 is a natural number.)

1



2 CHAPTER 1. WHAT IS MATHEMATICS ABOUT?

If and only if We will come back to this later. For now, it means that, for any
value ofn, either the two statements “n is odd” and “n2 is odd” are both true, or
they are both false. In other words,

• if n is odd, thenn2 is odd;

• if n2 is odd, thenn is odd.

This shows us that we have two things to show, in order to prove the theorem.
The first one looks fairly straightforward, but the second seems more difficult. But
we can turn it round into something simpler. The statement

if n2 is odd, thenn is odd

is logically the same as the statement

if n is even, thenn2 is even.

So we have to prove the two statements:

• if n is odd, thenn2 is odd;

• if n is even, thenn2 is even.

So let’s try to prove them.
We have one more thing to consider. What are even and odd numbers, math-

ematically speaking? An even number is one which is divisible by 2 exactly; in
other words,n is even if it can be written asn = 2k for some natural numberk.
An odd number is one which leaves a remainder of 1 when divided by 2; in other
words,n is odd if it can be written asn = 2k+1 for some numberk.

So to prove the first statement, we assume thatn is an odd number, and have
to show thatn2 is an odd number. That is, we assume thatn = 2k+ 1 for some
natural numberk. Then

n2 = (2k+1)2 = 4k2 +4k+1 = 2(2k2 +2k)+1 = 2m+1,

wherem= 2k2 +2k. Son2 is odd.
For the second statement, assume thatn is even, that is,n= 2k for some natural

numberk. Then
n2 = (2k)2 = 4k2 = 2(2k2) = 2m,

wherem= 2k2; son2 is even.
Now we have finished the proof, and we are sure that the theorem is true for

all natural numbersn.



1.1. SOME EXAMPLES OF PROOFS 3

Now let’s use this theorem as a
building block in a very famous
theorem, proved by Pythagoras,
who has some claim to be the first
mathematician ever (that is, the first
person to insist that mathematical
statements must have proofs). It
was Pythagoras who invented the
words “mathematics” and
“theorem”.

Theorem 1.2 The number
√

2 is irrational.

First we have to examine what the theorem means. The number
√

2 is a pos-
itive real numberx such thatx2 = 2. A rational number is a number that can be
expressed as a fractiona/b, wherea andb are integers, that is, natural numbers or
their negatives.

Now my calculator tells me that
√

2 = 1.414213562. If this is right, then
Pythagoras is wrong, because this means that

√
2 =

1414213562
1000000000

.

But it turns out that the calculator is wrong, because it also tells me that

(1.414213562)2 = 1.999999998944727844,

which is close to 2 but not exactly 2. Pythagoras claims that, no matter how
accurately the calculator does the sum and to how many places of decimals it
expresses the answer, it will never get the exact value of

√
2.

So how did Pythagoras prove his theorem? He used another important tech-
nique:

Proof by contradiction If I am trying to prove a statementP, I have succeeded
if I can show that the assumption thatP is false leads to a contradiction, a logical
absurdity. For this shows thatP is not false, that is, it is true.

So we prove Pythagoras’s theorem by contradiction; we assume the falsity of
what we are trying to prove and head for a contradiction. That is, we assume that

√
2 is rational.



4 CHAPTER 1. WHAT IS MATHEMATICS ABOUT?

That is, √
2 =

m
n

for some natural numbersm and n. Now, in a fraction like this, if there is a
common factor ofm andn, we can divide it out, and assume that they have no
common factor. (For example,15

10 = 3
2.)

Now take our equation. Square roots are awkward; it usually simplifies an
equation if you can get rid of them. We can easily do this by squaring both sides
of the equation, to get

2 =
m2

n2 ,

or in other words,
m2 = 2n2.

This equation tells us thatm2 is even, since it is 2k wherek = n2. Now we are able
to use Theorem 1.1, since we already proved this. Sincem2 is even, necessarilym
is even; saym= 2p for some natural numberp. Substituting this into the equation
gives

4p2 = 2n2,

and cancelling a factor 2 gives
2p2 = n2.

Now we can “do it again”. The last equation shows thatn2 is even, so thatn is
even, sayn = 2q. So our original fraction for

√
2 is

√
2 =

m
n

=
2p
2q

.

We can cancel the 2 to get a simpler fraction for
√

2.
But stop and remember what we are doing. We started off by saying that we

can assume thatm and n have no common factor, and we ended up with their
having a common factor of 2. So we have reached a contradiction.

According to the principle of proof by contradiction, our assumption that
√

2
is rational must be wrong, so that

√
2 is irrational, as Pythagoras claimed.

Now let us have another famous example of a proof by contradiction. We will
prove that the prime numbers go on for ever; there is no largest prime. (Recently,
a computer search found a previously unknown prime number bigger than any
others found so far. A journalist got the idea that they had found “the largest
prime number”, and phoned one of my colleagues for a comment. What would
you say if this happened to you?)
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This beautiful proof was discovered
by the Greek geometer Euclid, who
wrote one of the world’s most
successful textbooks ever, which
was used for nearly two thousand
years.

Theorem 1.3 There are infinitely many prime numbers.

A prime number is a natural number which is divisible only by itself and 1.
So 2, 3, 5 and 7 are prime numbers; 4 is not, since 4= 2×2. By convention, we
say that 1 is not a prime number, even though it satisfies the condition of having
no divisors except itself and 1; this is just a convention, and we will see the reason
for it later. Now if the numbern is not prime, it must be divisible by some prime
number smaller thann. (Again, we will see why later. This is not meant to be
obvious!)

We prove Euclid’s theorem by contradiction. That is, we assume that there are
only finitely many prime numbers. Then we can make a list of prime numbers:

p1, p2, p3, . . . , pk

are all the prime numbers.
Let n be the number that we get when we multiply all of these primes together

and add 1:
n = p1p2p3 · · · pk +1.

Now there are two cases to consider: eithern is prime, or it is not. We need to
show that either case leads us to a contradiction.

Casen is prime: In this case, sincep1, . . . , pk are all the primes,n must be
one of them. But this is impossible, sincen is bigger than any of these primes.
(Remember how we formedn.)

Casen is not prime: Thenn must have a prime factor, which must be one
of the primesp1, . . . , pk. But n is the product of all the primes plus one; so if we
divide it by any of the primesp1, . . . , pk, we get a remainder of one. So this case
is also contradictory.

So, again according to the principle of proof by contradiction, the assumption
that there are only finitely many primes must be wrong; so there must be infinitely
many primes.
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1.2 Some proof techniques

Here are some words you’ll find in statements you are asked to prove.

If, implies, sufficient The three statements

If A, thenB

A impliesB

A is a sufficient condition forB

all have the same meaning. They mean, “ifA is true, thenB is true”.
Look more closely at this. How could this statement fail to be true? The only

way it could fail is if A is true andB is false. (IfA is false, then the statement is
correct no matter whetherB is true or false.) This seems a bit odd, sometimes, so
let us take an everyday example. Suppose I say to you, “If it is fine tomorrow, we
will go for a picnic.” The only situation in which my statement is false is if it is
fine tomorrow and we don’t go for a picnic; if it rains tomorrow, my statement is
technically correct (though maybe not helpful!)

So how do we prove “ifA, thenB”? The obvious way is to assume thatA is
true, and deduce thatB must be true. Look back at our proof of “ifn is even, then
n2 is even” in the last section. We assume thatn is even and prove thatn2 is even.

Only if, is implied by, necessary This is exactly the reverse. The three state-
ments

B only if A

A is implied byB

A is a necessary condition forB

all mean the same as “ifB, thenA”.
The proof strategy, then, is to assume thatB is true, and deduce thatA must be

true.

If and only if, equivalent, necessary and sufficient We saw earlier that to say
“A if and only if B” means that eitherA andB are both true, or they are both false.
We also saw that there are two things we have to do to show this: “ifA, thenB”
and “if B, thenA”. This agrees with what we just learned about “if” and “only
if”. We sometimes also say “the statementsA andB are equivalent”, or “A is a
necessary and sufficient condition forB”.

Now we turn to some proof techniques.
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Proof by contradiction We already met this idea. In order to proveA, we can
assume thatA is false and deduce a contradiction (a statement that is logically
impossible). We saw two examples of this: the proofs of Pythagoras’ Theorem on
the irrationality of

√
2, and Euclid’s theorem that there are infinitely many primes.

Proof by contrapositive This is a fancy way of saying that “A implies B” is
logically equivalent to “not-B implies not-A”. We saw an example of this on
page 2. In order to prove the statement “ifn2 is even, thenn is even”, we proved
instead its contrapositive, the statement “ifn is odd, thenn2 is odd”.

Counterexamples Sometimes you will be given a general proposition, and asked
whether it is true or false.

Suppose for example you are trying to prove that some property holds for
every natural numbern. Let us call the propertyA(n). Now:

• If A(n) is true, then we have to give a general proof for it.

• If A(n) is false, we only have to give one value ofn for which it is not true.

For example, suppose we are considering the statement “every odd number is
prime”. SoA(n) would be, “if n is odd, thenn is prime”. If this happened to be
true, we would have to give a proof of it. But it is false, and all we need to say is
“the number 9 is odd, but is not prime since it is equal to 3×3”. In this case, we
say that 9 is acounterexampleto the statement that, ifn is odd, thenn is prime.

1.3 Proof by induction

This is a more specialised technique but is very important, so we give it a section
to itself.

Suppose that we are trying to prove a statement about all natural numbers.
Suppose thatA(n) is the statement about the particular natural numbern. The
strategy of proof by induction is to do the following:

(a) Prove the statementA(0), that is, the case whenn = 0.

(b) Prove that, ifA(n) is true, thenA(n+ 1) is true. In other words,assume
A(n) andprove A(n+1).

Here (a) is called “starting the induction”, and (b) is “the inductive step”.
This is a bit confusing at first, since in part (b) we seem to be assuming the

thing we are trying to prove, namelyA(n); an argument where you assume what
you are trying to prove can’t be valid, right? Well, in this case the argument is
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right. By (a), we know thatA(0) is true. Now by (b) (in the casen = 0), we know
thatA(0) impliesA(1), soA(1) must be true. By (b) again (withn = 1), we know
thatA(1) impliesA(2), soA(2) must be true. And so on. Given any numbern, we
can count up ton; and at each step of the way, (b) allows us to get from the truth
of each statement to the truth of the next.

Suppose that we have a line of dominos, as shown in the diagram.

�
�
�
�
�
�

�
�
�
�
�
�

HH

HH

If we push over the first domino, what will happen? It will knock over the
second, which will knock over the third, and so on; eventually all the dominos
will fall. This is like induction. The inductive step is the fact that each domino
knocks over the next one, and starting the induction is giving the first domino a
push.

We have a bit of freedom about starting the induction. Instead of 0, it might
be more convenient to start by provingA(1); this and the inductive step show that
A(n) is true for alln≥ 1. We’ll see an example soon where we start withA(2).

Here is an example. What is the sum of the firstn positive integers? Induction
doesn’t help usguessthe answer, but if we can guess it, induction will let usprove
that our guess is correct.

Theorem 1.4 The sum of the first n positive integers is n(n+1)/2.

Again we can check this for small values: for example,

1+2+3+4+5 = 15= 5×6/2.

Here is the proof by induction. LetA(n) be the statement

1+2+ · · ·+n =
n(n+1)

2
.

Starting the induction Forn = 1, the left hand side is 1, and the right-hand
side is 1×2/2 = 1; soA(1) is true.
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The inductive step Suppose thatA(n) is true; that is,

1+2+ · · ·+n =
n(n+1)

2
.

We have to prove thatA(n+1) is true.
Now the left-hand side ofA(n+ 1) is 1+ 2+ · · ·+ n+(n+ 1). Since we are

assuming thatA(n) is true, this is equal to

n(n+1)
2

+(n+1) =
n(n+1)

2
+

2(n+1)
2

=
(n+1)(n+2)

2
,

after a little bit of algebraic manipulation. But this is exactly the right-hand side
of A(n+1); it is what we get from the expressionn(n+1)/2 if we substituten+1
in place ofn. So the left and right sides ofA(n+1) are equal, andA(n+1) is true.

By induction, we have proved thatA(n) is true for alln≥ 1.

Unfinished business I told you earlier that if a natural numbern is greater than 1
and is not prime, then it is divisible by some prime number less thann. In other
words,

Theorem 1.5 Every natural number n> 1 has a prime factor.

We prove this theorem by induction. TakeA(n) to be the statement “every
natural numberk satisfying 1< k ≤ n has a prime factor”. We proveA(n) by
induction.

Starting the induction We can conveniently start the induction withn = 2:
there is only one numberk satisfying 1< k≤ 2, namelyk = 2, and it has a prime
factor, namely 2. [Note: We could start the induction withn = 1: there are no
numbersk satisfying 1< k≤ 1, and so any statement at all is true for all of them!
But you may feel uncomfortable with this sort of argument!]

The inductive step We assume thatA(n) is true, and we have to proveA(n+
1). In other words, we assume that every natural numberk satisfying 1< k≤ n
has a prime factor, and we have to prove that every natural numberk satisfying
1 < k ≤ n+ 1 has a prime factor. Well, we don’t have to prove it forall these
numbers, since the hypothesisA(n) shows that it is true fork = 2,3, . . . ,n; we
only have to prove it fork = n+1.

Case 1:n+1 is prime. If it is prime, it certainly has a prime factor, namely itself.
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Case 2:n+ 1 is not prime; son+ 1 = ab for some natural numbersa andb,
where neither factor is 1. Then each factor must be smaller thann+1. So,
for example, 1< a≤ n. By A(n), we know thata has a prime factorp. Then
p is also a factor ofn+1, and we have finished.

This completes the proof by induction.

Here is a variant on the principle of induction. Sometimes you might find this
easier to apply.

Suppose that we are trying to prove a statementA(n). We begin by arguing by
contradiction: we assume thatA(n) isn’t true for all values ofn, that is, there is
some value ofn for which it is false. So there must be a smallest value ofn for
whichA(n) is false. Now thisn has the property thatA(n) is false butA(m) is true
for all numbersm smaller thann – so we calln the “minimal counterexample” to
the statement we are trying to prove. (Some people calln the “least criminal”.) If
we can show that no minimal counterexample can exist, then we have proved that
A(n) is true for alln.

Why is this the same as induction? Well, letn be the minimal counterexample,
and remember we are trying to get a contradiction. Mayben = 0. To show a
contradiction, we have to show thatA(0) is true. Or mayben > 0. Now A(n)
is false andA(n−1) is true, so if we could show thatA(n−1) impliesA(n), we
would have a contradiction in this case too. So the two things we have to prove are
precisely the same as starting the induction and doing the inductive step in a proof
by induction. But sometimes it is easier to think about a minimal counterexample.

Take an induction proof and try writing it out in the “minimal counterexample”
style, and see which you prefer.

1.4 Some more mathematical terms

There are many other specialised terms in mathematics.

Theorem, Proposition, Lemma, Corollary These words all mean the same
thing: a statement which we can prove. We use them for slightly different pur-
poses.

A theoremis an important statement which we can prove. Apropositionis
a statement which is less important. (Of the five theorems we’ve seen so far, I
would normally call two of them “theorems” and the other three “propositions”;
can you guess which are which?) Acorollary is a statement which follows easily
from a theorem or proposition. For example, the statement

Let n be a natural number. Then n2 is odd if and only if n is odd.
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follows easily from Theorem 1 in the notes, so I could call it a corollary of Theo-
rem 1. Finally, alemmais a statement which is proved as a stepping stone to some
more important theorem. So I could have called Theorem 1 a lemma for the proof
of Theorem 2. (Remember how we used Theorem 1 in the proof of Theorem 2.)

Of course these words are not used very precisely; it is a matter of judgment
whether something is a theorem, proposition, or whatever. For example, there is a
very famous theorem calledFermat’s Last Theorem, which is the following:

Theorem 1.6 Let n be a natural number bigger than2. Then there are no positive
integers x,y,z satisfying xn +yn = zn.

This was proved fairly recently by Andrew Wiles, so why do we attribute it to
Fermat?

Pierre de Fermat wrote the
statement of this theorem in the
margin of one of his books. He
said, “I have a truly wonderful
proof of this theorem, but this
margin is too small to contain it.”
No such proof was ever found, and
today we don’t believe he had a
proof; but the name stuck.

Conjecture The proof of Fermat’s Last Theorem is rather complicated, and I
will not give it here! Note that, for about 350 years (between Fermat and Wiles),
“Fermat’s Last Theorem” wasn’t a theorem, since we didn’t have a proof! A
statement that we think is true but we can’t prove is called aconjecture. So we
should really have called itFermat’s Conjecture.

An example of a conjecture which hasn’t yet been proved isGoldbach’s con-
jecture:

Every even number greater than 2 is the sum of two prime numbers.

To prove this is probably very difficult. But to disprove it, a single counterex-
ample (an even number which is not the sum of two primes) would do.

Prove, show, demonstrate These words all mean the same thing. We have
discussed how to give a mathematical proof of a statement. These words all ask
you to do that.
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Converse The converse of the statement “A impliesB” (or “if A thenB”) is the
statement “B impliesA”. They are not logically equivalent, as we saw when we
discussed “if” and “only if”. You should regard the following conversation as a
warning! Alice is at the Mad Hatter’s Tea Party and the Hatter has just asked her
a riddle: ‘Why is a raven like a writing-desk?’

‘Come, we shall have some fun now!’ thought Alice. ‘I’m glad they’ve
begun asking riddles.–I believe I can guess that,’ she added aloud.

‘Do you mean that you think you can find out the answer to it?’ said the
March Hare.

‘Exactly so,’ said Alice.
‘Then you should say what you mean,’ the March Hare went on.
‘I do,’ Alice hastily replied; ‘at least–at least I mean what I say–that’s

the same thing, you know.’
‘Not the same thing a bit!’ said the Hatter. ‘You might just as well

say that “I see what I eat” is the same thing as “I eat what I see”!’ ‘You
might just as well say,’ added the March Hare, ‘that “I like what I get” is the
same thing as “I get what I like”!’ ‘You might just as well say,’ added the
Dormouse, who seemed to be talking in his sleep, ‘that “I breathe when I
sleep” is the same thing as “I sleep when I breathe”!’

‘It is the same thing with you,’ said the Hatter, and here the conversation
dropped, and the party sat silent for a minute, while Alice thought over all
she could remember about ravens and writing-desks, which wasn’t much.

Definition To take another example from Lewis Carroll, recall Humpty Dumpty’s
statement: “When I use a word, it means exactly what I want it to mean, neither
more nor less”.

In mathematics, we use a lot of words with very precise meanings, often quite
different from their usual meanings. When we introduce a word which is to have
a special meaning, we have to say precisely what that meaning is to be. Usually,
the word being defined is written in italics. For example, in Geometry I, you met
the definition

An m× n matrix is an array of numbers set out inm rows andn
columns.

From that point, whenever the lecturer uses the word “matrix”, it has this meaning,
and has no relation to the meanings of the word in geology, in medicine, and in
science fiction.

If you are trying to solve a coursework question containing a word whose
meaning you are not sure of, check your notes to see if you can find a definition
of that word.
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Exercises

1.1 Write down and prove the contrapositive of the statement

If x is an irrational number then 1−x is an irrational number.

1.2 Find counterexamples to the statements

(a) Every odd number is prime.

(b) Every prime number is odd.

1.3 Prove by induction that

12 +22 + · · ·+n2 =
n(n+1)(2n+1)

6
.

1.4 Let n be a positive natural number, and suppose thatn has the property that
every positive natural number smaller thann/2 dividesn. Prove thatn≤ 6, and
hence find all numbersn with this property.

