Eigen's class hierarchy

AnyMatrixBase<Derived>
—

Storage

/

The goal of this design is to offer
to the user a different matrix
class for each kind of storage.
The DenseStorageBase<>
class allows to factor 90% of the

This is *not™ a multiple inheritence. The
inerited class depends on the template
parameter Base, e.g.:

class DenseStorageBase<Derived Base>
public Base<Derived={ ... }

code. Matrix and Array anly have
to implement their respective
ctars

[DenseStorageBase<Derived,Base> |
[1

This is *not* multiple inheritence. The
inherited base class is obtained by:

MNestedExprType::MakeBaseClass<Derived>

[Expressionlmpl<Derived,Dense> |
[1

[Expressionlmpl<Derived,Sparse> |
I 1

\

/

Per matrix kind base classes Plugins
[I . Y
Such a base class define the Plugins can be #ncluded by the
comman APl across all [Plugin: CommonCwiseUnaryOps | base matrix classes for which the
expressions of a given matrix kind DenseBase<Derived> #included I ! respective Expressionimpl<>
and implements the evaluation ——— [SparseMatrixBase<Derived> | [Plugin: ArrayCwiseUnaryOps | specialization has been
mechanism I 1 I | implemented.
The DenseBase<> class allows to ! ! _ N Far instance, once
factorize most of the code shared [Plugin: MatrixCwiselUnaryOps | CwiseBinaryOplmpl has been
by Array and Matrix objects (g..9, ! ! implemented for your fancy special
Assign). matrix, you simply h_ave to
———— I ————— LR #nclude the respective
" *CwiseBinaryOps plugins in the
FancyMatrixBase class to have all
the cwise hinary operators
Expression

The goal of this design is to make sure to have
the exact same syntax to write the sxpression
type of a given expression regardless of the kind
of matrix (useful to write and analyse
EXpressions).

The specializations of Expressionimpl<> allow to
1) select the correct base class, and 2) to reflect
the differences in the expression evaluation
mechanisms (.coeff{) for the Dense path,
Innerlterators for the Sparse path, etc.)

This is *not* multiple inheritance. The inherited
specialization of Expressionlmpl depends on
ei_traits<MestedExprType>::StorageMode,
which can be either Dense, Sparse, or whatever
else. This is a type.

ix<Scalar,0pti

[Matrix<Scalar,Rows,Cols,Options> | lAnaFScalﬂr,RuWS,CDlSsCr i | [Sp M
I | I
L

| [Expression<NestedExprType>
[

Expression templates

. Example: v3 = vl + v2 + v3;

« Expression templates:

— “+” returns an expression
Sum<typeof(v1),typeof(v2)>

— expression tree
Sum<Sum<typeof(v1),typeof(v2), e @
typeof(v3)> @ @

"

— evaluation entirely performed in the “=

for (1=0; i<v3.size(); ++1)
v3[i] = v1[i] + v2[1] + v3[i];

E.T. in Eigen 2.0

« v1+ v2returns a Sum expression:
« Sum<typeof(v1),typeof(v2)>

* with:
» template<Lhs,Rhs> class Sum {

const Lhs& m_Ihs;
const Rhs& m_rhs;

Sum(const Lhs& I, const Rhs& r) : m_Ihs(l), m_rhs(r) {}
Scalar coeff(int i, int j) { return m_Ilhs.coeff(i,j) + m_rhs.coeff(i,j); }

int rows() {...}
int cols() {...}

e

« What about: (v1 +v2) + v3 ?

E.T. in Eigen 2.0

« v1+ v2returns a Sum expression:
« Sum<typeof(v1),typeof(v2)>
e with:

 template<Lhs,Rhs> class Sum : MatrixBase<Sum<Lhs,Rhs>> {
const Lhs& m_Ihs;
const Rhs& m_rhs;

Sum(const Lhs& I, const Rhs& r) : m_Ihs(l), m_rhs(r) {}
Scalar coeff(int i, int j) { return m_Ihs.coeff(i,j) + m_rhs.coeff(i,j); }

int rows() {...}
int cols() {...}

}
« What about: (v1 +v2) + v3 ?
— > common base class: MatrixBase

The base class

template<Derived> class MatrixBase {
VA4

template<OtherDerived> Sum<Derived, OtherDerived>
operator+(const MatrixBase<OtherDerived>& other)
{ return Sum<Derived,OtherDerived>(*this, other), }

template<Src> Derived& operator=(const MatrixBase<Src>& src) {
foreach coeffs i,j do

*this.coeff(i,j) = other.coeff(i,j);
/

}’.

