Réduction des endomorphismes

 \mathbb{K} désigne le corps de base ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}), E est un \mathbb{K} -espace vectoriel de dimension n.

 f, g, \ldots sont des endomorphismes de E, u, v, \ldots des vecteurs de E.

 A, B, \ldots sont des matrices de $\mathcal{M}_n(\mathbb{K}), X, Y, \ldots$ des vecteurs colonnes de $\mathcal{M}_{n,1}(\mathbb{K})$. $\mathcal{B}, \mathcal{B}'$ sont des bases de E.

1 Rappels sur les changements de base

1.1 Matrice de passage entre deux bases

Soient \mathscr{B} et \mathscr{B}' deux bases de E; la matrice de passage de \mathscr{B} à \mathscr{B}' ($\mathscr{M}at_{\mathscr{B},\mathscr{B}'}$) est la matrice dont les colonnes sont les coordonnées des vecteurs de \mathscr{B}' dans la base \mathscr{B} . Cette matrice est inversible et l'on a : $\mathscr{M}at_{\mathscr{B}',\mathscr{B}} = (\mathscr{M}at_{\mathscr{B},\mathscr{B}'})^{-1}$

1.2 Changement de coordonnées pour un vecteur

Soient $u \in E$ un vecteur, X le vecteur colonne de ses coordonnées dans la base \mathscr{B}, X' le vecteur de ses coordonnées dans la base \mathscr{B}' . X' et X sont liés par la relation : X = PX' où $P = \mathscr{M}at_{\mathscr{B},\mathscr{B}'}$.

1.3 Changement de matrice pour un endomorphisme

Soient $f \in \mathcal{L}(E)$, \mathcal{B} et \mathcal{B}' deux bases de E, ainsi que $A = \mathcal{M}at(f, \mathcal{B})$ et $B = \mathcal{M}at(f, \mathcal{B}')$. A et B sont liées par la relation : $A = PBP^{-1}$ où P est la matrice de passage de \mathcal{B} à \mathcal{B}'

1.4 Matrices semblables

Réciproquement, si A, B et P sont trois matrices telles que P est inversible et $A = PBP^{-1}$, alors il existe des bases \mathcal{B} et \mathcal{B}' de E et $f \in \mathcal{L}(E)$ tels que $A = \mathcal{M}at(f,\mathcal{B})$ et $B = \mathcal{M}at(f,\mathcal{B}')$; de plus la matrice de passage de \mathcal{B} à \mathcal{B}' est égale à P.

2 Définitions – Généralités

2.1 Vecteur propre, valeur propre

- Pour un endomorphisme : u est un vecteur propre de f si $u \neq 0_E$ et s'il existe $\lambda \in \mathbb{K}$ tel que $f(u) = \lambda u$ (ou encore (u, f(u))) est une famille liée). λ est la valeur propre associée à u.
- Pour une matrice : X est un vecteur propre de A si $X \neq 0_{\mathcal{M}_{n,1}(\mathbb{K})}$ et s'il existe $\lambda \in \mathbb{K}$ tel que $AX = \lambda X$. λ est la valeur propre associée à X.

Remarques 2.1.

- Le vecteur nul n'est jamais un vecteur propre.
- 0 est une valeur propre de f (resp. de A) si et seulement si $\ker f \neq \{0\}$ (resp. $\ker A \neq \{0\}$).

Vocabulaire 2.2.

En dimension finie, l'ensemble des valeurs propres d'un endomorphisme (ou d'une matrice) s'appelle le spectre.

Théorème 2.3. Si $\mathbb{K} = \mathbb{C}$, tout endomorphisme (resp. toute matrice) admet au moins une valeur propre.

Ce résultat est faux pour $\mathbb{K} = \mathbb{R}$, par exemple pour une rotation : $A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

2.2 Espace propre

Soit $\lambda \in \mathbb{K}$ une valeur propre (de f ou de A).

- Pour un endomorphisme : c'est l'ensemble des vecteurs $u \in E$ tels que $f(u) = \lambda u$.
- Pour une matrice : c'est l'ensemble des vecteurs $X \in \mathcal{M}_{n,1}(\mathbb{K})$ tels que $AX = \lambda X$.

L'espace propre associé à la valeur λ se note E_{λ} .

Propriétés 2.4.