1.5 Define thebinomial coefficient

(
n
k

)
for natural numbersn andk by the rule

(
n
k

)
=

n· (n−1) · · ·(n−k+1)
k · (k−1) · · ·1

=

{
n!

k! (n−k)!
if 0 ≤ k≤ n,

0 if k > n.

(Heren! is the product of the natural numbers from 1 ton.)

(a) I have given you two definitions here. Prove that they are equivalent.

(b) Prove that (
n
k

)
+

(
n

k−1

)
=

(
n+1

k

)
.

(c) Using this and induction onn, prove theBinomial Theorem:

(a+b)n =
n

∑
k=0

(
n
k

)
akbn−k

for positive integersn.

1.6 Prove that
n

∑
i=0

(
i
k

)
=

(
n+1
k+1

)
.
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1.7 Find the mistake in the following proof of the “Theorem”:All triangles are
isosceles. (You will need to draw a figure!)

Proof Given any triangleABC, let D be the point inside the triangle where the
bisector of the angleA meets the perpendicular bisector of the sideBC. Now let
DM be the perpendicular fromD to AB andDN be the perpendicular fromD to
AC.

Step 1 The trianglesADN andADM are congruent (since they have the same
angles and they also have the sideAD in common).

Step 2 The trianglesCDN andBDM are congruent (sinceDN = DM from
Step 1, andDC = DB asDL is the perpendicular bisector ofBC by construction,
and the anglesCN̂D andBM̂D are both right angles).

Step 3 From Step 1 we haveAN= AM, and from Step 2 we haveNC= MB.
HenceAC= AB.



Chapter 2

Numbers

Algebra begins by considering numbers and their properties, and moves on to
other kinds of mathematical objects. In this section of the notes, we will look at
numbers.

The important sets of numbers are:

• the natural numbers, denoted byN;

• the integers, denoted byZ;

• the rational numbers, denoted byQ;

• the real numbers, denoted byR;

• the complex numbers, denoted byC.

The notation we use for them is a special typeface called “blackboard bold”. Orig-
inally, number systems were printed in bold type:N,Z, etc.; lecturers writing on
the blackboard couldn’t write in bold, so invented a different way of doing it; then
the printers had to catch up by designing a typeface.

The notationN, R andC for natural, real and complex numbers is easy to
remember; but what about the others? If the real numbers are calledR, then we
need a different letter for the rational numbers; we chooseQ for “quotients”, since
every rational number has the forma/b wherea andb are integers. TheZ comes
from the German wordZahlen, meaning numbers.

In this section, you will not learndefinitionsof numbers. I will assume that
you know what numbers are; we will revise some of their properties.

15
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2.1 The natural numbers
The German mathematician Leopold
Kronecker (pictured) said, “God made the
natural numbers; all the rest is the work of
man.” In the same spirit, the French
mathematiciańEmil Borel said, “All of
mathematics can be deduced from the sole
notion of an integer; here we have a fact
universally acknowledged today.”

The important properties of the natural numbers are:

(a) They are used in counting. We can start from zero and, in principle, count up
a step at a time to reach any natural number. (Of course there are practical
limits!) This is the basis of proof by induction, as we saw in the last chapter.

(b) We can add and multiply natural numbers. These operations satisfy a num-
ber of familiar laws that you probably never stopped to think about. These
include:

a+b = b+a, ab= ba,

(a+b)+c = a+(b+c), (ab)c = a(bc),
a(b+c) = ab+ac,

0+a = a, 1a = a.

These laws are important to us, and they have been given names, which you
will need to know. The first two are thecommutative laws(for addition
and multiplication respectively), the next two are theassociative laws(for
addition and multiplication), the fifth is thedistributive law, and the last two
are theidentity laws(for addition and multiplication).

(c) Although we can add and multiply, we cannot always subtract or divide
natural numbers. There is no natural numberx such that 4+x = 2, and noy
such that 3y = 5.

The facts that subtraction and division are not possible in the natural numbers
can be viewed another way. Since we can think of subtraction as “adding the
negative” and division as “multiplying by the reciprocal”, we can formulate two
further laws known as theinverse lawsto describe the situation. These are laws
whichdo not holdfor the natural numbers!
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Additive inverse law: For any elementa, there exists an element−a such that
a+(−a) = 0.

Multiplicative inverse law: For any elementa 6= 0, there exists an elementa−1

such thata·a−1 = 1.

Notice the exclusion in the multiplicative inverse law; we can’t divide by zero!

The laws for the natural numbers can be interpreted in terms of counting. This
depends on two obvious principles:

• a row ofa dots, followed by a row ofb dots, containsa+b dots.

• a rectangle of dots with sidesa andb containsabdots.

The figure illustrates this fora = 2 andb = 3.

s s s s s
2+3 = 5

s s ss s s
3×2 = 6

Now the laws of algebra can be explained by geometric transformations. For
example, the picture below shows the commutative law for addition and the dis-
tributive law. In the first case, we have reflected the figure left-to-right.

s s s s s s s s s s
3+2 = 2+3

s s s s s s ss s s s s s s
(3+4)×2 = 3×2+4×2

You are invited to produce similar geometric explanations of the commutative law
for multiplication and the associative laws.

2.2 The integers

We enlarge the number system because we are trying to solve equations which
can’t be solved in the original system. At every stage in the process, people first
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thought that the new numbers were just aids to calculating, and not “proper” num-
bers. The names given to them reflect this: negative numbers, improper fractions,
irrational numbers, imaginary numbers! Only later were they fully accepted. You
may like to read the bookImagining Numbersby Barry Mazur, about the long
process of accepting imaginary numbers.

Anyway, we can’t always subtract natural numbers, so we add negative num-
bers to make it possible. Theintegersare the natural numbers together with their
negatives. So addition, subtraction, and multiplication are all possible for inte-
gers. The laws we met for natural numbers all continue to hold for integers. Also,
the additive inverse law (but not the multiplicative inverse law) holds for integers.

The natural numbers 1,2, . . . are positive, while−1,−2, . . . are negative. In-
tegers satisfy the law of signs: the product of a positive and a negative number is
negative, while the product of two negative numbers is positive.

2.3 The rational numbers

In a similar way, rational numbers are introduced because we cannot always divide
integers. A rational number is a number which can be written as a fraction

a
b

wherea andb are integers andb 6= 0. We require that multiplying or dividing nu-
merator and denominator (top and bottom) of a fraction by the same thing doesn’t
change the fraction. So, if the denominator is negative, we can multiply by−1
to make it positive; and if numerator and denominator have a common factor, we
can divide by it. (We say that a fractiona/b is in its lowest termsif the highest
common factor ofa andb is 1.)

We can write rules for adding and multiplying rational numbers:

a
b

+
c
d

=
ad+bc

bd
,

a
b
− c

d
=

ad−bc
bd

,

a
b
× c

d
=

ac
bd

,
a
b
÷ c

d
=

ad
bc

if c 6= 0.

The last rule says: to divide by a fraction, turn it upside down and multiply.
So, for rational numbers, addition, subtraction, multiplication, and division

(except by 0) are all possible. The rules we met for natural numbers all hold for
rational numbers, and so do the two inverse laws.
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2.4 The real numbers

There are still many equations we can’t solve with rational numbers. One such
equation isx2 = 2. (we saw Pythagoras’ proof of this in the last chapter.) Other
equations involve functions from trigonometry (such as sinx= 1, which has the ir-
rational solutionx= π/2) and calculus (such as logx= 1, which has the irrational
solutionx = e).

So, we take a larger number system in which these equations can be solved,
thereal numbers. A real number is a number that can be represented as an infinite
decimal. This includes all the rational numbers and many more, including the
solutions of the three equations above; for example,

2
5 = 0.4
1
7 = 0.142857142857. . . ,

√
2 = 1.41421356237. . . ,
π

2 = 1.57079632679. . . ,

e = 2.71828182846. . .

In the last three cases, we cannot write out the number exactly as a decimal, but
we assume that the approximation gets better as the number of digits increases.

We can add, subtract, multiply, and divide (except by zero) in the system of
real numbers, and the laws we met earlier (including the inverse laws) all hold
here too.

2.5 The complex numbers

The final extension arises because there are still equations we can’t solve, such as
x2 = −1 (which has no real solution) orx3 = 2 (which has only one, though for
various reasons we would like it to have three). It turns out that the first equation
is the crucial one.

A complex numberis a number of the forma+ bi, wherea and b are real
numbers, and i is a mysterious symbol which will have the property that i2 =−1.
The rules for addition and multplication are

(a+bi)+(c+di) = (a+c)+(b+d)i,
(a+bi)(c+di) = (ac−bd)+(ad+bc)i.

You can work out the rule for subtraction. How do we divide? You can check that
the rule above gives

(a+bi)(a−bi) = a2 +b2,
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which is a positive number unlessa = b = 0. So, to divide bya+bi, we multiply
by (

a
a2 +b2

)
−

(
b

a2 +b2

)
i.

Thus, in the complex numbers, we can add, subtract, multiply, and divide
(except by zero), and the laws we met earlier (including the inverse laws) all apply
here too.

Complex numbers are not called complex because they are complicated: a
modern advertising executive would certainly have come up with a different name!
They are called “complex” because each complex number is built of two parts,
each of which is simpler (being a real number).

Here, unlike for the other forms of numbers, we don’t have to take on trust
that the laws hold; we can prove them. Here, for example, is the distributive law.
Let z1 = a1 +b1i, z2 = a2 +b2i, andz3 = a3 +b3i. Now

z1(z2 +z3) = (a1 +b1i)((a2 +a3)+(b2 +b3)i)
= (a1(a2 +a3)−b1(b2 +b3))+a1(b2 +b3)+b1(a2 +a3))i,

and

z1z2 +z1z3 = ((a1a2−b1b2)+(a1b2 +a2b1)i)+((a1a3−b1b3)+(a1b3 +a3b1)i)
= (a1a2−b1b2 +a1a3−b1b3)+(a1b2 +a2b1 +a1b3 +a3b1)i,

and a little bit of rearranging shows that the two expressions are the same.

If z= a+bi is a complex number (wherea andb are real), we say thata andb
are thereal partandimaginary partof z respectively. The complex numbera−bi
is called thecomplex conjugateof z, and is written asz. So the rules for addition
and subtraction can be put like this:

To add or subtract complex numbers, we add or subtract their real
parts and their imaginary parts.

The rule for multiplication looks more complicated as we have written it out.
There is another representation of complex numbers which makes it look simpler.
Let z= a+bi. We define themodulusandargumentof z by

|z| =
√

a2 +b2,

arg(z) = θ where cosθ = a/|z| and sinθ = b/|z|.

In other words, if|z|= r and arg(z) = θ , then

z= r(cosθ + i sinθ).

Now the rules for multiplication and division are:
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To multiply two complex numbers, multiply their moduli and add
their arguments. To divide two complex numbers, divide their moduli
and subtract their arguments.

2.6 The complex plane, or Argand diagram

The complex numbers can be represented geometrically, by points in the Eu-
clidean plane (which is usually referred to as theArgand diagramor thecomplex
planefor this purpose. The complex numberz= a+bi is represented as the point
with coordinates(a,b). Then|z| is the length of the line from the origin to the
pointz, and arg(z) is the angle between this line and thex-axis. See Figure 2.1.

�
�

�
�

�
�

�
�

�
�

��

r

r z= a+bi

|z|= r

a = r cosθ

b = r sinθ

θ

0

Figure 2.1: The Argand diagram

In terms of the complex plane, we can give a geometric description of addition
and multiplication of complex numbers. The addition rule is the same as you
learned for adding vectors in Geometry I, namely, theparallelogram rule(see
Figure 2.2).

Multiplication is a little bit more complicated. Letz be a complex number
with modulusr and argumentθ , so thatz = r(cosθ + i sinθ). Then the way
to multiply an arbitrary complex number byz is a combination of a stretch and a
rotation: first we expand the plane so that the distance of each point from the origin
is multiplied byr; then we rotate the plane through an angleθ . See Figure 2.3,
where we are multiplying by 1+ i =

√
2(cos(π/4)+ i sin(π/4)); the dots represent

the stretching out by a factor of
√

2, and the circular arc represents the rotation by
π/4.

Now let’s check the correctness of our rule for multiplying complex numbers.
Remember that the rule is: to multiply two complex numbers, we multiply the
moduli and add the arguments. To see that this is correct, suppose thatz1 and



22 CHAPTER 2. NUMBERS
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Figure 2.2: Addition of complex numbers
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3+2i

(3+2i)(1+ i)
= 1+5i

Figure 2.3: Multiplication of complex numbers

z2 are two complex numbers; let their moduli ber1 andr2, and their arguments
θ1 +θ2. Then

z1 = r1(cosθ1 + i sinθ1),
z2 = r2(cosθ2 + i sinθ2).

Then

z1z2 = r1r2(cosθ1 + i sinθ1)(cosθ2 + i sinθ2)
= r1r2((cosθ1cosθ2−sinθ1sinθ2)+(cosθ1sinθ2 +sinθ1cosθ2)i)
= r1r2(cos(θ1 +θ2)+ i sin(θ1 +θ2)),

which is what we wanted to show.
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From this we can proveDe Moivre’s Theorem:

Theorem 2.1 For any natural number n, we have

(cosθ + i sinθ)n = cosnθ + i sinnθ .

Proof The proof is by induction. Starting the induction is easy since(cosθ +
i sinθ)0 = 1 and cos0+ i sin0= 1.

For the inductive step, suppose that the result is true forn, that is,

(cosθ + i sinθ)n = cosnθ + i sinnθ .

Then

(cosθ + i sinθ)n+1 = (cosθ + i sinθ)n · (cosθ + i sinθ)
= (cosnθ + i sinnθ)(cosθ + i sinθ)
= cos(n+1)θ + i sin(n+1)θ ,

which is the result forn+1. So the proof by induction is complete.
Note that, in the second line of the chain of equations, we have used the in-

ductive hypothesis, and in the third line, we have used the rule for multiplying
complex numbers.

The argument is clear if we express it geometrically. To multiply by the com-
plex number(cosθ + i sinθ)n, we rotaten times through an angleθ , which is the
same as rotating through an anglenθ .

De Moivre’s Theorem is useful in deriving trigonometrical formulae. For ex-
ample,

cos3θ + i sin3θ = (cosθ + i sinθ)3

= (cos3θ −3cosθ sin2
θ)+(3cos2θ sinθ −sin3

θ)i,

so

cos3θ = cos3θ −3cosθ sin2
θ ,

sin3θ = 3cos2θ sinθ −sin3
θ .

These can be converted into the more familiar forms cos3θ = 4cos3θ −3cosθ
and sin3θ = 3sinθ −4sin3

θ by using the equation cos2θ +sin2
θ = 1.
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Exercises

2.1 Prove by induction or otherwise that

1
1·2

+
1

2·3
+ · · ·+ 1

(n−1) ·n
=

n−1
n

.

2.2 Use De Moivre’s Theorem to express cos4x as a polynomial in cosx, and to
express sin4x as a polynomial in sinx.

2.3 Find √
2+

√
2+

√
2+ · · ·.

2.4 Thequaternionsform a number system discovered by Hamilton. They have
the forma+ bi + cj + dk, wherea,b,c,d ∈ R and i, j, k are new symbols which
satisfy

i2 = j2 = k2 = ijk =−1.

(a) Write down rules for the sum and product of two quaternions.

(b) Show that the associative law for multiplication holds for quaternions.

(c) Show that(a+ bi + cj + dk)(a− bi − cj − dk) = (a2 + b2 + c2 + d2), and
hence show that the quaternions satisfy the inverse law for multiplication
(that is, every non-zero quaternion has a multiplicative inverse).
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Other algebraic systems

In this section, we will look at other algebraic systems which have operations
which resemble addition and multiplication for number systems. These operations
satisfy some of the laws which hold for numbers, but not necessarily all of them.
A reminder: we are interested in the following laws:

Commutative laws:a+b = b+a, ab= ba

Associative laws:(a+b)+c = a+(b+c), (ab)c = a(bc)

Distributive law:a(b+c) = ab+ac

Identity laws: 0+a = a, 1a = a

Inverse laws: For alla there exists(−a) such thata+(−a) = 0; for all a 6= 0,
there existsa−1 such thata·a−1 = 1.

We have to be a bit careful about what the identity laws mean, since in other alge-
braic systems there will not be numbers 0 and 1 to use here. The identity law for
multiplication should mean that there is a particular elemente (say) in our system
such thatea= a for every elementa. In the case of number systems, the number
1 has this property. Similarly we have to be careful about the interpretation of−a
anda−1 in the inverse laws. But notice that we don’t even have to try to check the
additive or multiplicative inverse laws unless the additive or multiplicative identity
laws hold.

3.1 Vectors

In Geometry I, you learned how to add 3-dimensional vectors, and two different
ways to multiply them: the scalar product or dot product, and the vector product

25
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or cross product. Given two vectorsu,v, we denote their sum byu+v, their dot
product byu ·v, and their cross product byu×v.

(We can’t do something likeu in handwriting, or writing on the blackboard.
So you should write the vectoru asu, as you did in the Geometry I course.)

Remember that we can represent a vector by a column consisting of three
numbers; for example,

u = 2i + j −5k =

 2
−1
5

 .

Addition The commutative and associative laws hold for vector addition; so

does the zero and inverse laws, if we take the vector0 =

0
0
0

 to be the zero

element:

u+v = v+u,

(u+v)+w = u+(v+w),
0+v = v,

v+(−v) = 0.

These can all be proved by a calculation. For example, here is a proof of the
associative law. Let

u =

a
b
c

 , v =

 p
q
r

 , w =

x
y
z

 .

Then

(u+v)+w =

a+ p
b+q
c+ r

+

x
y
z

 =

(a+ p)+x
(b+q)+y
(c+ r)+z

 ,

u+(v+w) =

a
b
c

+

 p+x
q+y
r +z

 =

a+(p+x)
b+(q+y)
c+(r +z)

 ,

and(a+ p)+x = a+(p+x), etc., since the associative law holds for addition of
real numbers. So the two expressions are equal.

Notice what we have done here: we used the associative law for the real num-
bers to prove it for 3-dimensional vectors.
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Scalar product Asking about the associative law or other laws for the scalar
product doesn’t really make sense, since the scalar product of two vectors is a
number, not a vector! So(u ·v) ·w is meaningless.

The lesson is that the operations we will be studying must take two objects of
some kind and combine them into another object of the same kind.

Vector product Remember the formula for the vector product:a
b
c

×

x
y
z

 =

∣∣∣∣∣∣
i a x
j b y
k c z

∣∣∣∣∣∣ ,
or, to put it another way,

(ai +bj +ck)× (xi +yj +zk) = (bz−cy)i +(cx−az)j +(ay−bx)k.

(This was not thedefinition, but it was proved in Part 5 of the notes that this
formula holds.)

What properties does it have? You also met these properties in the Geometry I
course.

Associative law: This does not hold. Remember thatv×v = 0 for any vectorv.
Now

(i× i)× j = 0× j = 0,

i× (i× j) = i×k =−j .

(Remember that todisprovesomething like the associative law, a single
counterexample is enough!)

Commutative law: This does not hold either. In fact, I hope you remember from
Geometry I that

u×v =−(v×u)

for any two vectorsu andv. To get a specific counterexample, we could
observe that

i× j = k, j × i =−k.

Distributive law: This one is true:

u× (v+w) = (u×v)+(u×w).

How do you prove this?
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Identity law: This one also fails. There cannot be a vectore with the property
that e× v = v for any choice ofv, becausee× v is always perpendicular
to v!

The lesson here is that even nice operations might fail to satisfy the usual laws
for numbers.