The ei_traits class

template<Lhs,Rhs> class Sum : MatrixBase<Sum<Lhs,Rhs>> {
VA4

typedef typename Lhs::Scalar Scalar;

b

! circular dependency !
template<Derived> class MatrixBase {
/5
typedef typename Derived::Scalar Scalar;

ps

The ei_traits class

template<Lhs,Rhs> struct ei_traits<Sum<Lhs,Rhs>> {
/*

typedef typename Lhs::Scalar Scalar;

I

template<Lhs,Rhs> class Sum : MatrixBase<Sum<Lhs,Rhs>> {
VA4
typedef typename ei_traits<Sum=>::Scalar Scalar;

e

template<Derived> class MatrixBase {
VA4
typedef typename ei_traits<Derived>::Scalar Scalar;

ps

Eigen 2.0: Class hierarchy

MatrixBase

— - API definition

Expression1| Expression2

- semantic of the operation
- implementation (coeff(i,)))

& implementation
- evaluation

Matrix

type of the temporaries

e.g., return type of
(ml1+m2).eval()

Motivations for 3.0

* Eigen 2.0: limited to a single type of Matrix
— we want E.T. for all kind of objects

— different storages
* dense, sparse matrices, triangular matrices, etc.
—require different evaluation mechanisms
—coeffs based, interators, etc.

— different semantics
* matrix, array, transform, etc.
—slightly different API

10

Additional goals / constraints

» zero code duplication
» operator+ declared, documented, implemented only once!

* uniform expression tree
 typeof(v1+v2) == Sum<typeof(v1),typeof(v2)>

« decouple the semantic and the implementation of
the expressions

11

AnyMatrixBase<Derived>
—

Per matrix kind base classes Plugins
=Y [
Such a base class define the , , Plugins can be #ncluded by the
commaon APl across all . [Plugin: CommonCwiseUnaryOps | hase matrix classes for which the
expressions of a given matrix kind DenseBase<Derived> #included I ! respective Expressionimpl<>
and implements the evaluation ——— [SparseMatrixBase<Deriveds | [Plugin: ArrayCwiseUnaryOps | specialization has been
mechanism. b 1 I | implemented
The DenseBase<> class allows to ! ! _ I For instance, once
factorize most of the code shared !P'”H"'-' MamemenaryOps‘! CwiseBinaryCOplmpl has been
by Array and Matrix objects (s..q, L 1 implemented for your fancy special
Assign) MatrixBase<Derived> ArrayBase<Derived> matrix, you simply have to
I ————— ————— KR #include the respective
" *CwiseBinaryOps plugins in the
FancyMatrixBase class to have all
the cwise binary operators.
Storage / Expression
This is *not* multiple inheritence. The

inneritediiaselciasslisfobizinadby The goal of this design is to make sure to have

the exact same syntax to write the expression
type of a given expression regardless of the kind
. of matrix (useful to write and analyse

class DenseStorageBase<Derived Base> expressions)

: public Base<Derived= { ... };

This is *not* a multiple inheritence. The
inerited class depends on the template
parameter Base, e.q.

The goal of this design is to offer
to the user a different matrix
class for each kind of storage
The DenseStorageBase<s

class allows to factor 90% of the
code. Matrix and Array only have
to implement their respective I I |

ctors.
[DenseStorageBase<Derived,Base> | \ /
[1

MNestedExprType::MakeBaseClass<Derived:

The specializations of Expressionimpl<> allow to
1) select the comrect base class, and 2) to reflect
the differences in the expression evaluation
mechanisms (.coeff{) for the Dense path,
Innerlterators for the Sparse path, etc.).

[Expressionlmpl<Derived,Dense> | [Expressionlmpl<Derived,Sparse> |
I 1 [1

This is *not* multiple inheritance. The inherited
specialization of Expressionimpl depends on
ei_traits<NestedExprType>:: StorageMode,
which can be either Dense, Sparse, or whatever
else. This is a type

[Matrix<Scalar,Rows,Cols,Options> | !Array:Scalar,Ruws,Culs.C,. i | [Sp Matrix<Scalar,Opti
|] I
L] L 1L