- Le vecteur nul appartient à tous les espaces propres.
- Un espace propre est un sous-espace vectoriel non réduit à {0} de E.
- $-E_{\lambda} = \ker(f \lambda Id)$ (pour un endomorphisme); $E_{\lambda} = \ker(A \lambda I)$ (pour une matrice).
- λ est une valeur propre de f (resp. de A) si et seulement si $f \lambda Id$ (resp $A \lambda I$) n'est pas injectif.

Théorème 2.5.

- Les valeurs propres d'une matirce diagonale sont égales à ses cæfficients diagonaux.
- Les valeurs propres d'une matirce triangulaire sont égales à ses cœfficients diagonaux.

2.3 Vecteurs propres associés à des vp distinctes

Propriétés 2.6.

- Deux sous-espaces prores associés à des valeurs propres distinctes sont en somme directe.
- Soit $\mathscr{F} = (u_1, \ldots, u_p)$ une famille de vecteurs propres associées à des valeurs propres toutes distinctes, alors \mathscr{F} est une famille libre.
- Soient $\lambda_1, \ldots, \lambda_p$ des valeurs prorpes distinctes et $\mathscr{F}_1, \ldots, \mathscr{F}_p$ des familles libres de vecteurs propres associées aux $\lambda_k, k \in [\![1,n]\!]$, alors $\mathscr{F}_1 \cup \cdots \cup \mathscr{F}_p$ est une famille libre.

3 Endomorphismes diagonalisables

Théorème 3.1.

- Soit E un espace vectoriel sur \mathbb{C} et $f \in \mathcal{L}(E)$, il existe $\lambda \in \mathbb{C}$ tel que f admette λ comme valeur propre.
- Soit $A \in \mathcal{M}_n(\mathbb{C})$, il existe $\lambda \in \mathbb{C}$ tel que A admette λ comme valeur propre.

En résumé, tout endomorphisme ou matrice admet au moins une valeur propre complexe.

Définitions 3.2.

- Soit $f \in \mathcal{L}(E)$; f est diagonalisable s'il existe une base de E formée de vecteurs propres pour f.
- Soit $A \in \mathcal{M}_n(\mathbb{C})$; A est diagonalisable si A est semblable à une matrice diagonale.

Remarques 3.3.

- Soit $f \in \mathcal{L}(E)$ et $A = \mathcal{M}at(f,_{\mathscr{B}}) \in \mathcal{M}_n(\mathbb{C})$; f est diagonalisable \iff A est diagonalisable.
- Soit f diagonalisable, il n'y a pas unicité de la base de vecteurs propres pour f.
- Si A est diagonalisable avec $A = PDP^{-1}$, D diagonale et P inversible, alors D est unique à l'ordre des cæfficients diagonaux près; P n'est pas unique.

Théorème 3.4. Soit E de dimension n.

- f est diagonalisable si et seulement si la somme des dimensions des sous-espaces propres de f est égale n.
- Condition suffisante de diagonalisabilité)
- Si $f \in \mathcal{L}(E)$ (resp. $A \in \mathcal{M}_n(\mathbb{C})$) admet n valeurs propres distinctes, alors f (resp. A) est diagonalisable.

Remarque 3.5. La réciproque de la condition précédente est fausse : par exemple, une symétrie ou un projecteur est un endomorphisme diagonalisable, mais n'admet que 2 valeurs propres au plus (-1 et 1 pour une symétrie, et 0 et 1 pour un projecteur).

Théorème 3.6. Toute matrice symétrique de $\mathcal{M}_n(\mathbb{R})$ est diagonalisable.

Exemple 3.7. Ce théorème est faux pour A symétrique $\in \mathcal{M}_n(\mathbb{C})$: la matrice $A = \begin{pmatrix} 1-2i & 2 \\ 2 & 1+2i \end{pmatrix}$ est symétrique mais n'est pas diagonalisable.

3.1 Exemples de matrices non diagonalisables, triangulables

Théorème 3.8 (hors programme). Toute matrice de $\mathcal{M}_n(\mathbb{C})$ est semblable à une matrice triangulaire.

Remarques 3.9.

- Ce théorème découle du fait qu'un polynôme de degré n a toujours n racines (distinctes ou confondues) dans \mathbb{C} , il est donc faux pour $\mathbb{K} = \mathbb{R}$.
- Une matrice (ou un endomorphisme) qui admet une seule valeur propre n'est pas diagonalisable, sauf s'il est égal à λ Id ou λ I.