3.2 Matrices

Matrices form another class of objects which can be added and multiplied. We
will consider just 2×2 matrices, as these illustrate the general principles. Recall

the rules, that you learned in Geometry I. LetA =
(

a b
c d

)
andB =

(
e f
g h

)
be

two matrices. We will take the entriesa, . . . ,h to be arbitrary real numbers.

Addition The sum of two matricesA andB is the matrix obtained by adding
corresponding elements ofA andB:(

a b
c d

)
+

(
e f
g h

)
=

(
a+e b+ f
c+g d+h

)
.

Multiplication The rule for multiplication is more complicated:(
a b
c d

)(
e f
g h

)
=

(
ae+bg a f+bh
ce+dg c f+dh

)
.

It works like this. To work out the entry in the first row and second column of the
productAB, we take the first row ofA (which is(a b)), and the second column

of B (which is

(
f
h

)
; multiply corresponding elements (a by f , andb by h), and

add the products, to geta f +bh. The rule for the other entries inAB is similar.
Do these operations satisfy the laws we wrote down earlier?

Addition The commutative, associative, identity, and inverse laws all hold.
To verify thatA+ B = B+ A, we have to show that corresponding entries of

these matrices are equal. These entries are obtained by adding corresponding
entries inA andB in either order; the results are equal. In detail,(

a b
c d

)
+

(
e f
g h

)
=

(
a+e b+ f
c+g d+h

)
,(

e f
g h

)
+

(
a b
c d

)
=

(
e+a f +b
g+c h+d

)
,
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and the matrices on the right are equal becausea+e= e+a etc.
The associative law is true, and the argument to prove it is similar. If we define

thezero matrixto be

O2×2 =
(

0 0
0 0

)
,

then we haveO2×2 +A = A for any matrixA; for, to work outO2×2 +A, we add
zero to each entry ofA, which doesn’t change it. Similarly, for any matrixA,
we let−A be the matrix whose entries are the negatives of the entries ofA; then
A+(−A) = O.

Multiplication Here we find our first surprise: The commutative law for multi-
plication fails! Remember that to disprove a general assertion, we only need one
counterexample:(

1 2
3 4

)(
5 6
7 8

)
=

(
19 22
43 50

)
6=

(
23 34
31 46

)
=

(
5 6
7 8

)(
1 2
3 4

)
.

[How did I find this example? Trial and error; I wrote down the first two matrices
I could think of, multiplied them both ways round, and found that the results were
different.]

Despite this, the associative law and the identity law do both hold for matrix
multiplication. For the associative law, there is no alternative but to multiply it out
and see:(

a b
c d

)((
e f
g h

)(
i j
k l

))
=

(
a b
c d

)(
ei+ f k e j+ f l
gi+hk g j+hl

)
=

(
a(ei+ f k)+b(gi+hk) . . .

. . . . . .

)
,((

a b
c d

)(
e f
g h

))(
i j
k l

)
=

(
ae+bg a f+bh
ce+dg c f+dh

)(
i j
k l

)
=

(
(ae+bg)i +(a f +bh)k . . .

. . . . . .

)
.

Algebraic manipulation shows that

a(ei+ f k)+b(gi+hk) = (ae+bg)i +(ce+dg)k.

[Take a look at this manipulation. We first expand the brackets on the left, using
the distributive law. This givesa(ei)+a( f k)+b(gi)+b(hk). Now use the associa-
tive law for multiplication to switch this into(ae)i +(a f)k+(bg)i +(bh)k. Then
the commutative law for addition changes this to(ae)i +(bg)i +(a f)k+(bh)k,
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and the distributive law once more turns this into the right-hand expression. Oh,
and I forgot to mention that I used the associative law for addition without telling
you, when I wrote down the sum of four terms without telling you where the
brackets go! So almost all the laws for real numbers get used.]

To prove the identity law for multiplication, we have to know what the identity
matrix is. Since the zero matrix has every entry zero, you might guess that the
identity matrix has every entry 1, but it doesn’t:(

1 1
1 1

)(
1 2
3 4

)
=

(
4 6
4 6

)
.

In fact the identity matrix has ones on the main diagonal and zeros elsewhere:

I2 =
(

1 0
0 1

)
.

We haveI2A = A for any 2×2 matrixA:(
1 0
0 1

)(
a b
c d

)
=

(
a b
c d

)
.

Now another possible problem might occur to you. Since multiplication is not
commutative, is it true thatAI2 = A for anyA? Well, yes it is:(

a b
c d

)(
1 0
0 1

)
=

(
a b
c d

)
,

as you can check. [You may also notice that, as well as the identity law for mul-
tiplication, we use the fact that 0a = 0 for any real numbera and the zero law for
addition.]

The inverse law for multiplication does not hold. For example, ifA=
(

1 0
0 0

)
,

then there is no matrixB such thatAB= I2. You learned in Geometry I that the
condition for a matrix to have an inverse is that itsdeterminantis not zero.

Distributive law: I leave it to you to check that

A(B+C) = AB+AC

for any matricesA,B,C. You might even want to check which laws for real num-
bers are used in the proof. Because multiplication is not commutative, we can also
check the other way round:

(B+C)A = BA+CA
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for any matricesA,B,C.

We use the notationM2×2(R) for the set of all 2×2 matrices with real numbers
as entries. (We call these matrices “real matrices” for short.) As you can see, we
can easily generalise this notation. By changing the subscript, we can talk about
the set of matrices of different size, say 3×3; and by puttingZ, Q or C in place
of R, we can talk about matrices whose entries are integers, rational numbers, or
complex numbers.

3.3 Polynomials

You can think of a polynomial as a function which can be written as a sum of
terms, each of which is a power ofx multiplied by a constant. So “the polynomial
x2” should really be “the polynomial 1x2”. We write x1 asx, and leave outx0

altogether (just writing the constant). If the coefficient of a power ofx is zero, we
usually don’t bother writing it: so we write 2x2 + 3 rather than 2x2 + 0x+ 3. Of
course, if all the terms are zero, we have to write something; so we just write 0.

So a typical polynomial has the form

anxn +an−1xn−1 + · · ·+a1x+a0.

Note that a constanta0 is a special kind of polynomial called aconstant polyno-
mial.

Thedegreeof a polynomial is the largest numbern such that the polynomial
contains a termanxn with an 6= 0. Thus, a non-zero constant polynomial has de-
gree 0, since it has the forma0x0. The zero polynomial 0 doesn’t have a degree,
since it doesn’t have any non-zero terms! [Be warned: some people say that it
has degree−1; others say that it has degree−∞. Of course, these are merely
conventions.]

Addition and multiplication You already know how to add and multiply poly-
nomials. But it is difficult to give a proper mathematical definition. For example,(

2x2 +3
)
+

(
x3 +x−5

)
= x3 +2x2 +x−2.

We can’t just say “add corresponding terms”, since some terms may be missing;
we have first to put the missing terms in with coefficients 0. For multiplication, we
multiply each term of the first factor by each term of the second, and then gather
up terms involving the same power ofx:(

2x2 +3
)(

x3 +x−5
)

= 2x5 +(2x3 +3x3)−10x2 +3x−15

= 2x5 +5x3−10x2 +3x−15.
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I ask you to take on trust for now that it is possible to give good definitions of
addition and multiplication of polynomials, and to show that they do satisfy the
commutative, associative and identity laws for both addition and multiplication,
the inverse law for addition, and the distributive law.

We use the notationR[x] for the set of all polynomials with real numbers as
coefficients. (We call them “real polynomials” for short.) As you can see, this
notation can be generalised:Q[x] andC[x] denote the sets of polynomials with
rational or complex numbers as coefficients. These sets satisfy the same rules for
addition and multiplication as the real polynomials.

3.4 Sets

Here is another example where we have an operation or rule of combination for
objects which are nothing like numbers.

Let S be a set. We regard it as a “universal set”; in Probability I, it was called
thesample space. Our objects will be subsets ofS .

Two operations which can be performed on sets are union and intersection,
defined as follows:

Union: theunionof two setsA andB is the set of all elements lying in eitherA
or B:

A∪B = {x : x∈ A or x∈ B}.
We readA∪B as “A unionB”, or “A or B”.

Intersection: theintersectionof two setsA andB is the set of all elements lying
in bothA andB:

A∩B = {x : x∈ A andx∈ B}.
We readA∩B as “A intersectionB”, or “A andB”.

We can represent sets byVenn diagrams, and show these two operations in a
diagram as follows:

&%
'$

&%
'$

&%
'$

&%
'$

A∪B A∩B

A AB B

Here are some laws they satisfy.

Commutative laws A∪B = B∪A A∩B = B∩A
Associative laws A∪ (B∪C) = (A∪B)∪C A∩ (B∩C) = (A∩B)∩C
Identity laws A∪ /0 = A A∩S = A
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When we come to the distributive law, there is a small surprise. To write down
the distributive law for numbers, we have to distinguish between addition and
multiplication. It is true that

a× (b+c) = (a×b)+(a×c),

but it isnot true that

a+(b×c) = (a+b)× (a+c).

For sets, which of our two operations should play the role of addition, and which
should be multiplication?

It turns out that it works both ways round. We can replace “plus” by “or” and
“times” by “and”, orvice versa:

Distributive laws A∩ (B∪C) = (A∩B)∪ (A∩C) A∪ (B∩C) = (A∪B)∩ (A∪C)

All of these assertions have similar proofs: draw a Venn diagram to convince
yourself, and then give a mathematical argument. Here is the proof of the first
distributive law. I leave the Venn diagram to you.

x∈ A∩ (B∪C) ⇔ x∈ A andx∈ B∪C

⇔ (x∈ A andx∈ B) or (x∈ A andx∈C)
⇔ x∈ (A∩B)∪ (A∩C).

So the two setsA∩ (B∪C) and(A∩B)∪ (A∩C) have the same members, and
hence are equal.

The inverse laws are not true. For example, we saw that the zero element for
the operation of union is the empty set /0; and, given a setA which is not the empty
set, it is impossible to find a setB such thatA∪B = /0, sinceA∪B is at least as
large asA. The failure of the inverse law for intersection is similar.

In Probability I, you saw several other operations on sets:difference, symmet-
ric difference, andcomplement. You might like to check which of our laws are
satisfied by difference, or by symmetric difference, for example.

Exercises

3.1 (a) Find

(
1 2
3 4

)(
1 −1
3 −5

)
.

(b) Find the inverse of

(
1 2
3 4

)
.
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3.2 Find two matrices having entries 0 and 1 only which do not commute with
each other.

3.3 Show that the symmetric difference of sets satisfies the associative, commu-
tative, identity and inverse laws, where the identity element is the empty set /0 and
the inverse of any setA is equal toA.

3.4 Recall the definition of the quaternions from the last chapter.

(a) Show that any quaternion can be formally written asa+v, wherea∈R and
v is a 3-dimensional real vector.

(b) Show that

(a+v)+(b+w) = (a+b)+(v+w),
(a+v)(b+w) = (ab−v ·w)+(aw+bv+v×w),

where· and× denote the dot and cross product of vectors.



Chapter 4

Relations and functions

4.1 Ordered pairs and Cartesian product

We write {x,y} to mean a set containing just the two elementsx andy. More
generally,{x1,x2, . . . ,xn} is a set containing just then elementsx1, x2, . . . ,xn.

The order in which elements come in a set is not important. So{y,x} is the
same set as{x,y}. This set is sometimes called anunordered pair.

Often, however, the order of the elements does matter, and we need a different
construction. We write theordered pairwith first elementx and second elementy
as(x,y); this is not the same as(y,x) unlessx andy are equal. You have seen this
notation used for the coordinates of points in the plane. The point with coordinates
(2,3) is not the same as the point with coordinates(3,2). The rule for equality of
ordered pairs is:

(x,y) = (u,v) if and only if x = u andy = v.

This notation can be extended to orderedn-tuples for largern. For example, a
point in three-dimensional space is given by anordered triple(x,y,z) of coordi-
nates.

The idea of coordinatising the plane or
three-dimensional space by ordered pairs or triples
of real numbers was invented by Descartes. In his
honour, we call the system “Cartesian coordinates”.
This great idea of Descartes allows us to use
algebraic methods to solve geometric problems, as
you saw in the Geometry I course last term.

By means of Cartesian coordinates, the set of all points in the plane is matched
up with the set of all ordered pairs(x,y), wherex andy are real numbers. We call

35
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this setR×R, or R2. This notation works much more generally, as we now
explain.

Let X andY be any two sets. We define theirCartesian product X×Y to be
the set of all ordered pairs(x,y), with x∈ X andy∈Y; that is, all ordered pairs
which can be made using an element ofX as first coordinate and an element ofY
as second coordinate. We write this as follows:

X×Y = {(x,y) : x∈ X,y∈Y}.

You should read this formula exactly as in the explanation. The notation

{x : P}

means “the set of all elementsx for which P holds”. This is a very common way
of specifying a set.

If Y = X, we write X ×Y more briefly asX2. Similarly, if we have sets
X1, . . . ,Xn, we letX1×·· ·×Xn be the set of all orderedn-tuples(x1, . . . ,xn) such
thatx1 ∈ X1, . . . ,xn ∈ Xn. If X1 = X2 = · · ·= Xn = X, say, we write this set asXn.

If the sets are finite, we can do some counting. Remember that we use the
notation|X| for the number of elements of the setX (not to be confused with|z|,
the modulus of the complex numberz, for example).

Proposition 4.1 Let X and Y be sets with|X|= p and|Y|= q. Then

(a) |X×Y|= pq;

(b) |X|n = pn.

Proof (a) In how many ways can we choose an ordered pair(x,y) with x∈X and
y ∈ Y? There arep choices forx, andq choices fory; each choice ofx can be
combined with each choice fory, so we multiply the numbers.

(b) This is an exercise for you.

The “multiplicative principle” used in part (a) of the above proof is very im-
portant. For example, ifX = {1,2} andY = {a,b,c}, then we can arrange the
elements ofX×Y in a table with two rows and three columns as follows:

(1,a) (1,b) (1,c)
(2,a) (2,b) (2,c)
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4.2 Relations

Suppose we are given a set of peopleP1, . . . ,Pn. What does the relation of being
sisters mean? For each ordered pair(Pi ,Pj), eitherPi andPj are sisters, or they are
not; so we can think of the relation as being a rule of some kind which answers
“true” or “false” for each pair(Pi ,Pj). Mathematically, there is a more abstract
way of saying the same thing; the relation of sisterhood is thesetof all ordered
pairs(Pi ,Pj) for which the relation is true. (When I say thatPi andPj are sisters, I
mean that each of them is the sister of the other.)

So we define arelation Ron a setX to be a subset of the Cartesian product
X2 = X×X; that is, a set of ordered pairs. We think of the relation as holding
betweenx andy if the pair(x,y) is in R, and not holding otherwise.

Here is another example. LetX = {1,2,3,4}, and letR be the relation “less
than” (this means, the relation that holds betweenx andy if and only if x < y).
Then we can writeRas a set by listing all the pairs for which this is true:

R= {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}.

How many different relations are there on the setX = {1,2,3,4}? A relation
on X is a subset ofX×X. There are 4×4 = 16 elements inX×X, by Proposi-
tion 4.1. How many subsets does a set of size 16 have? For each element of the
set, we can decide to include that element in the subset, or to leave it out. The two
choices can be made independently for each of the sixteen elements ofX2, so the
number of subsets is

2×2×·· ·×2 = 216 = 65536.

So there are 65536 relations. Of course, not all of them have simple names like
“less than”.

You will see that a relation like “less than” is writtenx < y; in other words,
we put the symbol for the relation between the names of the two elements making
up the ordered pair. We could, if we wanted, invent a similar notation for any
relation. Thus, ifR is a relation, we could writex R yto mean(x,y) ∈ R.

4.3 Equivalence relations and partitions

Just as there are certain laws that operations like multiplication may or may not
satisfy, so there are laws that relations may or may not satisfy. Here are some
important ones.

Let Rbe a relation on a setX. We say thatR is

reflexiveif (x,x) ∈ R for all x∈ X;
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symmetricif (x,y) ∈ R implies that(y,x) ∈ R;

transitiveif (x,y) ∈ Rand(y,z) ∈ R together imply that(x,z) ∈ R.

For example, the relation “less than” is not reflexive (since no element is less
than itself); is not symmetric (sincex < y and y < x cannot both hold); but is
transitive (sincex < y andy < zdo imply thatx < z). The relation of being sisters
is not reflexive (it is debatable whether a girl can be her own sister, but a boy
certainly cannot!), but it is symmetric. It is “almost” transitive: ifx andy are
sisters, andy andz are sisters, thenx andz are sisters except in the case when
x = z. But this case can actually occur, so the relation is not transitive. (For it to
be transitive, the transitive law would have to hold without any exceptions.)

A very important class of relations are called equivalence relations. Anequiv-
alence relationis a relation which is reflexive, symmetric, and transitive.

Before seeing the job that equivalence relations do in mathematics, we need
another definition.

Let X be a set. Apartition of X is a collection{A1,A2, . . .} of subsets ofX
having the following properties:

(a) Ai 6= /0;

(b) Ai ∩A j = /0 for i 6= j;

(c) A1∪A2∪·· ·= X.

So each set is non-empty; no two sets have any element in common; and between
them they cover the whole ofX. The name arises because the setX is divided into
disjoint partsA1,A2, . . ..

A1 A2 A3 A4 A5

The statement and proof of the next theorem are quite long, but the message
is very simple: the job of an equivalence relation onX is to produce a partition of
X; every equivalence relation gives a partition, and every partition comes from an
equivalence relation. This result is called theEquivalence Relation Theorem.

First we need one piece of notation. LetR be a relation on a setX. We write
R(x) for the set of elements ofX which are related toR; that is,

R(x) = {y∈ X : (x,y) ∈ R}.
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Theorem 4.2 (a) Let R be an equivalence relation on X. Then the sets R(x),
for x∈ X, form a partition of X.

(b) Conversely, given any partition{A1,A2, . . .} of X, there is an equivalence
relation R on X such that the sets Ai are the same as the sets R(x) for x∈ X.

Proof (a) We have to show that the setsR(x) satisfy the conditions in the defini-
tion of a partition ofX.

• For anyx, we have(x,x) ∈R (sinceR is reflexive), sox∈R(x); thusR(x) 6=
/0.

• We have to show that, ifR(x) 6= R(y), thenR(x)∩R(y) = /0. The contrapos-
itive of this is: if R(x)∩R(y) 6= /0, thenR(x) = R(y); we prove this. Suppose
thatR(x)∩R(y) 6= /0; this means that there is some element, sayz, lying in
bothR(x) andR(y). By definition,(x,z) ∈ Rand(y,z) ∈ R; hence(z,y) ∈ R
by symmetry and(x,y) ∈ Rby transitivity.

We have to show thatR(x) = R(y); this means showing that every element
in R(x) is in R(y), and every element ofR(y) is in R(x). For the first claim,
takeu∈R(x). Then(x,u) ∈R. Also (y,x) ∈R (by symmetry; we know that
(x,y)∈R; so(y,u)∈Rby transitivity, andu∈R(y). Conversely, ifu∈R(y),
a similar argument (which you should try for yourself) shows thatu∈R(x).
SoR(x) = R(y), as required.

• Finally we have to show that the union of all the setsR(x) is X, in other
words, that every element ofX lies in one of these sets. But we already
showed in the first part thatx belongs to the setR(x).

(b) Suppose that{A1,A2, . . .} is a partition ofx. We define a relationR as
follows:

R= {(x,y) : x andy lie in the same part of the partition}.

Now

• x andx lie in the same part of the partition, soR is reflexive.

• If x andy lie in the same part of the partition, then so doy andx; so R is
symmetric.