] [Expression<NestedExpriype> |
I]
L 1

AnyMatrixBase<Derived>
—

Per matrix kind base classes Plugins
=Y [
Such a base class define the Plugins can be #ncluded by the
commaon APl across all . [Plugin: CommonCwiseUnaryOps | hase matrix classes for which the
expressions of a given matrix kind DenseBase<Derived> #included I ! respective Expressionimpl<>
and imp!ements the evaluation ——— [SparseMatrixBase<Deriveds | [Plugin: ArrayCwiseUnaryOps | specialization has been
mechanism. b 1 I | implemented
The DenseBase<> class allows to ! ! _ I For instance, once
factorize most of the code shared !P'”H"'-' MarrqumUnaryOps‘! CwiseBinaryCOplmpl has been
by Array and Matrix objects (s..q, L 1 implemented for your fancy special
Assign) MatrixBase<Derived> ArrayBase<Derived> matrix, you simply have to
I ————— ————— KR #include the respective
" *CwiseBinaryOps plugins in the
FancyMatrixBase class to have all
the cwise binary operators.
Storage / Expression
This is *not* multiple inheritence. The
This is *not™ a multiple inheritence. The inneritediiaselciasslisfobizinadby The goal of this design is to make sure to have
The goal of this design is to offer inerited class depends on the template . the exact same syntax to write the expression
to the user a different matrix parameter Base, e.g. hle=tedExnilypethakete seblass Sz ivad 2 type of a given expression regardless of the kind
class for each kind of storage of matrix (useful to write and analyse
The DenseStorageBase<s> class DenseStorageBase<Derived Base> expressm(ns) y
class allows to factor 90% of the . public Base<Derived> { .. §
code. Matrix and Array only have [Expressionlmpl<Derived,Dense> | [Expressionlmpl<Derived,Sparse> | The specializations of Expressionimpl<> allow to
[1 [|

to implement their respective I I] 1) select the comrect base class, and 2) to reflect

ctors. the differences in the expression evaluation
4 mechanisms (.coeff{) for the Dense path,
! DenseStorageBase<Derived,Base> ! / Inneriterators for the Sparse path, etc.).

This is *not* multiple inheritance. The inherited
specialization of Expressionimpl depends on
ei_traits<NestedExprType>:: StorageMode,
which can be either Dense, Sparse, or whatever
else. This is a type

[Matrix<Scalar,Rows,Cols,Options> | !ATWFSCEHHRDWS‘CUB'Cr i | [Sp Matrix<Scalar,Opti
|] I
L] L 1L

] [Expression<NestedExpriype> |
I]
L 1

One base class per kind of matrix

 Why?
— slightly different API
— different evaluation mechanisms (coeft, iterators, etc.)

AnyMatriXBase glue between

ﬂﬁ\all Eigen objects

MatrixBase ArrayBase SparseMatrixBase

One base class per kind of matrix

API/code factorization AnyMatrixBase

(same 1mpl., same eval.)

DenseMatrixBase

N

MatrixBase ArrayBase SparseMatrixBase

AnyMatrixBase<Derived>
—

Per matrix kind base classes Plugins
=Y [
Such a base class define the , , Plugins can be #ncluded by the
commaon APl across all . [Plugin: CommonCwiseUnaryOps | hase matrix classes for which the
expressions of a given matrix kind DenseBase<Derived> #included I ! respective Expressionimpl<>
and implements the evaluation ——— [SparseMatrixBase<Deriveds | [Plugin: ArrayCwiseUnaryOps | specialization has been
mechanism. b 1 I | implemented
The DenseBase<> class allows to ! ! _ I For instance, once
factorize most of the code shared !P'”H"'-' Ma"D’CWMUM"TON! CwiseBinaryCOplmpl has been
by Array and Matrix objects (s..q, L 1 implemented for your fancy special
Assign) MatrixBase<Derived> ArrayBase<Derived> matrix, you simply have to
I ————— ————— KR #include the respective
" *CwiseBinaryOps plugins in the
FancyMatrixBase class to have all
the cwise binary operators.
Storage / Expression
This is *not* multiple inheritence. The

inneritediiaselciasslisfobizinadby The goal of this design is to make sure to have

the exact same syntax to write the expression
type of a given expression regardless of the kind
. of matrix (useful to write and analyse

class DenseStorageBase<Derived Base> expressions)

: public Base<Derived= { ... };

This is *not* a multiple inheritence. The
inerited class depends on the template
parameter Base, e.q.

The goal of this design is to offer
to the user a different matrix
class for each kind of storage
The DenseStorageBase<s

class allows to factor 90% of the
code. Matrix and Array only have
to implement their respective I I |

ctors.
[DenseStorageBase<Derived,Base> | \ /
[1

MNestedExprType::MakeBaseClass<Derived:

The specializations of Expressionimpl<> allow to
1) select the comrect base class, and 2) to reflect
the differences in the expression evaluation
mechanisms (.coeff{) for the Dense path,
Innerlterators for the Sparse path, etc.).

