2bc1 - Mathématiques 2016-2017

Devoir maison 9

à rendre pour le mercredi 25 janvier

EXERCICE

Soient n un entier strictement positif et $A=(a_{i,j})_{\substack{1\leq i\leq n\\1\leq j\leq n}}$ la matrice carrée d'ordre n telle que

$$\forall (i,j) \in [1,n], \quad a_{i,j} = \begin{cases} 1 & \text{si } i+j=n+1 \\ 0 & \text{sinon} \end{cases}$$

- 1. Calculer A^2 .
- 2. En déduire les valeurs propres de A.
- 3. A est-elle diagonalisable?
- 4. Déterminer une base de chacun des sous-espaces propres.

 indication : observer qu'il est nécessaire de distinguer deux cas selon la parité de n

PROBLÈME

On note \mathcal{B} la base du \mathbb{C} -espace vectoriel \mathbb{C}^4 et id l'endomorphisme identité de \mathbb{C}^4 .

On note $\mathcal{M}_4(\mathbb{C})$, respectivement $\mathcal{M}_4(\mathbb{R})$, l'ensemble des matrices carrées d'ordre 4 à cœfficients dans \mathbb{C} , respectivement dans \mathbb{R} .

On note
$$I$$
 la matrice $I = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ et J la matrice $J = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$.

On note g l'endomorphisme dont la matrice dans la base \mathcal{B} est J.

Pour tout quadruplet $A = (a_1, a_2, a_3, a_4) \in \mathbb{C}^4$, on note M_A la matrice $M_A = \sum_{k=1}^4 a_k J^{k-1}$ et f_A l'endomorphisme de \mathbb{C}^4 dont la matrice dans la base \mathcal{B} est M_A .

On utilisera, sans chercher à le justifier, le fait que, pour tout $M \in \mathcal{M}_4(\mathbb{C})$, $M^0 = I$.

Première partie

- 1. Résoudre dans \mathbb{C} l'équation $z^4 = 1$.
- 2. On note Sp(g) l'ensemble des valeurs propres de g.
 - (a) Montrer que Sp $(g) = \{1, i, -1, -i\}$
 - (b) Déterminer une base de chaque sous-espace propre formée de vecteur(s) dont la première coordonnée vaut 1.
 - (c) g est-il diagonalisable?
- 3. On considère un quadruplet $A = (a_1, a_2, a_3, a_4) \in \mathbb{C}^4$.
 - (a) Calculer les coefficients de M_A .
 - (b) Montrer que f_A est combinaison linéaire de id, $g, g \circ g$ et $g \circ g \circ g$.
 - (c) Calculer l'image par f_A des vecteurs propres déterminés au 2b.
 - (d) En déduire que l'endomorphisme f_A est diagonalisable et donner une matrice diagonale à laquelle M_A est semblable.
- 4. Pour tout $z \in \mathbb{C}$, on note M(z) la matrice $M(z) = \begin{pmatrix} z & 1 & 1 & 1 \\ 1 & z & 1 & 1 \\ 1 & 1 & z & 1 \\ 1 & 1 & 1 & z \end{pmatrix}$.
 - (a) Déterminer les valeurs propres de M(z).
 - (b) Déterminer l'ensemble des nombres complexes pour lesquelles la matrice M(z) est inversible.
 - (c) Soient $n \in \mathbb{N}^*$, $k \in \mathbb{N}^*$ et $z \in \mathbb{C}$. Calculer $[M(1)]^k$ et $(M(z) M(1))^k$ puis, en remarquant que M(z) = (M(z) M(1)) + M(1), en déduire une expression de $[M(1)]^n$ à l'aide de z, n, M(1) et I.

- 5. Application.
 - (a) Écrire un algorithme fournissant le produit de deux matrices appartenant à $\mathcal{M}_4(\mathbb{R})$. Combien d'opérations (additions et multiplications) sont-elles réalisées?
 - (b) Écrire un algorithme fournissant la puissance n-ième d'une matrice de $\mathcal{M}_4(\mathbb{R})$ utilisant l'algorithme précédent. Combien d'opérations (additions et multiplications) sont-elles réalisées?
 - (c) Soit z un réel, écrire un algorithme fournissant la puissance n-ième de M(z) en utilisant la formule obtenue au 4c. Combien d'opérations (additions et multiplications) sont-elles réalisées? (On comptera n-1 produits si l'on effectue z^n).

Deuxième partie

On note E l'ensemble des fonctions polynomiales de degré inférieur ou égal à 3. On note $\varepsilon_0, \varepsilon_1, \varepsilon_2, \varepsilon_3$ les fonctions polynomiales suivantes :

$$\varepsilon_0: x \longmapsto 1, \quad \varepsilon_1: x \longmapsto x, \quad \varepsilon_2: x \longmapsto x^2 \quad \text{et} \quad \varepsilon_3: x \longmapsto x^3$$

On rappelle que $\mathcal{B}_1 = (\varepsilon_0, \varepsilon_1, \varepsilon_2, \varepsilon_3)$ est une base du \mathbb{R} -espace vectoriel E. Pour toute fonction polynomiale P, on note h(P) l'application

$$x \longmapsto (1 - x^2) \left(P'(0) - \frac{P'''(0)}{6} + x \left(\frac{P''(0)}{2} - P(0) \right) \right)$$

- 1. Montrer que h est un endomorphisme de E.
- 2. Déterminer la matrice de h dans la base \mathcal{B}_1 .
- 3. Déterminer l'ensemble des valeurs propres réelles de h.
- 4. Déterminer une base de l'image et du noyau de h.