• Suppose thatx andy lie in the same partAi of the partition, andy andz lie
in the same partA j . Theny∈ Ai andy∈ A j ; and so we haveAi = A j (since
different parts are disjoint). Thusx andz both lie inAi . SoR is transitive.
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ThusR is an equivalence relation. But clearlyR(x) consists of all elements lying
in the same part of the partition asx; so, if x∈ Ai , thenR(x) = Ai . So the partition
consists of the setsR(x).

If R is an equivalence relation, then the setsR(x) (the parts of the partition
corresponding toR) are called theequivalence classesof R.

Here is an example. There are five partitions of the set{1,2,3}. One has a
single part; three of them have one part of size 1 and one of size 2; and one has
three parts of size 1. Here are the partitions and the corresponding equivalence
relations.

Partition Equivalence relation
{{1,2,3}} {(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)}
{{1},{2,3}} {(1,1),(2,2),(2,3),(3,2),(3,3)}
{{2},{1,3}} {(1,1),(1,3),(2,2),(3,1),(3,3)}
{{3},{1,2}} {(1,1),(1,2),(2,1),(2,2),(3,3)}
{{1},{2},{3}} {(1,1),(2,2),(3,3)}

Since partitions and equivalence relations amount to the same thing, we can
use whichever is more convenient.

4.4 Functions

What is a function? This is a question that has given mathematicians a lot of
trouble over the ages. People used to think that a function had to be given by a
formula, such asx2 or sinx. We don’t require this any longer. All that is important
is that you put in a value for the argument of the function, and out comes a value.
Think of a function as a kind of black box:

- -x F F(x)

The name of the function isF ; we putx into the black box andF(x) comes
out. Be careful not to confuseF , the name written on the black box, withF(x),
which is what comes out whenx is put in. Sometimes the language makes it hard
to keep this straight. For example, there is a function which, when you put inx,
outputsx2. We tend to call this “the functionx2”, but it is really “the squaring
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function”, or “the functionx 7→ x2”. (You see that we have a special symbol7→ to
denote what the black box does.)

Black boxes are not really mathematical notation, so we re-formulate this defi-
nition in more mathematical terms. We have to define what we mean by a function
F . Now there will be a setX of allowable inputs to the black box;X is called the
domainof F . Similarly, there will be a setY which contains all the possible out-
puts; this is called thecodomainof F . (We don’t necessarily require that every
value ofY can come out of the black box. For the squaring function, the domain
and the codomain are both equal toR, even though none of the outputs can be
negative.)

The important thing is that every inputx ∈ X produces exactly one output
y = F(x) ∈Y. The ordered pair(x,y) is a convenient way of saying that the input
x produces the outputy. Then we can take all the possible ordered pairs as a
description of the function. Thus we come to the formal definition:

Let X andY be sets. Then afunction from X to Y is a subsetF of
X×Y having the property that, for everyx∈ X, there is exactly one
elementy∈Y such that(x,y)∈F . We write this uniquey asF(x). We
write F : X →Y (read “F from X to Y”) to mean thatF is a function
with domainX and codomainY.

The set of all elementsF(x), asx runs throughX, is called therangeof the
functionF . It is a subset of the codomain, but (as we remarked) it need not be the
whole codomain.

Here is an example. LetX = Y = {1,2,3,4,5}, and let

F = {(1,1),(2,4),(3,5),(4,4),(5,1)}.

ThenF is a function fromX to Y, with F(1) = 1, F(2) = 4, and so on. (In this
particular case, it happens thatF is given by a fairly simple formula:F(x) =
6x−x2−4.)

A functionF : X →Y is called

injective, or one-to-one, if different elements ofX have different images
underF : x1 6= x2 implies F(x1) 6= F(x2) (or equivalently,F(x1) = F(x2)
impliesx1 = x2).

surjective, or onto, if its range is equal toY: that is, for everyy∈Y, there is
somex∈ X such thatF(x) = y.

bijective, or a one-to-one correspondence, if it is both injective and surjec-
tive.



42 CHAPTER 4. RELATIONS AND FUNCTIONS

A bijective function fromX toY matches up the two sets: for eachx∈ X there
is a uniquey = F(x) ∈ Y; and for eachy ∈ Y there is a uniquex ∈ X such that
F(x) = y. This can only happen ifX andY have the same number of elements.

If F is a bijective function fromX toY, then there is aninverse function Gfrom
Y to X which takes every elementy∈Y to the uniquex∈ X for which F(x) = y.
In other words, the black box forG is the black box forF in reverse:

x = G(y) if and only if y = F(x).

The inverse functionG is also bijective. Thus a bijective functionF and its inverse
G satisfy

• G(F(x)) = x for all x∈ X;

• F(G(y)) = y for all y∈Y.

Notice thatF is the inverse function ofG.

Sometimes we represent a functionF : A→ B by a picture, where we show
the two setsA andB, and draw an arrow from each elementa of A to the element
b= F(a) of B. For such a picture to show a function, each element ofA must have
exactly one arrow leaving it. Now

• F is one-to-one (injective) if no point ofB has two or more arrows entering
it;

• F is onto (surjective) if every point ofB has at least one arrow entering it;

• F is one-to-one and onto (bijective) if every point ofB has exactly one arrow
entering it; in this case, the arrows match up the points ofA with the points
of B.

Here are some illustrations. The first is not a function because some elements of
A have more than one arrow leaving them while some have none.
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4.5 Operations

An operationis a special kind of function: its domain isX×X and its codomain
is X, whereX is a set. In other words, the input to the black box forF consists of
a pair(x,y) of elements ofX, and the output is a single element ofX. So we can
think of the function as “combining” the two inputs in some way.

There is a different notation often used for operations. Rather than write the
function asF , so thatz= F(x,y) is the output whenx andy are input, instead we
choose a symbol like+,×, ∗,÷, ◦ or •, and place it between the two inputs: that
is, we writex+y, or x×y, or . . . , instead ofF(x,y). This is calledinfix notation.

Many of the operations we have already met (addition, subtraction, multipli-
cation for numbers; addition and vector product for vectors; addition and multi-
plication for matrices or polynomials; union and intersection for sets) are binary
operations.

An operation on a finite set can be represented by an operation table. This is
a square table with elements of the setX labelling the rows and columns of the
table. To calculatex◦ y (if ◦ is the operation), we look in the row labelledx and
column labelledy; the element in the table in this position isx◦ y. Here is an
example:

◦ a b c
a a b c
b b b c
c c c c

Given an operation, we can ask whether it satisfies the laws of algebra that we
have met several times already. Consider the above example.

Commutative? Yes, since the table is symmetric about the main diagonal, sox◦y
is always the same asy◦x.

Associative? Yes, though this is harder to show. You are invited either to prove it
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by considering all cases of the associative law, or to find a nicer proof using
a description of what the operation actually does.

Identity? Yes,a is an identity, since

a◦a = a, a◦b = b, a◦c = c.

Inverse? No, there is no elementx such thatc◦x = a, sincec◦x is always equal
to c, whateverx is.

4.6 Appendix: Relations and functions

In this section we will see that, given an arbitrary function, we can turn it into
a bijective function. IfF : X → Y is not onto, we can throw away the points of
the codomainY which are not in the range ofF . Making it one-to-one is more
difficult. The theorem below shows how to do it.

Theorem 4.3 Let F : X →Y be a function.

(a) The range of F, the set{y∈Y : y = F(x) for some x∈ X, is a subset B of Y .

(b) Define a relation R on X by the rule that(x1,x2) ∈ R if and only if F(x1) =
F(x2). Then R is an equivalence relation on X.

(c) Let A be the set of equivalence classes of R. Then the functionF̃ : A→ B
defined byF̃(R(x)) = F(x) for all x ∈ X, is a bijective function from A to B.

Proof Part (a) is clear. Part (b) is quite easy:R is

reflexive becauseF(x) = F(x) for all x∈ X;

symmetric becauseF(x1) = F(x2) impliesF(x2) = F(x1);

transitive becauseF(x1) = F(x2) andF(x2) = F(x3) impliesF(x1) = F(x3).

Look at part (c). There is one important thing we have to do before we even
have a functionF̃ : to show that it is well-defined. How could this go wrong?
If x1 and x2 are equivalent (that is, if(x1,x2) ∈ R, thenR(x1) = R(x2). What
guarantee do we have thatF̃(R(x1)) = F̃(R(x2)), as we need? This means that
F(x1) = F(x2); but that is exactly the condition that ensures(x1,x2) ∈ R. SoF̃ is
a well-defined function.

Is it one-to-one? Suppose thatF̃(R(x1)) = F̃(R(x2)). Then by definition,
F(x1) = F(x2); so(x1,x2) ∈ R, soR(x1) = R(x2).

Is it onto? Take anyy∈ B. SinceB is the range ofF , there exists somex∈ X
with F(x) = y. ThenF̃(R(x)) = y, soy is in the range of̃F .
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If that seems complicated, here is a picture.
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The five slabs on the left are the equivalence classes of the relationR; each
point in the top slab is mapped byF to the same pointF(x) on the right. The
five points in the oval on the right make up the range ofF . It is clear that equiva-
lence classes on the left are matched up with points of the range on the right by a
bijective function.

In our earlier example, the equivalence classes of the relationR are{1,5},
{2,4} and{3}; the range ofF is {1,4,5}; and the one-to-one correspondenceF̃
maps{1,5} to 1,{2,4} to 4, and{3} to 5.
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Exercises

4.1 Which of the following relationsRon setsX are (i) reflexive, (ii) symmetric,
and (iii) transitive? For any relation which is an equivalence relation (that is,
satisfies all three conditions), describe its equivalence classes.
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(a) X is the set of positive integers,R= {(x,y) : x+y = 100}.

(b) X is the set of integers,R= {(x,y) : x = y}.

(c) X is the set of railway stations in Great Britain,R is the set of pairs(x,y) of
stations for which there is a scheduled direct train fromx to y.

4.2 For each of the following functionsF , describe the image ofF , and state
whetherF is (i) one-to-one and (ii) onto:

(a) F : {0,1,2,3,4,5}→ {0,1,2,3,4,5}, F(x) = bx/2c (the greatest integer not
exceedingx/2).

(b) F : R→ R, F(x) = ex.

(c) F : R→ R, F(x) = x3 +x.

4.3 How many operations are there on the set{a,b} with two elements? How
many of them satisfy (i) the associative law, (ii) the identity law?

4.4 The Fundamental Theorem of Algebrasays that a polynomial of degreen
over the complex numbers hasn complex roots.

Define a “function”F : C2→C2 by the rule thatF(a,b) = (c,d) if c andd are
the roots of the quadratic equationx2 +ax+b = 0. (So, for example,F(−3,2) =
(1,2).)

Show thatF is not in fact a function.
Can you suggest a way to fix the definition?
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Division and Euclid’s algorithm

5.1 The division rule

Thedivision ruleis the following property of natural numbers:

Proposition 5.1 Let a and b be natural numbers, and assume that b> 0. Then
there exist natural numbers q and r such that

(a) a= bq+ r;

(b) 0≤ r ≤ b−1.

Moreover, q and r are unique.

The numbersq andr are the quotient and remainder whena is divided byb.
The last part of the proposition (about uniqueness) means that, ifq′ and r ′ are
another pair of natural numbers satisfyinga = bq′ + r ′ and 0≤ r ′ ≤ b−1, then
q = q′ andr = r ′.

Proof We will show the uniqueness first. Letq′ andr ′ be as above. Ifr = r ′, then
bq= bq′, soq = q′ (asb > 0). So suppose thatr 6= r ′. We may suppose thatr < r ′

(the case whenr > r ′ is handled similarly). Thenr ′− r = b(q−q′). This number
is both a multiple ofb, and also in the range from 1 tob−1 (since bothr andr ′

are in the range from 0 tob−1 and they are unequal). This is not possible.
It remains to show thatq andr exist. Consider the multiples ofb: 0, b, 2b, . . . .

Eventually these become greater thana. (Certainly(a+1)b is greater thana.) Let
qb be the last multiple ofb which is not greater thana. Thenqb≤ a < (q+1)b.
So 0≤ a−qb< b. Puttingr = a−qbgives the result.

Sinceq andr are uniquely determined bya andb, we write them asadivb and
amodb respectively. So, for example, 37 div 5= 7 and 37 mod 5= 2.

47
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The division rule is sometimes called thedivision algorithm. Most people
understand the word “algorithm” to mean something like “computer program”,
but it really means a set of instructions which can be followed without any special
knowledge or creativity and are guaranteed to lead to the result. A recipe is an
algorithm for producing a meal. If I follow the recipe, I am sure to produce the
meal. (But if I change things, for example by putting in too much chili powder,
there is no guarantee about the result!) If I follow the recipe, and invite you to
come and share the meal, I have to give you directions, which are an algorithm for
getting from your house to mine.

You learned in primary school an algorithm for long division which has been
known and used for more than 3000 years. This algorithm is a set of instructions
which, given two positive integersa andb, dividesa by b and finds the quotientq
and remainderr satisfyinga = bq+ r and 0≤ r ≤ b−1.

5.2 Greatest common divisor and least common mul-
tiple

We writea | b to mean thata dividesb, or b is a multiple ofa. Warning: Don’t
confusea | b with a/b, which meansa divided by b; this is the opposite way
round! Soa | b is a relation on the natural numbers which holds ifb= ac for some
natural numberc.

Every natural number, including zero, divides 0. (This might seem odd, since
we know that “you can’t divide by zero”; but 0| 0 means simply that there exists
a numberc such that 0= 0 · c, which is certainly true. On the other hand, zero
doesn’t divide any natural number except zero.

Let a andb be natural numbers. Acommon divisorof a andb is a numberd
with the property thatd | a andd | b. We calld thegreatest common divisorif it is
a common divisor, and if any other common divisor ofa andb is smaller thand.
Thus, the common divisors of 12 and 18 are 1, 2, 3 and 6; and the greatest of these
is 6. We write gcd(12,18) = 6. We write gcd as shorthand for “greatest common
divisor”.

The remarks above about zero show that gcd(a,0) = a holds for any non-zero
numbera. What about gcd(0,0)? Since every natural number divides zero, there
is no greatest one.

The numberm is a common multipleof a andb if both a | m andb | m. It
is the least common multipleif it is a common multiple which is smaller than
any other common multiple. Thus the least common multiple of 12 and 18 is 36
(written lcm(12,18) = 36). Any two natural numbersa andb have a least common
multiple. For there certainly exist common multiples, for exampleab; and any
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non-empty set of natural numbers has a least element. (The least common multiple
of 0 anda is 0, for anya.) We write lcm as shorthand for “least common multiple”.

Is it true that any two natural numbers have a greatest common divisor? We
will see later that it is. Consider, for example, 8633 and 9167. Finding the gcd
looks like a difficult job. But, if you know that 8633= 89×97 and 9167= 89×
103, and that all the factors are prime, you can easily see that gcd(8633,9167) =
89.

But this isnot an efficient way to find the gcd of two numbers. Factorising a
number into its prime factors is notoriously difficult. In fact, it is the difficulty of
this problem which keeps internet commercial transactions secure!

Euclid discovered an efficient way to find the gcd of two numbers a long time
ago. His method gives us much more information about the gcd as well. In the
next section, we look at his method.

5.3 Euclid’s algorithm

Euclid’s algorithm is based on two simple rules:

Proposition 5.2

gcd(a,b) =
{

a if b = 0,
gcd(b,amodb) if b > 0.

Proof We saw already that gcd(a,0) = a, so suppose thatb> 0. Letr = adivb=
a−bq, so thata = bq+ r. If d dividesa andb then it dividesa−bq= r; and if
d dividesb andr then it dividesbq+ r = a. So the lists of common divisors ofa
andb, and common divisors ofb andr, are the same, and the greatest elements of
these lists are also the same.

This is so slick that it doesn’t tell us much. But looking more closely we see
that it gives us an algorithm for calculating the gcd ofa andb. If b= 0, the answer
is a. If b> 0, calculateamodb= b1; our task is reduced to finding gcd(b,b1), and
b1 < b. Now repeat the procedure; ofb1 = 0, the answer isb; otherwise calculate
b2 = bmodb1, and our task is reduced to finding gcd(b1,b2), andb2 < b1. At each
step, the second number of the pair whose gcd we have to find gets smaller; so the
process cannot continue for ever, and must stop at some point. It stops when we
are finding gcd(bn−1,bn), with bn = 0; the answer isbn−1.

This isEuclid’s Algorithm. Here it is more formally:

To find gcd(a,b)

Putb0 = a andb1 = b.
As long as the last numberbn found is non-zero, putbn+1 = bn−1mod
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bn.
When the last numberbn is zero, then the gcd isbn−1.

Example Find gcd(198,78).

b0 = 198,b1 = 78.

198= 2·78+42, sob2 = 42.

78= 1·42+36, sob3 = 36.

42= 1·36+6, sob4 = 6.

36= 6·6+0, sob5 = 0.

So gcd(198,78) = 6.

Exercise Use Euclid’s algorithm to find gcd(8633,9167).

5.4 Euclid’s algorithm extended

The calculations that allow us to find the greatest common divisor of two numbers
also do more.

Theorem 5.3 Let a and b be natural numbers, and d= gcd(a,b). Then there are
integers x and y such that d= xa+ yb. Moreover, x and y can be found from
Euclid’s algorithm.

Proof The first, easy, case is whenb = 0. Then gcd(a,0) = a = 1 ·a+ 0 ·0, so
we can takex = 1 andy = 0.

Now suppose thatr = amodb, so thata = bq+ r. We saw that gcd(a,b) =
gcd(b, r) = d, say. Suppose that we can writed = ub+vr. Then we have

d = ub+v(a−qb) = va+(u−qv)b,

sod = xa+ybwith x = v, y = u−qv.
Now, having run Euclid’s algorithm, we can work back from the bottom to the

top expressingd as a combination ofbi andbi+1 for all i, finally reachingi = 0.

To make this clear, look back at the example. We have

42= 1·36+6, 6 = 1·42−1·36

78= 1·42+36, 6 = 1·42−1· (78−42) = 2·42−1·78

198= 2·78+42, 6 = 2· (198−2·78)−1·78= 2·198−5·78.

The final expression is 6= 2·198−5·78.
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We defined the greatest common divisor ofa andb to be the largest natural
number which divides both. Using the result of Euclid’s extended algorithm, we
can say a bit more:

Proposition 5.4 The greatest common divisor of the natural numbers a and b is
the natural number d with the properties

(a) d | a and d| b;

(b) if e is a natural number satisfying e| a and e| b, then e| d.

Proof Let d = gcd(a,b). Certainly condition (a) holds. Now suppose thate is
a natural number satisfyinge | a ande | b. Euclid’s algorithm gives us integersx
andy such thatd = xa+yb. Now e | xaande | yb; soe | xa+yb= d.

Remark Recall that, with our earlier definition, we had to admit that gcd(0,0)
doesn’t exist, since every natural number divides 0 and there is no greatest one.
But, with a = b = 0, there is a unique natural number satisfying the conclusion of
Proposition 5.4, namelyd = 0. So in fact this Proposition gives us a better way to
define the greatest common divisor, which works for all pairs of natural numbers
without exception!

5.5 Polynomials

Now we leave integers for a while, and turn to the setR[x] of all polynomials with
real coefficients.

There is also a version of the division rule and Euclid’s algorithm for polyno-
mials. The long division method for polynomials is similar to that for integers.
Here is an example: Dividex4 +4x3−x+5 byx2 +2x−1.

x2 +2x −3
x2 +2x −1

)
x4 +4x3 −x +5
x4 +2x3 −x2

2x3 +x2 −x
2x3 +4x2 −2x

−3x2 +x +5
−3x2 −6x +3

7x +2

This calculation shows that when we dividex4 + 4x3− x+ 5 by x2 + 2x−1, the
quotient isx2 +2x−3 and the remainder is 7x+2.