[Expressionlmpl<Derived,Dense> | [Expressionlmpl<Derived,Sparse> |
I 1 [1

This is *not* multiple inheritance. The inherited
specialization of Expressionimpl depends on
ei_traits<NestedExprType>:: StorageMode,
which can be either Dense, Sparse, or whatever
else. This is a type

[Matrix<Scalar,Rows,Cols,Options> | !Array:Si:alar,Ruws,Culs.C,. i | [Sp Matrix<Scalar,Opti
|] I
L] L 1L

] [Expression<NestedExpriype> |
I]
L 1

Semantic/implementation decoupling

27?77

pb: we need to distinguish between
the Matrix and Array worlds

17

SparseMatrixBase<Expr<Nested>>

/4

Exprimpl<Nested,Dense>
(.coeff(i,j))

Exprimpl<Nested,Sparse>
(iterator based impl.)

i

allows to select the correct base class !

template<Nested> class Expr

class Expr

: Exprimpl<Expr,ei_traits<Nested>::StorageMode>
{/* common APl/code (e.g., rows(), cols(), nested()) */};

Semantic/implementation decoupling

template <typename OtherDerived>

MatrixBase<Expr<Nested>>

struct MakeBase { typedef MatrixBase<OtherDerived> Type; };

ArrayBase<Expr<Nested>>

(.0

class Exprimpl<Nested,Dense>

template<Nested> class Exprimpl<Nested,Dense>
: Nested::template MakeBase< Expr<Nested> >::Type

18

AnyMatrixBase<Derived>
—

Per matrix kind base classes Plugins
=Y [
Such a base class define the , , Plugins can be #ncluded by the
commaon APl across all . [Plugin: CommonCwiseUnaryOps | hase matrix classes for which the
expressions of a given matrix kind DenseBase<Derived> #included I ! respective Expressionimpl<>
and implements the evaluation ——— [SparseMatrixBase<Deriveds | [Plugin: ArrayCwiseUnaryOps | specialization has been
mechanism. b 1 I | implemented
The DenseBase<> class allows to ! ! _ I For instance, once
factorize most of the code shared !P'”H"'-' Ma"D’CWMUM"TON! CwiseBinaryCOplmpl has been
by Array and Matrix objects (s..q, L 1 implemented for your fancy special
Assign) MatrixBase<Derived> ArrayBase<Derived> matrix, you simply have to
I ————— ————— #include the respective
" *CwiseBinaryOps plugins in the
FancyMatrixBase class to have all
the cwise binary operators.
Storage / Expression
This is *not* multiple inheritence. The

This is *not* a multiple inheritence. The
inerited class depends on the template
parameter Base, e.q.

The goal of this design is to offer
to the user a different matrix
class for each kind of storage
The DenseStorageBase<s
class allows to factor 90% of the
code. Matrix and Array only have
to implement their respective
ctors.

class DenseStorageBase<Derived Base>
: public Base<Derived= { ... };

[DenseStorageBase<Derived,Base> |
[1

in<Scalar,0pti

[Matrix<Scalar,Rows,Cols,Options> | !Array:Scalar,Ruws,Culs,C,, i | [S M
| | I
L

inherited base class is obtained by

MNestedExprType::MakeBaseClass<Derived:

[Expressionlmpl<Derived,Dense> |
[]

[Expressionlmpl<Derived,Sparse> |
[1

\ /

This is *not* multiple inheritance. The inherited
specialization of Expressionimpl depends on
ei_traits<NestedExprType>:: StorageMode,
which can be either Dense, Sparse, or whatever
else. This is a type

[Expression<NestedExprType> |
[1
1

The goal of this design is to make sure to have
the exact same syntax to write the expression
type of a given expression regardless of the kind
of matrix (useful to write and analyse
eXPressions)

The specializations of Expressionimpl<> allow to
1) select the comrect base class, and 2) to reflect
the differences in the expression evaluation
mechanisms (.coeff{) for the Dense path,
Innerlterators for the Sparse path, etc.).

Storage classes

MatrixBase

ArrayBase

.

template<Derived,Base>
class DenseStorageBase : Base {/* ... */}

class DenseStorage

20

SparseMatrixBase

|

SparseMatrix

class Matrix

template<Scalar,Rows,cols,Options> class Matrix

: DenseStorageBase<Matrix,MatrixBase<Matrix> > {};

class Array

template<Scalar,Rows,cols,Options> class Array

: DenseStorageBase<Array,ArrayBase<Matrix> > {};

AnyMatrixBase<Derived>
—

Per matrix kind base classes
I

Such a base class define the
commaon APl across all
expressions of a given matrix kind
and implements the evaluation
mechanism.