In general, letf (x) andg(x) be two polynomials, withg(x) 6= 0. Then the
division rule produces a quotientq(x) and a remainderr(x) such that
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• f (x) = g(x)q(x)+ r(x);

• eitherr(x) = 0 or the degree ofr(x) is smaller than the degree ofg(x).

(Remember that we didn’t define the degree of the zero polynomial.)
Let us prove that the division rule works. The proof follows the method that

we used in the example: we multiplyg(x) by a constant times a power ofx so that,
when we subtract it, the degree of the result is smaller than it was. Our proof will
be by induction on the degree off (x).

So let f (x) andg(x) be polynomials, withg(x) 6= 0.

Case 1: Either f (x) = 0, or deg( f (x)) < deg(g(x)). In this case we have
nothing to do except to putq(x) = 0 andr(x) = f (x).

Case 2: deg( f (x)) ≥ deg(g(x)). We let deg( f (x)) = n, and assume (as in-
duction hypothesis) that the result is true iff (x) is replaced by a polynomial of
degree less thann. Let

f (x) = anxn + l.d.t.,

g(x) = bmxm+ l.d.t.,

where we have used the abbreviation l.d.t. for “lower degree terms”. We have
an 6= 0, bm 6= 0, and (by the case assumption)n≥m. Then

(an/bm)xn−m ·g(x) = anxn + l.d.t.,

and so the polynomialf ∗(x) = f (x)− (an/bm)xn−m ·g(x) satisfies deg( f ∗(x)) <
deg( f (x)): the subtraction cancels the leading term off (x). So by the induction
hypothesis, we have

f ∗(x) = g(x)q∗(x)+ r∗(x),

wherer∗(x) = 0 or deg(r∗(x)) < deg(g(x)). Then

f (x) = g(x)
(
(an/bm)xn−m+g∗(x)

)
+ r∗(x),

so we can putg(x) = (an/bm)xn−m+g∗(x) andr(x) = r∗(x) to complete the proof.

Having got a division rule for polynomials, we can now copy everything that
we did for integers. Here is a summary of the definitions and results.

A non-zero polynomial is calledmonicif its leading coefficient is 1, that is, if
it has the form

f (x) = xn +an−1xn−1 + · · ·+a1x+a0.
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We say thatg(x) divides f(x) if f (x) = g(x)q(x) for some polynomialq(x); in
other words, if the remainder in the division rule is zero.

We define the greatest common divisor of two polynomials by the more ad-
vanced definition that we met at the end of the last section. Thegreatest common
divisor of f (x) andg(x) is a polynomiald(x) with the properties

(a) d(x) divides f (x) andd(x) dividesg(x);

(b) if h(x) is any polynomial which divides bothf (x) andg(x), thenh(x) di-
videsd(x);

(c) d(x) is monic (if it is not the zero polynomial).

The last condition is put in because, for any non-zero real numberc, each of
the polynomialsf (x) andc f(x) divides the other; without this condition, the gcd
would not be uniquely defined, since any non-zero constant multiple of it would
work just as well.

Theorem 5.5 (a) Any two polynomials f(x) and g(x) have a greatest common
divisor.

(b) The g.c.d. of two polynomials can be found by Euclid’s algorithm.

(c) If gcd( f (x),g(x)) = d(x), then there exist polynomials h(x) and k(x) such
that

f (x)h(x)+g(x)k(x) = d(x);

these two polynomials can also be found from the extended version of Eu-
clid’s algorithm.

We will not prove this theorem in detail, since the proof is the same as that for
integers.

Exercises

5.1 Find the greatest common divisor of 2047 and 2323, and write it in the form
2047x+2323y for some integersx andy.

5.2 Find the least common multiple of 2047 and 2323.

5.3 Find the greatest common divisor ofx4−1 andx3 +3x2 +x+3, and write it
in the form(x4−1)u(x)+ (x3 +3x2 + x+3)v(x) for some polynomialsu(x) and
v(x).



54 CHAPTER 5. DIVISION AND EUCLID’S ALGORITHM

5.4 Prove that, for any two positive integersm andn,

gcd(m,n) · lcm(m,n) = mn.

Does any similar result hold for three positive integers?
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Modular arithmetic

Modular arithmetic is an important example of an algebraic system with only a
finite number of elements, unlike most of our examples (the number systems,
matrices, polynomials, etc.) which have infinitely many elements.

6.1 Congruence modm

Here is a very important example of an equivalence relation.
LetX = Z, the set of integers. We define a relation≡m onZ, calledcongruence

mod m, wherem is a positive integer, as follows:

x≡m y if and only if y−x is a multiple ofm.

You will often see this relation written asx ≡ y (modm). The meaning is
exactly the same.

We check the conditions for an equivalence relation.

reflexive:x−x = 0·m, sox≡m x.

symmetric: ifx≡m y, theny−x = cm for some integerc, sox−y = (−c)m, so
y≡m x.

transitive: if x ≡m y andy≡m z, theny− x = cm andz− y = dm, so z− x =
(c+d)m, sox≡m z.

So≡m is an equivalence relation.
This means that the set of integers is partitioned into equivalence classes of the

relation≡m. These classes are calledcongruence classes mod m. We write [x]m
for the congruence class modm containing the integerx. (This is what we called
R(x) in the Equivalence Relation Theorem, whereR is the name of the relation;
so we should really call it≡m(x). But this looks a bit odd, so we say[x]m instead.
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For example, whenm= 4, we have

[0]4 = {. . . ,−8,−4,0,4,8,12, . . .},
[1]4 = {. . . ,−7,−3,1,5,9,13, . . .},
[2]4 = {. . . ,−6,−2,2,6,10,14, . . .},
[3]4 = {. . . ,−5,−1,3,7,11,15, . . .},

and then the pattern repeats:[4]4 is the same set as[0]4 (since 0≡4 4). So there
are just four equivalence classes. More generally:

Proposition 6.1 The equivalence relation≡m has exactly m equivalence classes,
namely[0]m, [1]m, [2]m, . . . , [m−1]m.

Proof Given any integern, we can divide it bym to get a quotientq and remain-
der r, so thatn = mq+ r and 0≤ r ≤ m−1. Thenn− r = mq, so r ≡m n, and
n ∈ [r]m. So every integer lies in one of the classes in the proposition. These
classes are all different, since ifi, j both lie in the range 0, . . . ,m−1, then j − i
cannot be a multiple ofm unlessi = j.

We use this in everyday life. Consider time on the 24-hour clock, for example.
What is the time if 298 hours have passed since midnight on 1 January this year?
Since two events occur at the same time of day if their times are congruent mod 24,
we see that the time is[298]24 = [10]24, that is, 10:00, or 10am in the morning.

6.2 Operations on congruence classes

Now we can add and multiply congruence classes as follows:

[a]m+[b]m = [a+b]m,

[a]m · [b]m = [ab]m.

Look carefully at these supposed definitions. First, notice that the symbols for
addition and multiplication on the left are the things being defined; on the right
we take the ordinary addition and multiplication of integers.

The second important thing is that we have to do some work to show that we
have defined anything at all. Suppose that[a]m = [a′]m and [b]m = [b′]m. What
guarantee have we that[a+a′]m = [b+b′]m? If this is not true, then our definition
is worthless; so let’s try to prove it. We have

a′−a = cm, and

b′−b = dm; so

(a′+b′)− (a+b) = (c+d)m,
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so indeeda′+b′ ≡m a+b. Similarly, with the same assumption,

a′b′−ab = (cm+a)(dm+b)−ab

= m(cdm+cm+ad)

soa′b′ ≡m ab. So our definition is valid.
For example, here are “addition table” and “multiplication table” for the in-

tegers mod 4. I have been lazy and written 0,1,2,3 instead of the correct forms
[0]4, [1]4, [2]4, [3]4.

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

· 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

We denote the set of congruence classes modm, with these operations of ad-
dition and multiplication, byZm. Note thatZm is a set withm elements. We call
the operations “addition and multiplication modm”.

Theorem 6.2 The setZm, with addition and multiplication mod m, satisfies the
commutative, associative, and identity laws for both addition and multiplication,
the inverse law for addition, and the distributive law.

Proof We won’t prove the whole thing; here is a proof of the distributive law.
We are trying to prove that

[a]m([b]m+[c]m) = [a]m[b]m+[a]m[c]m.

The left-hand side is equal to[a]m[b+ c]m (by the definition of addition modm),
which in turn is equal to[a(b+ c)]m (by the definition of multiplication modm.
Similarly the right-hand side is equal to[ab]m+[ac]m, which is equal to[ab+ac]m.
Now a(b+c) = ab+ac, by the distributive law for integers; so the two sides are
equal.

6.3 Inverses

What about multiplicative inverses? Not every element inZm has an inverse. For
example,[2]4 has no inverse; if you look at row 2 of the multiplication table for
Z4, you see that it contains only the entries 0 and 2, so there is no element[b]4
such that[2]4[b]4 = [1]4. On the other hand, inZ5, every non-zero element has an
inverse, since

[1]5[1]5 = [1]5, [2]5[3]5 = [1]5, [4]5[4]5 = [1]5.
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Theorem 6.3 The element[a]m of Zm has an inverse if and only ifgcd(a,m) = 1.

Proof We have two things to prove: if gcd(a,m) = 1, then[a]m has an inverse; if
[a]m has an inverse, then gcd(a,m) = 1.

Suppose that gcd(a,m) = 1. As we saw in the last chapter, Euclid’s algorithm
shows that there exist integersx and y such thatxa+ ym= 1. This says that
xa−1 = ym is a multiple ofm, so thatxa≡m 1. This means[x]m[a]m = [1]m, so
[x]m is the inverse of[a]m.

Now suppose that[x]m is the inverse of[a]m, so thatxa≡m 1. This means that
xa+ym= 1 for some integery. Now letd = gcd(a,m). Thend | xaandd | ym, so
d | xa+ym= 1; so we must haved = 1, as required.

Corollary 6.4 Suppose that p is a prime number. Then the multiplicative inverse
law holds inZp; that is, every non-zero element ofZp has an inverse.

Proof If p is prime, then every numbera with 1≤ a≤ p satisfies gcd(a, p) = 1.
(For the gcd dividesp, so can only be 1 orp; but p clearly doesn’t dividea.) Then
the Theorem implies that[a]p has an inverse inZp.

6.4 Fermat’s Little Theorem

We already met Fermat, whose “Last Theorem” gave mathematicians so much
trouble for so many years. In this section, we will prove a theorem which Fermat
did succeed in establishing. First, two results aboutZp for p prime.

Lemma 6.5 Let p be a prime number and suppose that p| ab. Then p| a or p | b.

Proof Suppose thatp dividesabbut p does not dividea. Sincep is prime, we see
that gcd(a, p) = 1. By Euclid’s algorithm, there existx andy such thatxa+yp= 1.
Thenxab+ypb= b. Now p dividesxab(since it dividesab, and clearlyp divides
ypb; so p dividesb.

Lemma 6.6 Let p be a prime number.

(a) If [a]p[b]p = [0]p, then either[a]p = [0]p or [b]p = [0]p.

(b) If [ab]p = [ac]p and[a]p 6= [0]p, then[b]p = [c]p.

Proof (a) Since[a]p[b]p = [ab]p, the assumption[a]p[b]p = [0]p means thatab≡p

0, that is,p | ab. Thenp | a or p | b by the preceding Lemma; so[a]p = [0]p or
[b]p = [0]p.

(b) We have[a]p[b−c]p = [0]p; so, if [a]p 6= [0]p, then[b−c]p = [0]p, so that
[b]p = [c]p.
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So we come toFermat’s Little Theorem:

Theorem 6.7 Let p be a prime number. If a is any integer not divisible by p, then
ap−1 ≡p 1.

So, for example, 36 ≡7 1, as you can check.

Proof Consider the non-zero elements[1]p, [2]p, . . . , [p−1]p. Multiply them all
by a, to get[a]p, [2a]p, . . . , [(p− 1)a]p. Now by the preceding Lemma, none of
these elements is equal to[0]p, and no two of them are equal; so we have the same
list of elements in a different order. So their product is the same:

[a]p[2a]p · · · [(p−1)a]p = [1]p[2]p · · · [p−1]p,

from which we see that

[ap−1]p[1]p[2]p · · · [p−1]p = [1]p[2]p · · · [p−1]p.

Since[1]p[2]p · · · [p−1]p 6= [0]p, we conclude from the lemma that

[ap−1]p = [1]p,

in other words,ap−1 ≡p 1, as required.

For example, ifp = 7 anda = 3, then the multiples of 3 mod 7 are

[3]7, [6]7, [9]7 = [2]7, [12]7 = [5]7, [15]7 = [1]7, [18]7 = [4]7,

so we do obtain all the non-zero congruence classes in a different order.

Exercises

6.1 Find the units inZ30 and their inverses.

6.2 Calculate
2
3

+
3
4

in Z29.

6.3 Solve the quadratic equationx2 +2x+2 = 0

(a) inZ17,

(b) in Z19.

6.4 Prove that(p−1)! ≡p −1 if and only if p is prime. (This isWilson’s Theo-
rem.)
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Chapter 7

Polynomials revisited

We will look at three further aspects of polynomials. First, we have only consid-
ered real polynomials so far, but this can be generalised: as long as we can add
and multiply the coefficients, we can do the same with polynomials. Second, we
look at factorisation and show that, under the right conditions, the division rule,
Euclid’s algorithm, and the Remainder and Factor Theorems hold. Finally, the
construction of the integers modm by means of congruence classes can be ex-
tended to polynomials. This gives us a lessad hocconstruction of the complex
numbers, as well as other finite systems having addition and multiplication.

7.1 Polynomials over other systems

Let R be a set on which two operations (calledaddition andmultiplication are
defined. Suppose thatR satisfies the following laws. (We call this collection of
laws CRI).

• the commutative, associative, identity and inverse laws for addition (the
identity for addition is called 0, and the inverse ofa is−a);

• the commutative, associative, and identity laws for multiplication (the iden-
tity for multiplication is called 1);

• the distributive law.

Later, we will study such systems formally under the name “commutative rings
with identity”. In this section, we will put them to use.

The examples we have met already include:

• Z, Q, R, C;

• R[x], the polynomials with real coefficients;
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• Zm, the integers modm.

We can define apolynomialoverR to be an expression of the form

f (x) = anxn +an−1xn−1 + · · ·+a1x+a0,

wheren is a non-negative integer andan,an−1, . . . ,a1,a0 ∈R. We adopt the same
rules as we discussed earlier for when two expressions represent the same polyno-
mial (we can insert or remove terms with coefficient zero, and we can replace 1xn

by xn). Now we can add and multiply polynomials by the same rules as before.
Let R[x] be the set of all polynomials with coefficients inR.

Proposition 7.1 If R satisfies the laws (CRI) above, then so does R[x].

Proof As usual, we don’t give a detailed verification of all the laws. The ap-
pendix to this chapter gives some of the details.

We end this section with a warning. We informally defined a real polynomial
to be a function on the real numbers given by an expression of the right form. This
no longer works for more general polynomials.

Example Let R = Z2, the integers mood 2. The setR contains two elements,
[0]2 and [1]2, which we will write more briefly as 0 and 1. The laws (CRI) are
satisfied.

Now consider the two polynomialsx andx2. Since 02 = 0 and 12 = 1, these
two polynomials give rise to the same function onZ2. However, we really do want
to regard them as different polynomials! Hence we regard polynomials as being
formal expressions, not the functions they define.

7.2 Division and factorisation

The division rule and Euclid’s algorithm work in almost the same way for poly-
nomials as for integers. So we can mimic the definition of the integers modm.

We need one more property for the coefficients, beyond the laws (CRI) we
assumed before. The extra law is the inverse law for multiplication, which states
that every elementa of Rexcept 0 has a multiplicative inversea−1. A system sat-
isfying (CRI) and the inverse law for multiplication is called afield. The examples
we know so far areQ, R, C, andZp for prime numbersp.

[Why do we need this extra law? Look back at the proof of the division rule
for polynomials. To dividef (x) = anxn + · · · by g(x) = bmxm+ · · ·, wherebm 6= 0
andn > m, we first subtract(an/bm)xn−mg(x) from f (x) to obtain a polynomial
of smaller degree. So we need to be able to dividean by bm, that is, we need a
multiplicative inverse forbm.]
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Theorem 7.2 If R is a field, then the set R[x] of polynomials with coefficients in R
satisfies the division rule, and Euclid’s algorithm works in R[x].

A polynomialg(x) of degree greater than zero is calledirreducibleif it cannot
be written in the formg(x) = h(x)k(x), whereh(x) andk(x) are polynomials with
degrees smaller than the degree ofg(x).

We will not treat irreducible polynomials in detail, but simply look at one
technique for recognising them. Letf (x) be a polynomial over the fieldR. For
anyc∈ R, we let f (c) denote the result of “substitutingc into f (x)”; that is,

if f (x) = anxn + · · ·+a0, then f (c) = ancn + · · ·+a0.

The next theorem combines two familiar results about polynomials, theRe-
mainder Theoremand theFactor Theorem. Notice that, if we dividef (x) by a
polynomial of degree 1, the remainder has degree zero, that is, it is a constant
polynomial (which we regard as an element ofR).

Theorem 7.3 Let f(x) be a polynomial over a field R, and c∈ R.

(a) The remainder when f(x) is divided by x−c is f(c).

(b) f(x) is divisible by x−c if and only if f(c) = 0.

Proof (a) Write f (x) = (x− c)q(x)+ r, wherer is a constant polynomial. Sub-
stitutingc into this equation we findf (c) = r.

(b) If f (c) = 0 then f (x) = (x−c)q(x), sox−c divides f (x). The converse is
clear from the uniqueness of the remainder in the division rule.

Example The polynomial f (x) = x3− 2 is irreducible inQ[x]. For if it fac-
torises, it must be a product of polynomials of degrees 1 and 2. The polynomial of
degree 1 has the formx−c, wherec is a rational number; by the Factor Theorem,
f (c) = 0, that is,c3 = 2. But, following Euclid’s proof, it can be shown that3

√
2

is irrational (this is an exercise for you); so this is impossible.

7.3 “Modular arithmetic” for polynomials

Now let R be a field, and letg(x) be a fixed non-zero polynomial inR[x]. To
make things easier, we assume thatg(x) is monic. We say that two polynomials
f1(x) and f2(x) arecongruent mod g(x) if g(x) divides f1(x)− f2(x), that is, if
f1(x) = g(x)h(x)+ f2(x) for some polynomialh(x).
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Proposition 7.4 Congruence mod g(x) is an equivalence relation, and each equiv-
alence class contains a unique polynomial r(x) such that r(x) = 0 or deg(r(x)) <
deg(g(x)).

This is just a re-statement of the division rule. We will denote the equivalence
class off (x) by [ f (x)], and call it acongruence class mod g(x).

Let E be the set of congruence classes modg(x). Just as we did for congru-
ence classes modm in the integers, we are going to give rules for adding and
multiplying elements ofE. The rules are the obvious ones:

• [ f1(x)]+ [ f2(x)] = [ f1(x)+ f2(x)],

• [ f1(x)] · [ f2(x)] = [ f1(x) f2(x)].

Just as before, we have first to do some work to show that our definition is
a good one. That is, iff1(x) ≡ f ′1(x) and f2(x) ≡ f ′2(x), then f1(x) + f2(x) ≡
f ′1(x) + f ′2(x) and f1(x) f2(x) ≡ f ′1(x) f ′2(x). (All congruences are modulog(x).)
Here is the proof of the first statement; try the second for yourself. We are given
that f1(x)− f ′1(x) = g(x)h1(x) and f2(x)− f ′2(x) = g(x)h2(x). Then we find

( f1(x)+ f2(x))− ( f ′1(x)+ f ′2(x)) = g(x)(h1(x)+h2(x)),

which shows the required congruence.

Proposition 7.5 If R is a field, then the set E of congruence classes mod g(x) also
satisfies (CRI).

The proof of this simply involves routine checking of laws.
For integers, we saw thatZp is a field if p is prime. Something very similar

happens here; in place of primes, we use irreducible polynomials.

Theorem 7.6 Suppose that R is a field and g(x) an irreducible polynomial in R[x].
Then the set E of equivalence classes mod g(x) is also a field, and contains the
field R.

Proof We have to show that a non-zero congruence class has a multiplicative
inverse.

Suppose that the equivalence class[ f (x)] is not zero. This means thatg(x)
doesn’t dividef (x). So gcd( f (x),g(x)) = 1. (For the gcd is a monic polynomial
dividing g(x); sinceg(x) is irreducible, it cannot have positive degree.)

By Euclid’s algorithm, there are polynomialsh(x) andk(x) such that

f (x)h(x)+g(x)k(x) = 1.
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This equation says thatf (x)h(x) ≡ 1 modg(x), so [ f (x)] · [h(x)] = [1]. Thus we
have found an inverse for[ f (x)].

To find a copy of the fieldR insideE, we just take the equivalence classes of
the constant polynomials; they add and multiply just like elements ofR:

[c]+ [d] = [c+d], [c] · [d] = [cd],

This is all very good, but a bit too abstract for practical use. Here is a descrip-
tion which is easier to calculate with.

Proposition 7.7 Suppose that the hypotheses of the previous theorem are satis-
fied, and let m be the degree of g(x). Then E is the set

{cm−1α
m−1 + · · ·+c0 : c0, . . . ,cm−1 ∈ R},

whereα is a new symbol satisfying g(α) = 0.

Proof We saw that the constant polynomials[c] are just like elements ofR, so
we ignore the difference and identify them with elements ofR. Let α = [x], the
congruence class containing the polynomialx. Now we saw that each equivalence
class contains a unique polynomialr(x) of degree less thanm (or zero). Ifr(x) =
cm−1xm−1 + · · ·+c0, then

[r(x)] = [cm−1xm−1 + · · ·+c0]
= [cm−1][x]m−1 + · · ·+[c0]
= cm−1α

m−1 + · · ·+c0.

(In the second line we used the rules for adding and multiplying equivalence
classes; in the third, we put[c] = c and[x] = α.

Finally, g(x)≡ 0 modg(x), so[g(x)] = [0]. By the same argument, this gives
g(α) = 0.

Time for a (very important) example. LetRbe the fieldR of real numbers. We
takeg(x) to be the polynomialx2 + 1. (This is irreducible; for its factors, if any,
would have degree 1, but if, say,

x2 +1 = (x−a)(x−b),

thena2 =−1, which is impossible since the square of any real number is positive.
Now the fieldE of our construction consists of all expressions of the form

c+dα, wherec andd are real numbers andα is a new symbol satisfyingα2+1=
0. Thusα is the symbol usually called i. So the complex numbers are not just a
fluke; they are a special case of a very general construction!
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7.4 Finite fields

We saw thatZm is a field withm elements ifm is prime, but is not a field ifm is
composite. Is there a finite field with four elements? We cannot useZ4, since[2]4
has no multiplicative inverse.

We apply the construction of the preceding section. First we find an irreducible
polynomial.

Lemma 7.8 The polynomial x2 +x+1 is irreducible overZ2.

Proof If not, it has a factor of the formx− c for somec ∈ Z2. By the Factor
Theorem, this would mean thatf (c) = 0. But, writing 0 and 1 instead of the more
cumbersome[0]2 and[1]2,

02 +0+1 = 1,

12 +1+1 = 1,

so noc satisfyingc2 +c+1 = 0 exists, and there is no factor(x−c).

So there is a fieldE consisting of the elementscα + d, with c,d ∈ Z2 and
α2 + α + 1 = 0. The elements ofE are 0,1,α,α + 1. The elements 0 and 1
comprise the fieldZ2, so that 1+1 = 0. Thenx+x = (1+1)x = 0 for anyx, and
soα2 =−α −1 = α +1. Then we can do calculations like

(α +1)2 = α
2 +α +α +1 = α +1+1 = α.

In general, any expression involvingα can be calculated to be one of the four
elements 0,1,α,α +1.

The addition and multiplication tables for the fieldE can now be worked out:

+ 0 1 α α +1
0 0 1 α α +1
1 1 0 α +1 α

α α α +1 0 1
α +1 α +1 α 1 0

· 0 1 α α +1
0 0 0 0 0
1 0 1 α α +1
α 0 α α +1 1

α +1 0 α +1 1 α

Now the multiplicative inverses of 1,α andα +1 are, respectively, 1,α +1,
andα.

Évariste Galois is one of the founders of modern algebra. He was killed in a
duel at the age of 19; already he had worked out, and published, the construction
of finite fields (he did much more than we have seen, showing that the number
of elements in a finite field must be a power of a prime, and that for each prime
power there is a unique finite field of that order). Finite fields are calledGalois
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fields in his honour; the field withq elements is denoted by GF(q). So the field
we constructed above is GF(4).

But his major work, in which he showed how group theory could be used
to decide when a “solution by radicals” for a general polynomial equation could
be found, had been lost by referees at the French Academy (who were probably
unable to understand it). Its main impact came fifteen years later when it was
rediscovered and published.

As well as algebra, Galois was
deeply involved in the revolutionary
politics of his time. The duel in
which he was shot and killed was
apparently over a woman; but
historians have uncovered evidence
that it had been set up, either by the
Royalist police, or by the
revolutionaries to whom he had
offered himself as a sacrifice to
spark a general uprising. If the
second explanation is true, then he
died in vain, as there was no
uprising.

7.5 Appendix: Laws for polynomials

In Proposition 7.1, we asserted that, ifR satisfies the system (CRI) of laws, then
so doesR[x], the set of polynomials overR. In this appendix I will say a few words
about the proof. First, let us be clear about the definitions.

A polynomial overR is an expression

f (x) = anxn + · · ·+a1x+a0 =
n

∑
i=0

aix
i .

Suppose thatg(x) is another polynomial:

g(x) = bmxm+ · · ·+b0 =
m

∑
i=0

bix
i .

To add f (x) andg(x), we first assume thatm= n. (If m< n, we add extra terms
0xi for i = m+1, . . . ,n to the polynomialg(x), and similarly ifn < mwe add zero
terms tof (x). Then

( f +g)(x) =
n

∑
i=0

(ai +bi)xi .
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The rule for multiplication is a bit more complicated:

( f g)(x) =
m+n

∑
i=0

cix
i ,

where
ci = ∑a jbi− j ,

the sum being over all values ofj for which botha j andbi− j are defined; that is,
we have 0≤ j ≤ n and 0≤ i− j ≤ m, so thati−m≤ j ≤ i. We can summarise
these two sets of conditions by saying

max(0, i−m)≤ j ≤min(i,n).

Consider, for example, the distributive law

( f +g)h = f h+gh.

We assume thatf andg are as above (withm= n) and that

h(x) =
p

∑
i=0

dix
i .

Then the coefficient ofxi in ( f +g)h is

∑(a j +b j)di− j = ∑a jdi− j +b jdi− j ,

using the distributive law forR; and the coefficient inf h+gh is

∑a jdi− j +∑b jdi− j .

Now all the sums are over the same range max(0, i −m) ≤ j ≤ min(i, p), and
rearranging the terms shows that the two expressions are equal.

Exercises

7.1 Suppose thatax+ b dividescnxn + · · ·+ c0 in Z[x], wherea,b,c0, . . . ,cn are
integers. Show thata dividescn, andb dividesc0. Hence show thatxn− 2 is
irreducible overZ for any positive integern.

7.2 (a) Show that the polynomialx2 +1 is irreducible overZ3.

(b) Construct a field with nine elements.

7.3 Verify the associative law for multiplication of polynomials.
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Rings

We have seen many different types of structure (numbers, matrices, polynomials,
sets, modular arithmetic) which satisfy very similar laws. Now we take the ob-
vious next step: we consider systems satisfying these laws abstractly, and prove
things about them directly from the laws they satisfy. The results will then be true
in our systems no matter what they are made up of. This is called theaxiomatic
method.

8.1 Rings

A ring is a setR of elements with two operations,addition(written+) andmulti-
plication (written · or just by juxtaposing the factors) which satisfies the following
laws. (Most of these we have seen before, but we state them all formally here.)

Additive laws:

(A0) Closure law: For ala,b∈ R, we havea+b∈ R.

(A1) Associative law: For alla,b,c∈ R, we havea+(b+c) = (a+b)+c.

(A2) Zero law: There is an element 0∈Rwith the property thata+0= 0+a= a
for all a∈ R.

(A3) Additive inverse law: For alla∈ R, there exists an elementb∈ R such that
a+b = b+a = 0. We writeb as−a.

(A4) Commutative law: For alla,b∈ R, we havea+b = b+a.

Multiplicative laws:

(M0) Closure law: For ala,b∈ R, we haveab∈ R.
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(M1) Associative law: For alla,b,c∈ R, we havea(bc) = (ab)c.

Mixed laws:

D Distributive laws: For alla,b,c∈R, we havea(b+c) = ab+acand(b+c)a=
ba+ca.

Before we go further, a couple of comments:

• The closure laws are new. Strictly speaking, they are not necessary, since to
say that+ is an operation onR means that the outputa+b when we input
a andb to the black box belongs toR. We put them in as a reminder that,
when we are checking that something is a ring, we have to be sure that this
holds.

• We have stated the identity and inverse laws for addition in a more compli-
cated way than necessary. Since we are going on to state the commutative
law for addition, we could simply have said thata+0= a anda+(−a) = 0.
We’ll see the reason soon.

We have already seen that sometimes the multiplication satisfies further laws,
which resemble the laws for addition. This won’t always be the case, so we give
special names to rings in which these laws hold.

Let Rbe a ring. We say thatR is aring with identityif

(M2) Identity law: There is an element 1∈R (with 1 6= 0) such that 1a = a1 = a
for all a∈ R.

We say thatR is adivision ring if it satisfies (M2) and also

(M3) Multiplicative inverse law: for alla∈ R, if a 6= 0, then there existsb∈ R
such thatab= ba= 1. We writeb asa−1.

We say thatR is acommutative ringif

(M4) Commutative law: for alla,b∈ R, we haveab= ba.

(Note that the word “commutative” here refers to the multiplication; the addition
in a ring is always commutative.) Finally, we say thatR is a field if it satisfies
(M2), (M3) and (M4).

The condition (CRI) which we introduced in the last chapter thus stands for
“commutative ring with identity”.

In a non-commutative ring, we need to assume both parts of the identity and
multiplicative inverse laws, since one does not follow from the other. Similarly,
we do need both parts of the distributive law.



8.2. EXAMPLES OF RINGS 71

8.2 Examples of rings

We have a ready-made stock of examples:

• Z is a commutative ring with identity.

• Q, R andC are fields.

• If R is a commutative ring with identity, then so is thepolynomial ring R[x].

• If R is a ring, then so is the setMn×n(R) of all n×n matrices overR(with the
usual definitions of matrix addition and multiplication). IfRhas an identity,
then so doesMn×n(R). But this ring is usually not commutative.

• For anym, the setZm of integers modm is a commutative ring with identity.
It is a field if and only ifm is prime.

• If R is a field andg(x) a monic polynomial of degree at least 1 overR, then
the set of congruence classes of polynomals modg(x) is a commutative ring
with identity. It is a field if (and only if)g(x) is an irreducible polynomial.

Note that the third and fourth of these constructions (polynomials and matri-
ces) are methods of building new rings from old ones. You may guess that the
fifth and sixth can also be made into constructions of new rings from old. This is
correct, but the construction is beyond the scope of this course. You will meet it
next year in Algebraic Structures I.

Some other familiar structures do not form rings. For example, the set of
natural numbersN is not a ring, since the additive inverse law does not hold.

At the end of the last chapter, we constructed a field with four elements.

8.3 Properties of rings

We now give a few properties of rings. Since we only use the ring axioms in the
proofs, and not any special properties of the elements, these are valid for all rings.
This is the advantage of the axiomatic method.

Proposition 8.1 In a ring R,

there is a unique zero element;

any element has a unique additive inverse.
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Proof (a) Suppose thatz andz′ are two zero elements. This means that, for any
a∈ R,

a+z= z+a = a,

a+z′ = z′+a = a.

Now we havez+z′ = z′ (puttinga= z′ in the first equation) andz+z′ = z (putting
a = z in the second). Soz= z′.

This justifies us in calling the unique zero element 0.

(b) Suppose thatb andb′ are both additive inverses ofa. This means that

a+b = b+a = 0,

a+b′ = b′+a = 0.

Hence
b = b+0 = b+(a+b′) = (b+a)+b′ = 0+b′ = b′.

(Here the first and last equalities hold because 0 is the zero element; the second
and second last are our assumptions aboutb andb′; and the middle equality is the
associative law.

This justifies our use of−a for the unique inverse ofa.

Proposition 8.2 Let R be a ring.

(a) If R has an identity, then this identity is unique.

(b) If a∈ R has a multiplicative inverse, then this inverse is unique.

The proof is almost identical to that of the previous proposition, and is left as
an exercise.

The next result is called thecancellation law.

Proposition 8.3 Let R be a ring. If a+b = a+c, then b= c.

Proof

b= 0+b=(−a+a)+b=−a+(a+b)=−a+(a+c)= (−a+a)+c= 0+c= c.

Here the third and fifth equalities use the associative law, and the fourth is what
we are given. To see where this proof comes from, start witha+b = a+c, then
add−a to each side and work each expression down using the associative, inverse
and zero laws.
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Remark Try to prove that, ifR is a field anda 6= 0, thenab= ac impliesb = c.
The next result is something you might have expected to find amongst our

basic laws. But it is not needed there, since we can prove it!

Proposition 8.4 Let R be a ring. For any element a∈ R, we have0a = a0 = 0.

Proof We have 0+0 = 0, since 0 is the zero element. Multiply both sides bya:

a0+a0 = a(0+0) = a0 = a0+0,

where the last equality uses the zero law again. Now froma0+a0 = a0+0, we
geta0 = 0 by the cancellation law. The other part 0a = 0 is proved similarly; try
it yourself.

There is one more fact we need. This fact uses only the associative law in its
proof, so it holds for both addition and multiplication. To state it, we take◦ to be
a binary operation on a setX, which satisfies the associative law. That is,

a◦ (b◦c) = (a◦b)◦c

for all a,b,c∈ X. This means that we can writea◦b◦c without ambiguity.
What about applying the operation to four elements? We have to put in brack-

ets to specify the order in which the operation is applied. There are five possibili-
ties:

a◦ (b◦ (c◦d))
a◦ ((b◦c)◦d)
(a◦b)◦ (c◦d)
(a◦ (b◦c))◦d

((a◦b)◦c)◦d

Now the first and second are equal, sinceb◦ (c◦ d) = (b◦ c) ◦ d. Similarly the
fourth and fifth are equal. Consider the third expression. If we putx = a◦ b,
then this expression isx◦ (c◦ d), which is equal to(x◦ c) ◦ d, which is the last
expression. Similarly, puttingy = c◦d, we find it is equal to the first. So all five
are equal.

This result generalises:

Proposition 8.5 Let ◦ be an operation on a set X which satisfies the associative
law. Then the value of the expression

a1◦a2◦ · · · ◦an

is the same, whatever (legal) way n−2 pairs of brackets are inserted.

I won’t give the inductive proof here; you are encouraged to try it yourself!
You will find the proof in an appendix to the notes.
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8.4 Units

Let R be a ring with identity element 1. An elementu∈ R is called aunit if there
is an elementv∈ R such thatuv= vu= 1. The elementv is called theinverseof
u, writtenu−1. By Proposition 8.2, a unit has a unique inverse.

Here are some properties of units.

Proposition 8.6 Let R be a ring with identity.

(a) 0 is not a unit.

(b) 1 is a unit; its inverse is1.

(c) If u is a unit, then so is u−1; its inverse is u.

(d) If u and v are units, then so is uv; its inverse is v−1u−1.

Proof (a) Since 0v = 0 for all v∈ R and 06= 1, there is no elementv such that
0v = 1.

(b) The equation 1·1 = 1 shows that 1 is the inverse of 1.

(c) The equationu−1u = uu−1 = 1, which holds becauseu−1 is the inverse of
u, also shows thatu is the inverse ofu−1.

(d) Suppose thatu−1 andv−1 are the inverses ofu andv. Then

(uv)(v−1u−1) = u(vv−1)u−1 = u1u−1 = uu−1 = 1,

(v−1u−1)(uv) = v−1(u−1u)v = v−11v = v−1v = 1,

sov−1 is the inverse ofuv.

Here is how Hermann Weyl explains Proposition refunits(d), the statement
that (uv)−1 = v−1u−1, in his bookSymmetry, published by Princeton University
Press.

With this rule, although perhaps not with its
mathematical expression, you are all familiar. When
you dress, it is not immaterial in which order you
perform the operations; and when in dressing you
start with the shirt and end up with the coat, then in
undressing you observe the opposite order; first take
off the coat and the shirt comes last.

Here are some examples of units in familiar rings.



8.4. UNITS 75

• In a field, every non-zero element is a unit.

• In Z, the only units are 1 and−1.

• Let F be a field. Then a polynomial in the polynomial ringF [x] is a unit if
and only if it is a non-zero constant polynomial. For we have

deg( f (x)g(x)) = deg( f (x))+deg(g(x)),

so if f (x)g(x) = 1 then f (x) must have degree zero, that is, it is a constant
polynomial.

• LetF be a field andna positive integer. An elementAof the ringMn×n(F) is

a unit if and only if the determinant ofA is non-zero. In particular,

(
a b
c d

)
is a unit inM2×2(R) if and only if ad−bc 6= 0; if this holds, then its inverse
is

1
ad−bc

(
d −b
−c a

)
.

• Which elements are units in the ringZm of integers modm? The next result
gives the answer.

Proposition 8.7 Suppose that m> 1.

(a) An element[a]m of Zm is a unit if and only ifgcd(a,m) = 1.

(b) If gcd(a,m) > 1, then there exists b6≡m 0 such that[a]m[b]m = [0]m.

Proof Suppose that gcd(a,m) = 1; we show thata is a unit. By Euclid, there exist
integersx andysuch thatax+my= 1. This meansax≡m 1, so that[a]m[x]m= [1]m,
and[a]m is a unit.

Now suppose that gcd(a,m) = d > 1. Thena/d andm/d are integers, and we
have

a
(m

d

)
=

(a
d

)
≡m 0,

so[a]m[b]m = [0]m, whereb = m/d. Since 0< b < m, we have[b]m 6= [0]m.
But this equation shows thata cannot be a unit. For, if[x]m[a]m = [1]m, then

[b]m = [1]m[b]m = [x]m[a]m[b]m = [x]m[0]m = [0]m,

a contradiction.
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Example The table shows, for each non-zero element[a]12 of Z12, an element
[b]12 such that the product is either 1 or 1. To save space we writea instead of
[a]12.

a 1 2 3 4 5 6 7 8 9 10 11
ab 1·1 = 1 2·6 = 0 3·4 = 0 4·3 = 0 5·5 = 1 6·2 = 0 7·7 = 1 8·3 = 0 9·4 = 0 10@cdot6 = 0 11·11= 1

Unit? √ × × × √ × √ × × × √

So the units inZ12 are[1]12, [5]12, [7]12, and[11]12.
Euler’s functionφ(m), sometimes calledEuler’s totient function, is defined to

be the number of integersa satisfying 0≤ a≤ m− 1 and gcd(a,m) = 1. Thus
φ(m) is the number of units inZm.