DenseBase<Derived>
I ———

#ncluded

[SparseMatrixBase<Derived> |
I ¥

! Plugin: CommonCwiseUnaryOps !
L 1

! Plugin: ArrayCwiseUnaryOps !
L 1

Plugins

Plugins can be #ncluded by the
hase matrix classes for which the
respective Expressionimpl<>
specialization has been
implemented

[1 Forinstance, once

!P'”H""-' MarriwaisweUnaryOps‘! CwiseBinaryOplmpl has been
L

1 implemented for your fancy special

The DenseBase<> class allows to
factorize most of the code shared
by Array and Matrix objects (s..q,
Assign)

matrix, you simply have to
#nclude the respective
*CwiseBinaryOps plugins in the
FancyMatrixBase class to have all
the cwise binary operators.

ArrayBase<Derived>
1
—— 1

MatrixBase<Derived>

Storage / Expression

This is *not* multiple inheritence. The
inherited base class is obtained by

The goal of this design is to make sure to have
the exact same syntax to write the expression
type of a given expression regardless of the kind
. of matrix (useful to write and analyse

class DenseStorageBase<Derived Base> expressions)

: public Base<Derived= { ... };

This is *not* a multiple inheritence. The
inerited class depends on the template
parameter Base, e.q.

The goal of this design is to offer
to the user a different matrix
class for each kind of storage
The DenseStorageBase<s

class allows to factor 90% of the
code. Matrix and Array only have
to implement their respective I I |

ctors.
[DenseStorageBase<Derived,Base> | \ /
[1

MNestedExprType::MakeBaseClass<Derived:

The specializations of Expressionimpl<> allow to
1) select the comrect base class, and 2) to reflect
the differences in the expression evaluation
mechanisms (.coeff{) for the Dense path,
Innerlterators for the Sparse path, etc.).

[Expressionlmpl<Derived,Dense> | [Expressionlmpl<Derived,Sparse> |
I 1 [1

This is *not* multiple inheritance. The inherited
specialization of Expressionimpl depends on
ei_traits<NestedExprType>:: StorageMode,
which can be either Dense, Sparse, or whatever
else. This is a type

[Matrix<Scalar,Rows,Cols,Options> | !Array:Si:alar,Ruws,Culs.C,. i | [Sp Matrix<Scalar,Opti
|] I
L] L 1L

] [Expression<NestedExpriype> |
I]
L 1

Objective Zero Code Duplication

 How to factor common APl between, e.g., Dense
and Sparse objects ?

— Notion of set of “features”:
» one feature set per kind of expression (unary, binary, etc.)
* split feature set wrt matrix/array world

— create one “plugin” per feature set

* 1 plugin = 1 header file

 plugins are #included in the body of the base classes
— examples:

e common unary operators (e.g., minCoeff)

« matrix specific binary operators (matrix product)

« array specific binary operators (<,>,&,|,etc.)

* efc.

22

Objective Zero Code Duplication

plugins/MatrixCwiseUnaryOps.h:

[** nice documentation here */

const CwiseUnaryOp<ei_scalar_abs_op<Scalar>,Derived> cwiseAbs() const { return derived(); }
[*...%l

Core/MatrixBase.h

class MatrixBase {

#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::MatrixBase
include "../plugins/CommonCwiseUnaryOps.h"

include "../plugins/CommonCwiseBinaryOps.h"

include "../plugins/MatrixCwiseUnaryOps.h"

include "../plugins/MatrixCwiseBinaryOps.h"

#undef EIGEN_CURRENT_STORAGE_BASE_CLASS

|

plugins/MatrixCwiseBinaryOps.h:

template<typename OtherDerived>

const CwiseBinaryOp<max<Scalar>, Derived, OtherDerived>

cwiseMax(const EIGEN CURRENT STORAGE BASE CLASS<OtherDerived> &other) const
{

return CwiseBinaryOp<max<Scalar>, Derived, OtherDerived>(derived(), other.derived());

}

23

24

Matrix products

MatrixBase
ReturnByValue
GeneralProductBase
GeneralProduct<MatrixMatrix>
CoeffBasedProduct GeneralProduct<MatrixVector>
- implements .coeff(i,j) GeneralProduct<InnerProduct>
_ can be lazy (tpl parameter) GeneralProduct<OuterProduct>
- for small objects only

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