8.5 Appendix: The associative law

In this section we give the proof that, if◦ is an operation on a setX which satisfies
the associative law, then the composition ofn terms doesn’t depend on how we
put in the brackets (Proposition 8.5).

The proof is by induction onn. For n = 2, there are no brackets ina1 ◦ a2,
and nothing to prove. Forn = 3, there ae two ways to put in the brackets, viz.
a1◦ (a2◦a3) and(a1◦a2)◦a3; the associative law asserts that they are equal. In
the notes we saw that, forn= 4, there are five bracketings, and the five expressions
are all equal.

So now suppose that the statement is true for expressions with fewer thann
terms, and consider any two bracketings ofa1◦ · · · ◦an. Now for any bracketing,
when we work it out “from the inside out”, in the last step we have just two
expressions to be composed; that is, the expression looks like

(x1◦ · · · ◦xk)◦ (xk+1◦ · · · ◦xn).

There may be further brackets inside the two terms, but (according to the inductive
hypothesis) they don’t affect the result. We will say that the expressionsplits after
k terms.

Suppose that the first expression splits afterk terms, and the second splits after
l terms.

Casek = l Both expressions now have the form

(x1◦ · · · ◦xk)◦ (xk+1◦ · · · ◦xn),

and by induction the bracketed terms don’t depend on any further brackets. So
they are equal.



8.5. APPENDIX: THE ASSOCIATIVE LAW 77

Casek < l Now the first expression is

(x1◦ · · · ◦xk)◦ (xk+1◦ · · · ◦xn)

and the second is
(x1◦ · · · ◦xl )◦ (xl+1◦ · · · ◦xn).

By the induction hypothesis, the value of the termx1 ◦ · · · ◦ xk doesn’t depend on
where the brackets are; so we can rearrange the brackets so that this expression
splits afterk terms, so that the whole expression is

((x1◦ · · · ◦xk)◦ (xk+1◦ · · · ◦xl ))◦ (xl+1◦ · · · ◦xn).

In the same way, we can rearrange the second expression as

(x1◦ · · · ◦xk)◦ ((xk+1◦ · · · ◦xl )◦ (xl+1◦ · · · ◦xn)).

Now the two expressions are of the form(a◦b)◦c anda◦ (b◦c), where

a = x1◦ · · · ◦xk,

b = xk+1◦ · · · ◦xl ,

c = xl+1◦ · · · ◦xn.

The associative law shows that they are equal.

Casek > l This case is almost identical to the preceding one.

Exercises

8.1 LetnZ be the set of all integers divisible byn. Show thatnZ is a ring (with the
usual addition and multiplication). Is it commutative? Does it have an identity?

8.2 Let P(S) denote the set of all subsets of the setS. ForA,B∈P(S), define
A+B = A4B (symmetric difference), andAB= A∩B (intersection). Show that
P(S) is a ring. Show also thatA2 = A for all A∈P(S).

8.3 Let Rbe a ring in whicha2 = a for all a∈ R. By considering(a+b)2, show

(a) R is commutative;

(b) a+a = 0 for all a∈ R.

(Such a ring is called aBoolean ring.)
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Chapter 9

Groups

The additive and multiplicative axioms for rings are very similar. This similarity
suggests considering a structure with a single operation, called a group. In this
section we study groups and their properties.

9.1 Definition

A group is a setG with an operation◦ onG satisfying the following axioms:

(G0) Closure law: for alla,b∈G, we havea◦b∈G.

(G1) Associative law: for alla,b,c∈G, we havea◦ (b◦c) = (a◦b)◦c.

(G2) Identity law: there is an elemente∈G (called theidentity) such thata◦e=
e◦a = a for anya∈G.

(G3) Inverse law: for alla ∈ G, there existsb ∈ G such thata◦b = b◦a = e,
wheree is the identity. The elementb is called theinverseof a, writtena′.

If in addition the following law holds:

(G4) Commutative law: for alla,b∈G we havea◦b = b◦a

thenG is called acommutative group, or more usually anabelian group(after the
Norwegian mathematician Niels Abel).

9.2 Elementary properties

Many of the simple properties work in the same way as for rings.

Proposition 9.1 Let G be a group.

79
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(a) The composition of n elements has the same value however the brackets are
inserted.

(b) The identity of G is unique.

(c) Each element has a unique inverse.

(d) Cancellation law; if a◦b = a◦c then b= c.

Proof (a) Proved in the appendix to the last section of the notes. (b) Ife ande∗

are identities then
e= e◦e∗ = e∗.

(c) If b andb∗ are inverses ofa then

b = b◦e= b◦a◦b∗ = e◦b∗ = b∗.

(d) If ab= ac, multiply on the left by the inverse ofa to getb = c.

9.3 Examples of groups

We have some ready-made examples.

• Let R be a ring. TakeG = R, with operation+; the identity is 0 and the
inverse ofa is−a. This group is called theadditive groupof the ringR. It
is an abelian group.

• Let Rbe a ring with identity, and letU(R) denote the set of units ofR, with
operation multiplication inR. This is a group;

– the closure, identity and inverse laws follow from Proposition xx in
the last part of the notes;

– the associative law follows from the ring axiom (M1).

This group is called thegroup of unitsof R. The next couple of examples
are special cases.

• In particular, ifF is a field, then the groupU(F) of units ofF consists of all
the non-zero elements ofF . This is called themultiplicative groupof F .
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• Let F be a field andn a positive integer. The setMn×n(F) of all n× n
matrices with elements inF is a ring. We saw that a matrix is a unit in this
ring if and only if its determinant is non-zero. The groupU(Mn×n(F)) is
called thegeneral linear groupof dimensionn overF , written GL(n,F).

• LetV be a vector space. Then, with the operation of vector addition,V is an
abelian group; the identity is the zero vector0, and the inverse ofv is−v.

We will meet another very important class of groups in the next chapter.

Remark on notation I have used here a neutral symbol◦ for the group opera-
tion. In books, you will often see the group operation written as multiplication, or
(in abelian groups) as addition. Here is a table comparing the different notations.

Notation Operation Identity Inverse
General a◦b e a′

Multiplicative ab, a·b 1 a−1

Additive a+b 0 −a

In order to specify the notation, instead of saying, “LetG be a group”, we often
say, “Let(G,◦) (or (G,+), or (G, ·)) be a group”. The rest of the notation should
then be fixed as in the table.

Sometimes, however, the notations get a bit mixed up. For example, even with
the general notation, it is common to usea−1 instead ofa′ for the inverse ofa. I
will do so from now on.

9.4 Cayley tables

If a group is finite, it can be represented by its operation table. In the case of
groups, this table is more usually called theCayley table, after Arthur Cayley who
pioneered its use. Here, for example, is the Cayley table of the group of units of
the ringZ12.

· 1 5 7 11
1 1 5 7 11
5 5 1 11 7
7 7 11 1 5
11 11 7 5 1

Notice that, like the solution to a Sudoku puzzle, the Cayley table of a group
contains each symbol exactly once in each row and once in each column (ignoring
row and column labels). Why? Suppose we are looking for the elementb in row a.
It occurs in columnx if a◦x= b. This equation has the unique solutionx= a−1◦b,
wherea−1 is the inverse ofa. A similar argument applies to the columns.
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Example Let G be a group with three elementse,a,b, with e the identity. We
know part of the Cayley table:

◦ e a b
e e a b
a a
b b

Now considera◦b, the element in the second row and third column. This cannot
bea, since we already havea in the row; and it cannot beb, since we already have
b in the column. Soa◦b = e. With similar arguments we can find all the other
entries.

So there is only one “type” of group with three elements.
We will just stop and look at what this means. Let(G,◦) and(H,∗) be groups.

We say thatG andH areisomorphicif there is a bijective (one-to-one and onto)
function F : G→ H such thatF(g1 ◦ g2) = F(g1) ∗F(g2) for all g1,g2 ∈ G. In
other words, we can match elements ofG with elements ofH such that the group
operation works in the same way on elements ofG and the matched elements of
H. The functionF is called anisomorphism.

Thus, the argument we just gave shows that any two groups with three ele-
ments are isomorphic.

9.5 Subgroups

Let (G,◦) be a group, andH a subset of G, that is, a selection of some of the
elements ofG. For example, letG = (Z,+) (the additive group of integers), and
H = 4Z (the set of multiples of 4).

We say thatH is subgroupof G if H, with the same operation (addition in our
example) is itself a group.

How do we decide if a subsetH is a subgroup? It has to satisfy the group
axioms.

(G0) We require that, for allh1,h2 ∈ H, we haveh1◦h2 ∈ H.

(G1) H should satisfy the associative law; that is,(h1 ◦h2) ◦h3 = h1 ◦ (h2 ◦h3,
for all h1,h2,h3 ∈ H. But since this equation holds for any choice of three
elements ofG, it is certainly true if the elements belong toH.

(G2) H must contain an identity element. But, by the uniqueness of the identity,
this must be the same as the identity element ofG. So this condition requires
thatH should contain the identity ofG.
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(G3) Each element ofH must have an inverse. Again by the uniqueness, this
must be the same as the inverse inG. So the condition is that, for any
h∈ H, its inverseh−1 belongs toH.

So we get one axiom for free and have three to check. But the amount of work
can be reduced. The next result is called theSubgroup Test.

Proposition 9.2 A non-empty subset H of a group(G,◦) is a subgroup if and only
if, for all h1,h2 ∈ H, we have h1◦h−1

2 ∈ H.

Proof If H is a subgroup andh1,h2 ∈ H, thenh−1
2 ∈ H, and soh1◦h−1

2 ∈ H.
Conversely suppose this condition holds. SinceH is non-empty, we can choose

some elementh∈ H. Takingh1 = h2 = h, we find thate= h◦h−1 ∈ H; so (G2)
holds. Now, for anyh∈ H, we haveh−1 = e◦h−1 ∈ H; so (G3) holds. Then for
anyh1,h2 ∈ H, we haveh−1

2 ∈ H, soh1 ◦h2 = h1 ◦ (h−1
2 )−1 ∈ H; so (G0) holds.

As we saw, we get (G1) for free.

In our example,G = Z, H = 4Z, take two elements ofH, say 4a and 4b; then
since the group operation is+, the inverse of 4b is −4b, and we have to check
whether 4a−4b∈H. The answer is yes, since 4a−4b = 4(a−b) ∈ 4Z. So 4Z is
a subgroup.

9.6 Cosets and Lagrange’s Theorem

In our example above, we saw that 4Z is a subgroup ofZ. Now Z can be parti-
tioned into four congruence classes mod 4, one of which is the subgroup 4Z. We
now generalise this to any group and any subgroup.

Let G be a group andH a subgroup ofG. Define a relation∼ onG by

g1 ∼ g2 if and only if g2◦g−1
1 ∈ H.

We claim that∼ is an equivalence relation.

reflexive:g1◦g−1
1 = e∈ H, sog1 ∼ g1.

symmetric: Letg1 ∼ g2, so thath = g2◦g−1
1 ∈ H. Thenh−1 = g1◦g−1

2 ∈ H, so
g2 ∼ g1.

transitive: Suppose thatg1 ∼ g2 andg2 ∼ g3. Thenh = g2 ◦g−1
1 ∈ H andk =

g3◦g−1
2 ∈ H. Then

k◦h = (g3◦g−1
2 )◦ (g2◦g−1

1 ) = g3◦g−1
1 ∈ H,

sog1 ∼ g3.
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Now since we have an equivalence relation onG, the setG is partitioned into
equivalence classes for the relation. These equivalence classes are calledcosets
of H in G, and the number of equivalence classes is theindexof H in G, written
|G : H|.

What do cosets look like?
For anyg∈G, let

H ◦g = {h◦g : h∈ H}.

We claim that any coset has this form. Takeg∈ G, and letX be the equivalence
class of∼ containingg. That is,X = {x∈G;g∼ x}.

• Takex∈ X. Theng∼ x, sox◦g−1 ∈ H. Let h = x◦g−1. Thenx = h◦g∈
H ◦g.

• Take an element ofH ◦g, sayh◦g. Then(h◦g)◦g−1 = h∈H, sog∼ h◦g;
thush◦g∈ X.

So every equivalence class is of the formH ◦g. We have shown:

Theorem 9.3 Let H be a subgroup of G. Then the cosets of H in G are the sets of
the form

H ◦g = {h∈ g : h∈ H}

and they form a partition of G.

Example Let G = Z andH = 4Z. Since the group operation is+, the cosets of
H are the setsH +a for a∈ G, that is, the congruence classes. There are four of
them, so|G : H|= 4.

Remark We write the coset asH ◦g, and call the elementg thecoset represen-
tative. But any element of the coset can be used as its representative. In the above
example,

4Z+1 = 4Z+5 = 4Z−7 = 4Z+100001= · · ·

If G is finite, theorder of G is the number of elements ofG. (If G is infinite,
we sometimes say that it has infinite order.) We write the order ofG as|G|.

Now the partition into cosets allows us to prove an important result,La-
grange’s Theorem:

Theorem 9.4 Let G be a finite group, and H a subgroup of G. Then|H| divides
|G|. The quotient|G|/|H| is equal to|G : H|, the index of H in G.



9.7. ORDERS OF ELEMENTS 85

Proof We know thatG is partitioned into the cosets ofH. If we can show that
each coset has the same number as elements asH does, then it will follow that the
number of cosets is|G|/|H|, and the theorem will be proved.

So letH ◦g be a coset ofH. We define a functionf : H → H ◦g by the rule
that f (h) = h◦g. We show thatf is one-to-one and onto. Then the conclusion
that|H ◦g|= |H| will follow.

f is one-to-one: suppose thatf (h1) = f (h2), that is,h1 ◦ g = h2 ◦ g. By the
Cancellation Law,h1 = h2.

f is onto: take an elementx∈ H ◦g, sayx = h◦g. Thenx = f (h), as required.

9.7 Orders of elements

Remember that the order of a group is the number of elements in the group. We
will define in this section the order of an element of a group. This is quite different
– be careful not to get them confused – but there is a connection, as we will see.

Let g be an element of a groupG. We definegn for every integern in the
following way:

g0 = e,

gn = gn−1◦g for n > 0,

g−n = (gn)−1 for n > 0.

Now it is possible to prove that theexponent lawshold:

Proposition 9.5 For any integers m and n,

(a) gm◦gn = gm+n,

(b) (gm)n = gmn.

The proof is not difficult but needs a lot of care. It follows from the definition
that

gn =
{

g◦ · · · ◦g (n factors) ifn > 0,
g−1◦ · · · ◦g−1 (−n factors) ifn < 0.

Now considergm+n. There are four cases.

• If m andn are both positive then

gm◦gn = g◦ · · · ◦g (m+n factors)= gm+n.
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• If one ofm andn is positive, saym> 0, n < 0, then

– If m+ n > 0, so thatm> −n, then−n of the factorsg cancel all the
factorsg−1, leavingm+n factorsg, so the result isgm+n.

– If m+n < 0, thenmof the factorsg−1 cancel all the factorsg, leaving
−m−n factorsg−1; again we havegm+n.

• Finally, if m andn are both negative, a similar argument to the first case
applies.

If one ofm andn is zero, saym= 0, then the product ise◦gn = gn.
The argument for the second exponent law is similar.

It follows from the second exponent law that(gn)−1 = g−n. This also follows
becausegn◦g−n = g0 = e.

Now we make two definitions.

• The order of the elementg is the smallest positive numbern for which
gn = e, if such a number exists; if no positive power ofg is equal toe, we
say thatg has infinite order.

• Thesubgroup generated by gis the set

{gn : n∈ Z}

of all powers ofg. We write it as〈g〉.

It is not clear from what has been said so far that “the subgroup generated by
g” is actually a subgroup! In fact it is; this and more are contained in the next
Proposition. Remember that the word “order” has two different meanings; the
first is the number of elements in the subgroup, the second is the number we have
just defined.

Proposition 9.6 For any element g of a group G, the set〈g〉 is a subgroup of G,
and its order is equal to the order of g.

Proof To show that〈g〉 is a subgroup, we apply the Subgroup Test. Take two
elements of this set, saygm andgn. Then

gm◦ (gn)−1 = gm◦g−n = gm−n ∈ 〈g〉.

Next we show that, ifg has ordern, then

• gm = e if and only if n dividesm;
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• gk = gl if and only if k≡n l .

Suppose thatm= nq. Thengm = (gn)q = eq = e. Conversely, suppose thatgm = e.
By the Division Rule,m= nq+ r, with 0≤ r ≤ n−1. Nowgn = gm = e, sogr = e.
But n is the smallest positive integer such that thenth power ofg is e; sincer < n
we must haver = 0, andn dividesm.

Now gk = gl if and only if gl−k = e. By the preceding paragraph, this holds if
and only ifn dividesl −k, that is, if and only ifk≡n l .

We see that ifg has ordern, then the set〈g〉 contains justn elements (one for
each congruence class modn), so it is a subgroup of ordern.

Similarly, if g has infinite order, then all the elements of〈g〉 are distinct (since
if gk = gl thengl−k = e), so〈g〉 is an infinite subgroup.

Corollary 9.7 Let g be an element in a finite group of order n. Then gn = e.

Proof The order ofg cannot be infinite, since〈g〉 is a finite set in this case. Sup-
pose the order ofg is m. Then the order of the subgroup〈g〉 is m. By Lagrange’s
Theorem,m dividesn = |G|.

Now we can revisit Fermat’s Little Theorem and prove a stronger version.

Proposition 9.8 Let n be a positive integer, and a an integer such thatgcd(a,n) =
1. Then aφ(n) ≡n 1, whereφ is Euler’s totient function.

Proof Let Un be the group of units ofZn. Then|Un| = φ(n), and[a]n ∈Un. By

the preceding corollary,[aφ(n)]n = [a]φ(n)
n = [1]n; in other words,aφ(n) ≡n 1.

Example There are four units inZ12, namely 1,5,7,11. (We writea instead of
[a]12.) By the Corollary, ifa is one of these four numbers, thena4 ≡12 1. In fact,
in this casea2 ≡12 1 for each of the four numbers.

9.8 Cyclic groups

A groupG is acyclic groupif G = 〈g〉 for some elementg∈G.
The prototypical cyclic group of ordern is (Zn,+), while the prototypical

infinite cyclic group is(Z,+). In each case, the group is generated by the element
1.

Proposition 9.9 Any two cyclic groups of the same order are isomorphic.
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Proof We show that a cyclic group of ordern is isomorphic toZn, while an
infinite cyclic group is isomorphic toZ.

Let G = 〈g〉 be a cyclic group of ordern. We saw in the last section that the
elementg has ordern, and thatgk = gl if and only if k≡n l . Now the map[k]n 7→ gk

is well-defined and is one-to-one and onto, that is, a bijection, fromZn to G; and
it is an isomorphism, since

gk ◦gl = gm⇔ k+ l ≡n m.

The proof for infinite groups is even simpler and is left to you.

Exercises

9.1 Show that, ifb◦a = c◦a, thenb = c.

9.2 Let G be a group of ordern. Show thatG is a cyclic group if and only ifG
contains an element whose order isn. Hence show that any group of prime order
is cyclic.

9.3 Let G be a group of order 4; sayG = {e,a,b,c}, wheree is the identity.
Suppose thatG is not a cyclic group.

(a) Show thata2 = b2 = c2 = e.

(b) Determine the Cayley table ofG.

(c) Show thatG is abelian.



Chapter 10

Permutations

We have seen rings and groups whose elements are numbers, polynomials, matri-
ces, and sets. In this chapter we meet another type of object: permutations. The
operation on permutations is composition, and we construct groups of permuta-
tions which play and important role in general group theory.

10.1 Definition and representation

A permutationof a setX is a functionf : X → X which is a bijection (one-to-one
and onto).

In this section we consider only the case whenX is a finite set, and we take
X to be the set{1,2, . . . ,n} for convenience. As an example of a permutation, we
will take n = 8 and letf be the function which maps 17→ 4, 2 7→ 7, 3 7→ 3, 4 7→ 8,
5 7→ 1, 6 7→ 5, 7 7→ 2, and 87→ 6.

We can represent a permutation intwo-line notation. We write a matrix with
two rows andn columns. In the first row we put the numbers 1, . . . ,8; under each
numberx we put its image under the permutationf . In our example, we have

f =
(

1 2 3 4 5 6 7 8
4 7 3 8 1 5 2 6

)
.

How many permutations of the set{1, . . . ,n} are there? We can ask this ques-
tion another way? How many matrices are there with two rows andn columns,
such that the first row has the numbers 1, . . . ,n in order, and the second contains
thesen numbers in an arbitrary order? There aren choices for the first element in
the second row; thenn−1 choices for the second element (since we can’t re-use
the element in the first column); thenn−2 for the third; and so on until the last
place, where the one remaining number has to be put. So altogether the number

89
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of permutations is
n· (n−1) · (n−2) · · ·1.

This number is calledn! (read “n factorial” or “factorial n”), the product of the
natural numbers from 1 ton. Thus we have proved:

Proposition 10.1 The number of permutations of the set{1, . . . ,n} is n! .

10.2 The symmetric group

Let f1 and f2 be permutations. We define thecompositionof f1 and f2 to be the
permutation obtained by applyingf1 and thenf2.

Warning If you write the image ofx under the permutationf as f (x), then the
composition off1 and f2 mapsx to f2( f1(x)) – note the reversal! In order to make
the notation work better, we change the way we write the image ofx under f by
putting f on the right, asx f (or sometimes up in the air, asxf ). Then we have
x( f1◦ f2) = (x f1) f2, which is easier to remember.

You should be aware, though, that some people choose to resolve the problem
the other way, by defining the composition off1 and f2 to be “first f2, then f1”.

In practice, how do we compose permutations? (Practice is the right word
here: you should practise composing permutations until you can do it without
stopping to think.) Letf be the permutation we used as an example in the last
section, and let

g =
(

1 2 3 4 5 6 7 8
3 2 1 8 7 6 5 4

)
.

The easiest way to calculatef ◦g is to take each of the numbers 1, . . . ,8, map it
by f , map the result byg, and write down the result to get the bottom row of the
two-line form for f ◦g. Thus, f maps 1 to 4, andg maps 4 to 8; sof ◦g maps 1 to
8; f maps 2 to 7, andg maps 7 to 5, sof ◦g maps 2 to 5; and so on.

Another way to do it is to re-write the two-line form forg by shuffling the
columns around so that the first row agrees with the second row off . Then the
second row will be the second row off ◦g. Thus,

g =
(

1 2 3 4 5 6 7 8
3 2 1 8 7 6 5 4

)
=

(
4 7 3 8 1 5 2 6
8 5 1 4 3 7 2 6

)
;

so

f ◦g =
(

1 2 3 4 5 6 7 8
8 5 1 4 3 7 2 6

)
.
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To see what is going on, remember that a permutation is a function, which can
be thought of as a black box. The black box forf ◦g is a composite containing
the black boxes forf andg with the output of the first connected to the input of
the second:

f g- - -

Now to calculate the result of applyingf ◦g to 1, we feed 1 into the input; the
first black box outputs 4, which is input to the second black box, which outputs 8.

We define a special permutation, theidentity permutation, which leaves every-
thing where it is:

e=
(

1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

)
.

Then we havee◦ f = f ◦e= f for any permutationf .
Given a permutationf , we define theinverse permutationof f to be the per-

mutation which “puts everything back where it came from” – thus, iff mapsx to
y, then f−1 mapsy to x. (This is just the inverse function as we defined it before.)
It can be calculated directly from this rule. Another method is to take the two-
line form for f , shuffle the columns so that the bottom row is 12. . . n, and then
interchanging the top and bottom rows. For our example,

f =
(

1 2 3 4 5 6 7 8
4 7 3 8 1 5 2 6

)
=

(
5 7 3 1 6 8 2 4
1 2 3 4 5 6 7 8

)
,

so

f−1 =
(

1 2 3 4 5 6 7 8
5 7 3 1 6 8 2 4

)
.

We then see thatf ◦ f−1 = f−1◦ f = e.
Now you will not be surprised to learn:

Theorem 10.2 The set of all permutations of{1, . . . ,n}, with the operation of
composition, is a group.

Proof The composition of two permutations is a permutation. The identity and
inverse laws have just been verified above. So all we have to worry about is the
associative law. We have

x( f ◦ (g◦h)) = (x f)(g◦h) = (((x f)g)h) = (x( f ◦g))h = x(( f ◦g)◦h)



92 CHAPTER 10. PERMUTATIONS

for all x; so f ◦ (g◦h) = ( f ◦g)◦h, the associative law.
(Essentially, this last argument shows that the result of applyingf ◦ g◦ h,

bracketed in any fashion, is “f , theng, thenh”.)

We call this group thesymmetric group of degree n, and write itSn. Note that
Sn is a group of ordern! .

Proposition 10.3 Sn is an abelian group if n≤ 2, and is non-abelian if n≥ 3.

Proof S1 has order 1, andS2 has order 2; it is easy to check that these groups are
abelian, for example by writing down their Cayley tables.

For n≥ 3, Sn contains elementsf andg, where f interchanges 1 and 2 and
fixes 3, . . . ,n, andg interchanges 2 and 3 and fixed 1, 4. . . ,n. Now check that
f ◦g 6= g◦ f . (For example,f ◦g maps 1 to 3, butg◦ f maps 1 to 2.)

10.3 Cycles

We come now to a way of representing permutations which is more compact than
the two-line notation described earlier, but (after a bit of practice!) just as easy to
calculate with: this iscycle notation.

Let a1,a2, . . . ,ak be distinct numbers chosen from the set{1,2, . . . ,n}. The
cycle(a1,a2, . . . ,ak) denotes the permutation which mapsa1 7→ a2, a2 7→ a3, . . . ,
ak−1 7→ ak, andak 7→ a1. If you imaginea1,a2, . . . ,ak written around a circle, then
the cycle is the permutation where each element moves to the next place round the
circle. Any number not in the set{a1, . . . ,ak} is fixed by this manoeuvre.

Notice that the same permutation can be written in many different ways as a
cycle, since we may start at any point:

(a1,a2, . . . ,ak) = (a2, . . . ,ak,a1) = · · ·= (ak,a1, . . . ,ak−1).

If (a1, . . . ,ak) and (b1, . . . ,bl ) are cycles with the property that no element
lies in both of the sets{a1, . . . ,ak} and{b1, . . . ,bl}, then we say that the cycles
aredisjoint, and define theirproductto be the permutation which acts as the first
cycle on theas, as the second cycle on thebs, and fixes the other elements (if
any) of{1, . . . ,n}. In a similar way, we define the product of any set of pairwise
disjoint cycles.

Theorem 10.4 Any permutation can be written as a product of disjoint cycles.
The representation is unique, up to the facts that the cycles can be written in any
order, and each cycle can be started at any point.
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Proof Our proof is an algorithm to find thecycle decompositionof a permutation.
We will consider first our standard example:

f =
(

1 2 3 4 5 6 7 8
4 7 3 8 1 5 2 6

)
.

Now we do the following. Start with the first element, 1. Follow its successive
images underf until it returns to its starting point:

f : 1 7→ 4 7→ 8 7→ 6 7→ 5 7→ 1.

This gives us a cycle(1,4,8,6,5).
If this cycle contains all the elements of the set{1, . . . ,n}, then stop. Other-

wise, choose the smallest unused element (in this case 2, and repeat the procedure:

f : 2 7→ 7 7→ 2,

so we have a cycle(2,7) disjoint from the first.
We are still not finished, since we have not seen the element 3 yet. Nowf : 3→

3, so(3) is a cycle with a single element. Now we have the cycle decomposition:

f = (1,4,8,6,5)(2,7)(3).

The general procedure is the same. Start with the smallest element of the set,
namely 1, and follow its successive images underf until we return to something
we have seen before. This can only be 1. For suppose thatf : 1 7→ a2 7→ · · · 7→
ak 7→ as, where 1< s< k. Then we haveas−1 f = as = ak f , contradicting the fact
that f is one-to-one. So the cycle ends by returning to its starting point.

Now continue this procedure until all elements have been used up. We cannot
ever stray into a previous cycle during this procedure. For suppose we start at an
elementb1, and havef : b1 7→ · · · 7→ bk 7→ as, whereas lies in an earlier cycle.
Then as before,as−1 f = as = bk f , contradicting the fact thatf is one-to-one. So
the cycles we produce really are disjoint.

The uniqueness is hopefully clear.

You should practise composing and inverting permutations in disjoint cycle
notation. Finding the inverse is particularly simple: all we have to do to findf−1

is to write each cycle off in reverse order!
We simplify the notation still further. Any element in a cycle of length 1 is

fixed by the permutation, and by convention we do not bother writing such cycles.
So our example permutation could be written simply asf = (1,4,8,6,5)(2,7).
The fact that 3 is not mentioned means that it is fixed. (You may notice that there
is a problem with this convention: the identity permutation fixes everything, and
so would be written just as a blank space! We get around this either by writing
one cycle(1) to represent it, or by just calling ite.)

Cycle notation makes it easy to get some information about a permutation:
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Proposition 10.5 The order of a permutation is the least common multiple of the
lengths of the cycles in its disjoint cycle representation.

Proof Recall that the order off is the smallest positive integern such thatf n = e.
To see what is going on, return to our standard example:

f = (()1,4,8,6,5)(2,7)(3).

Now elements in the first cycle return to their starting position after 5 steps, and
again after 10, 15, . . . steps. So, iff n = 1, thenn must be a multiple of 5. But
also the elements 2 and 7 swap places iff is applied an odd number of times, and
return to their original positions after an even number of steps. So iff n = 1, then
n must also be even. Hence iff n = 1 thenn is a multiple of 10. The point 3 is
fixed by any number of applications off so doesn’t affect things further. Thus,
the order ofn is a multiple of 10. Butf 10 = e, since applyingf ten times takes
each element back to its starting position; so the order is exactly 10.

In general, if the cycle lengths arek1,k2, . . . ,kr , then elements of theith cycle
are fixed byf n if and only if n is a multiple ofki ; so f n = e if and only if n is a
multiple of all ofk1, . . . ,kr , that is, a multiple of lcm(k1, . . . ,kr). So this lcm is the
order of f .

10.4 Transpositions

A transpositionis a permutation which swaps two elementsi and j and fixes all
the other elements of{1, . . . ,n}. In disjoint cycle form, a transposition looks like
(i, j).

Theorem 10.6 Any permutation in Sn can be written as a product of transpo-
sitions. The number of transpositions occurring in a product equal to a given
element f is not always the same, but always has the same parity (even or odd)
depending on g.

Proof We begin by observing that

(1,2, . . . ,n) = (1,2)(1,3) · · ·(1,n).

For, in the product on the right,

• 1 is mapped to 2 by the first factor, and remains there afterwards;

• 2 is mapped to 1 by the first factor, then to 2 by the second, then stays there;
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• . . .

• n−1 is fixed by all factors until the second-last; it is mapped to 1 by the
second-last factor and then ton by the last;

• n is fixed by all factors except the last, which takes it to 1.

So the two permutations are equal.
Now in exactly the same way, an arbitrary cycle(a1,a2, . . . ,ak) can be written

as a product of transpositions:

(a1,a2, . . . ,ak) = (a1,a2)(a1,a3) · · ·(a1,ak).

Finally, given an arbitrary permutation, write it in disjoint cycle form, and then
write each cycle as a product of transpositions.

The statement about parity is harder to prove, and I have put the proof into an
appendix.

Our standard example can be written

f = (1,4,8,6,5)(2,7) = (1,4)(1,8)(1,6)(1,5)(2,7).

We call a permutationevenor odd according as it is a product of an even or
odd number of transpositions; we call this theparity of f . Notice that a cycle of
lengthk is a product ofk−1 transpositions. So, if the lengths of the cycles off
arek1, . . . ,kr (including fixed points), thenf is the product of

(k1−1)+(k2−1)+ · · ·+(kr −1) = n− r

transpositions (since the cycle lengths add up ton). In other words, if we define
c( f ) to be the number of cycles in the cycle decomposition off , then the parity
of f is the same as the parity ofn−c( f ).

Theorem 10.7 Suppose that n≥ 2. Then the set of even permutations in Sn is a
subgroup of Sn having order n!/2 and index2.

Proof Let An be the set of even permutations inSn. If f1, f2 ∈ An, then f−1
2 has

the same cycle lengths asf2 (since we just reverse all the cycles), so it is also in
An. Thus, f1 and f−1

2 are each products of an even number of transpositions; and
then so, obviously, isf1◦ f−1

2 . By the Subgroup Test,An is a subgroup.
Let ∼ be the equivalence relation defined by this subgroup; that is,f1 ∼ f2

if and only if f1 ◦ f−1
2 ∈ An. By considering each off1 and f2 as products of

transpositions, we see thatf1 ∼ f2 if and only if f1 and f2 have the same parity.
So there are just two cosets ofAn.

By Lagrange’s Theorem,

|An|= |Sn|/2 = n!/2.
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The subgroupAn consisting of even permutations is called thealternating
groupof degreen.

Example For n = 3, we have|S3| = 3! = 6, so|A3| = 3. The three even per-
mutations aree, (1,2,3) and (1,3,2); the remaining three permutations are the
transpositions(1,2), (1,3) and(2,3) form the other coset ofA3 in S3.

Remark The formula for a 3×3 determinant can be expressed as follows. For
each permutationf ∈ S3, we do the following. Pick the elements in rowi and
column i f of the matrix, and multiply them together. That is, choose one term
from each row and column in all possible ways. Now multiply the product by+1
if f is an even permutation, and by−1 if f is an odd permutation. Finally, add up
these terms for all the permutations.

For example, if

A =

a b c
l m n
p q r

 ,

the terms are as follows:

Permutation Product Sign
e amr +

(1,2,3) bnp +
(1,3,2) clq +
(1,2) blr −
(1,3) cmp −
(2,3) anq −

So det(A) = amr+bnp+clq−blr−cmp−anq.

Now exactly the same procedure defines the determinant of ann×n matrix,
for any positive integern. The drawback is that the number of terms needed for an
n×n determinant isn!, a rapidly growing function; so the work required becomes
unreasonable very quickly. This is not a practical way to compute determinants;
but it is as good a definition as any!

10.5 Even and odd permutations

In this Appendix, we prove that the parity (even or odd) of a permutation does not
depend on the way we write it as a product of transpositions. We will give two
entirely different proofs.
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First proof

For this proof, we see what happens when we multiply a permutation by a trans-
position. We find that the number of cycles changes by 1 (it may increase or de-
crease). There are two cases, depending on whether the two points transposed lie
in different cycles or the same cycle of the permutation. So letf be a permutation
andt a transposition.

Case 1: Transposing two points in different cycles. We may suppose thatf con-
tains two cycles(a1, . . . ,ak) and(b1, . . . ,bl ), and thatt = (a1,b1) (this is because
we can start each of the cycles at any point). Cycles off not containing points
moved byt will be unaffected. Now we find

f ◦ t : a1 7→ a2 7→ · · · 7→ ak 7→ b1 7→ b2 7→ · · · 7→ bl 7→ a1,

so the two cycles off are “stitched together” into a single cycle inf ◦ t, and the
number of cycles decreases by 1.

Case 2: Transposing two points in the same cycle. This time let(a1, . . . ,am, . . . ,ak)
be a cycle off , and assume thatt = (a1,am), where 1< m≤ k. This time

f ◦ t : a1 7→ a2 7→ · · · 7→ am−1 7→ a1

am 7→ am+1 7→ · · · 7→ ak 7→ am

so the single cycle off is “cut apart” into two cycles.

Now any permutationf can be written as

f = t1◦ t2◦ · · · ◦ ts,

wheret1, . . . , fs are transpositions. Letfi be the product of the firsti of the trans-
positions, and consider the quantityn− c( fi), wherec( f ) denotes the number of
cycles of f (including fixed points). We start withf0 = e, havingn fixed points,
son−c( f0) = 0. Now, at each step, we multiply by a transposition, so we change
c( fi) by one, and hence changen− c( fi) by one. So the final valuen− c( f ) is
even or odd depending on whether the numbers of transpositions is even or odd.
But n−c( f ) is defined just by the cycle decomposition off , independent of how
we express it as a product of transpositions. So in any such expression, the parity
of the number of transpositions will be the same.
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Second proof

Let x1, . . . ,xn ben indeterminates, and consider the function

F(x1, . . . ,xn) = ∏
i< j

(x j −xi).

For example, forn = 3, we have

F(x1,x2,x3) = (x2−x1)(x3−x1)(x3−x2).

Given a permutationf , we define a new functionF f of the same indetermi-
nates by applying the permutationf to their indices:

F f (x1, . . . ,xn) = ∏
i< j

(x j f −xi f ).

For example, ifn = 3 and f = (2,3), then

F(1,2)(x1,x2,x3) = (x3−x1)(x2−x1)(x2−x3) =−F(x1,x2,x3).

The result of applyingf1 and thenf2 to F is just the result of applyingf2◦ f1
to F , as you may check. We show that, for any transpositiont, we have

F t(x1, . . . ,xn) =−F(x1, . . . ,xn).

It will follow that, if f is expressed as the product ofs transpositions, then

F f (x1, . . . ,xn) = (−1)sF(x1, . . . ,xn).

Since the value ofF f does not depend on which expression as a product of trans-
positions we use, we see that(−1)s must be the same for all such expressions for
f , and hence the number of transpositions in the product must always have the
same parity, as required.

To prove our claim, take the transpositiont = (k, l), wherek < l , and see what
it does toF . We look at the bracketed terms(x j − xi) and see what happens to
them. There are several cases.

• If {k, l}∩{i, j}= /0, then the term is unaffected by the permutationt.

• If i < k, then the terms(xk−xi) and(xl −xi) are interchanged, and there is
no effect onF .

• If k < i < l , then the term(xi − xk) goes to(xi − xl ) = −(xl − xi), and the
term (xl − xi) goes to(xk− xi) = −(xi − xk); the two sign changes cancel
out.
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• If i > l , then the terms(xi −xk) and(xi −xl ) are interchanged, and there is
no effect onF .

• Finally, the term(x j −xi) is mapped to(xi −x j) =−(x j −xi).

So the overall effect oft is to introduce one minus sign, and we conclude that
F t =−F , as required.

Exercises

10.1 Let g = (1,5,4,9,6,3)(7,8) and h = (1,4,3)(6,8,7)(5,9,2) be permuta-
tions in the symmetric groupS9. Findg◦h, g2, g−1, andg−1◦h◦g. Show thath
andg−1◦h◦g have the same order.

10.2 If g andh are elements of any group, show that

(g−1◦h◦g)n = g−1◦hn◦g

for any integern, and deduce thath andg−1◦h◦g necessarily have the same order.

10.3 List the elements ofS4, and say whether each is an even or odd permutation.
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